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In previous simulations of hippocampus-dependent and prefrontal cortex-dependent tasks,
we demonstrated the use of one-shot short-term buffering with time compression that may
be achieved through persistent spiking activity during theta rhythm. A biophysically
plausible implementation of such a first-in first-out buffer of short sequences of spike
patterns includes noise and differences between the parameter values of individual model
pyramidal cells. We show that a specific set of parameters determinesmodel buffer capacity
and buffer function, and individual differences can have consequences similar to those of
noise. The set of parameters includes the frequency of network theta rhythm and the
strength of recurrent inhibition (affecting capacity), as well as the time constants of the
characteristic after-depolarizing response and the phase of afferent input during theta
rhythm (affecting buffer function). Given a sufficient number of pyramidal cells in layer II of
entorhinal cortex, and in each self-selected category of pyramidal cells with similar model
parameters, buffer function within a category is reliable with category-specific properties.
Properties include buffering of spikes in the order of inputs or in the reversed order. Multiple
property sets may enable parallel buffers with different capacities, which may underlie
differences of place field sizes andmay interact with grid cell firing in a separate population
of layer II stellate cells in the entorhinal cortex.
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1. Introduction

Models of hippocampal and prefrontal cortex function used in
simulations ofmany behavioral tasks need a short-term buffer
that does not depend on synaptic modification. Simulated
episodic encoding of spike patterns in recurrent networks
often relies on spike-timing-dependent potentiation (Bi and
Poo, 1998) with Hebbian learning characteristics (Hebb, 1949).
nd Brain, 2 Cummington
ne).
oene).

er B.V. All rights reserved
Such a sequence learning protocol requires repeated and
ordered presentation of successive stimuli with regular small
time intervals (less than 40 ms). Short-term buffering of a
sequence of input andmultiple subsequent cycles of retrieved
spiking activity at appropriate time intervals can provide a
buffer for this synaptic encoding.

Synapticmodification is not a plausiblemechanism through
which to buffer a single presentation of the input, but an
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intrinsic mechanism that elicits persistent spiking in response
to input is feasible. An after-depolarizing (ADP) membrane
current in pyramidal cells of layer II of entorhinal cortex enables
intrinsic persistent spiking (Klink andAlonso, 1997a,b; Egorov et
al., 2002).Theafter-depolarizationandpersistent spikingappear
to be most prominent in layer II pyramidal cells, and do not
appear in layer II stellate cells (Klink and Alonso, 1997b). In
contrast, layer II stellate cells exhibit subthreshold membrane
potential oscillations (Klink and Alonso, 1997b) that differ in
frequency along the dorsal–ventral axis andmay underlie firing
in a grid like pattern (Giocomoet al., 2007).Models of short-term
memory based on interactions of after-depolarization and theta
rhythm have been studied in simulations by Lisman and Idiart
(1995) and Jensen et al. (1996), as well as in our ownwork (Koene
et al., 2003; Koene and Hasselmo, 2005, 2007).

Our integrate-and-fire model of short-term buffering gen-
erates anasymmetricdistributionof spiking activitywithin each
cycle of the theta rhythm (Koene et al., 2003) that enables phase-
locked integration of buffer intervals of acquisition and retrieval
with intervals of encoding and retrieval in connected networks,
as well as a plausible mechanism for the first-in first-out (FIFO)
ordered replacement of items that are maintained in the buffer
(Koene and Hasselmo, 2007). The model was used to simulate
performance in hippocampus-dependent spatial navigation
tasks (Hasselmo et al., 2002; Koene et al., 2003) and in tasks
that depend on temporal context-dependent episodic memory
(Koene and Hasselmo, 2006b). A limited buffer capacity and the
first-in first-out replacement of items are a good fit to the
recency portion of graphs of serial position data (Atkinson and
Shiffrin, 1968; Kahana, 1996), and psychophysical evidence of
ordered item displacement has been gathered in tests ranging
fromprecategorical acoustic storage (Crowder andMorton, 1969)
to the observed interaction between memory load and item
position for semantic information (Haarmann and Usher, 2001).

Entorhinal cortex layer II (ECII) is themajor source of input to
the hippocampal system. Pyramidal neurons in ECII exhibit
after-depolarization (ADP) following spikes (Klink and Alonso,
1997b), and membrane potentials in both the entorhinal cortex
and hippocampus are modulated at theta rhythm, due to input
from the medial septum. Combined rhythmic modulation and
ADP may be used in a mechanism that sustains regular
persistent spiking, a sequence buffer first proposed by Lisman
and Idiart (1995). In prior work, we demonstrated an integrate-
and-fire model of a short-term spike buffer in ECII that is based
on these properties (Koene and Hasselmo, 2007). If short
sequences of spiking patterns are sustained in ECII then these
time-compressed and repeated representations of a behavioral
episode can elicit significant synaptic potentiation in hippo-
campal recurrent networks (Koene et al., 2003).

A constrained set of biophysical requirements follows from
the general principles of the working buffer:

• ADP rise and fall time constants (τrise,ADP, τfall,ADP) must be (a)
sufficiently large so that theADPmanages to returnaneuron's
membrane potential to threshold on the rising flank of
depolarization by theta rhythm, and (b) small enough to
allow persistent spiking to be terminated by a limited interval
of inhibitory input. Ideally, rise and fall time constants are
each similar to the duration of a theta cycle. Experimental
results by Klink and Alonso (1997b) and simulation studies by
Fransén et al. (2002) suggest time constants that differ
significantly from initial versions of our model. We attempt
a first analysis of the effect of this difference here.

• Afferent input must appear within specific phase intervals
of the theta cycle, which enables ADP to achieve the first
repetition of new item spiking either (a) within the same
theta cycle for a forward-order buffer, or (b) as the first item
reactivation on the depolarizing flank of the next theta cycle
for an order reversing buffer. These input intervals must be
separated from the theta interval in which sustained buffer
activity reappears to avoid interference between buffered
spike patterns and novel input.

• A network of interneurons must supply adequate recurrent
inhibition to neurons in the buffer in response to buffered
item spikes, so that a minimum time interval between the
spikes of successive item representations is enforced. The
inhibitory mechanism of item separation also supports
continued temporal coherence between the spikes of neurons
that represent one item without relying on strengthened
connections between those neurons.

We hypothesize that natural conditions of short-term
buffering in ECII include variations of the values of this set
of critical model parameters in individual neurons, as well as
additive noise (White et al., 2000). Here we demonstrate first-
in-first-out buffer function in the noisy case, at different
frequencies of the network theta rhythm or of network-wide
recurrent inhibition, and in cases of individual differences
between parameter values for (i) the characteristic amplitude
and time-constant of after-depolarization (ADP) and (ii) the
neuron-specific strength of recurrent inhibitory input.

Within the neural circuitry of the buffer, model parameters of
the neurons and their connections must fall within a similar
range that allows them to function together to hold one item in
the persistent spiking buffer. This is a general principle of self-
selectionduring one-shot acquisitionof anovel item inputwith a
representative patternof spikingbufferneurons.Where there are
differencesbetweentheparametersofpyramidalneurons inECII,
we show that those may affect reliable buffer function and may
affect the capacity of the buffer. Differences between individual
neurons have two main consequences: (1) Neurons with similar
model parameter values form subsets or categories. Within a
subset, neurons can function as successful components of a
persistent firing buffer with characteristics specific to the subset
of neurons. (2) A persistent spiking neuron can drop out of the
representation of a specific buffered item, thereby reducing the
ensemble size of the neural representation. This second conse-
quence is alsoa commonoutcomeof significantnoise. Parameter
andnoise relatedconsequencesaremitigatedwhen largeensem-
ble sizes are used to represent each buffered item. We speculate
that the existence of different subsets may lead to effective
buffering of sequence input in multiple buffers with different
characteristics, such as buffering with repetition in the same
order as input is received orwith repetition in the reversed order.
2. The model

In a previous work, we demonstrated the usefulness of our
working buffer model in simulations of hippocampus guided



Fig. 1 – Short-term buffering based on persistent spiking. (A) Model responses of the cholinergically modulated
after-depolarization (ADP) of a pyramidal neuron in layer II of the entorhinal cortex. Injecting current over 400 ms at low levels
of acetzylcholine (ACh) causes transitory spikes. At high levels of acetylcholine, repetitive spiking of the pyramidal neuron
persists at a rate determined by the time course of ADP.Whenwe include the effect of modulated membrane potential at theta
rhythm, persistent spiking occurs regularly at the same phase of the theta cycle. (B) Short sequences of patterns of
simultaneous spikes are sustained by the buffer. Spiking representations of items A to F, consisting of five or six spikes each
(a total of 32 spiking neurons), enter the buffer at successive onset times. Buffered spike patterns are reactivated in their order of
acquisition during each theta cycle. The spiking representation of A is terminated as E appears, and B is terminated as F
appears, demonstrating first-in-first-out queuing with a capacity for sequences of four spiking patterns.
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spatial navigation (Koene et al., 2003) and of goal-directed
behavior in PFC (Koene and Hasselmo, 2005). Depictions of our
short-term buffer model and examples of modeling with
Catacomb are included in Cannon et al. (2003). In Koene and
Hasselmo (2007), we contrasted ourmodel with othermodels of
working memory and described its kinship to the earlier
persistent spiking buffer model by Lisman and Idiart (1995),
whichwas used extensively by Jensen, Idiart and Lisman (1996).
Our model extended that earlier work by specifying a more
plausible simulation of theta modulated membrane potential,
by specifying a neural mechanism that enables the represen-
tationand first-in-first-out replacementof items representedby
different spiking ensemble sizes, and by demonstrating usable
buffer function in the presence of noise. We will describe the
effects of different model parameter settings, especially in the
context of the reverse order buffering version of the model. A
reversing buffer can be used to establish backward or bidirec-
tional episodic associations. This capability is particularly
Fig. 2 – The membrane response of one neuron in each of the ite
during item replacement. The simulation included a population o
two to eight spiking neurons represented individual items. (A) F
membrane response of each neuron exhibits spikes at order-spe
hyperpolarization and the onset of an after-depolarizing respons
simulation output shows buffer reactivation and item replacemen
of pyramidal membrane potentials throughout the network at re
of consecutive reactivated spike patterns are separated by an int
potentiation (STDP) can be elicited in associative networks that r
elicited by a neural mechanism for first-in-first-out item replacem
input appears in a full buffer.
relevant, since recent electrophysiology in spatial navigation
tasks has shown that both forward and reversed retrieval of
sequences of activity occur in the hippocampus (Foster and
Wilson, 2006; Johnson and Redish, 2006).

After-depolarization (ADP) is assumed to elicit persistent
firing in ourmodel of short-termmemory in ECII. ADPhas been
observed following spikes in the presence of cholinergic
modulation in ECII pyramidal neurons (Klink and Alonso,
1997b; Fransén et al., 2002), as well as in pyramidal neurons of
the prefrontal cortex (Andrade, 1991). Fig. 1A shows persistent
firing effects of ADP at lowandhigh levels of acetylcholine, and
with the addition of rhythmic theta oscillation (Acker et al.,
2003). During a modeled period of short-term buffer function,
we presuppose a response at saturation levels of the ADP, so
that after each spike the membrane potential resets and then
ramps up with the same amplitude and time constant.

The buffer mechanism previously described (Koene and
Hasselmo, 2007) specifies that the response of leaky integrate-
m representations A to F, during spike buffering in order and
f 29 persistent firing pyramidal neurons, of which subsets of
our items are buffered before replacement occurs. The
cific phases of rhythmic buffer cycles, as well as subsequent
e. (B) The expanded time scale of a small section of the
t. Recurrent “gamma” inhibition causes hyperpolarizing dips
gular intervals that follow each spiking pattern. The spikes
erval small enough, so that spike-timing-dependent
eceive the output of the buffer. “Replacement inhibition”
ent appears at the onset of buffered spike reactivation when
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and-firemodel ECII pyramidal neurons is affected bymembrane
currents that are characterized by individual values of conduc-
tance (gi) and reversal potential (Erev,i). The post-synaptic and
intrinsic currents are modeled by double exponential functions
(see Appendix A) for: a membrane leak current, regular input
responsible formodulation at theta rhythmthat originates in the
medial septum, afferent stimulus input to the buffer, intrinsic
after-hyperpolarizing and after-depolarizing responses to action
potentials, and inhibitory synaptic input from the recurrent
fibres of an interneuron network that is responsible for observed
modulation at gamma frequency (25–50 Hz). A spike depolarizes
the membrane to 0 mV. A characteristic membrane capacitance
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and leak current determine the time course of an exponential
decayofmembranepotential toacharacteristic restingpotential.

Buffered items are represented by patterns of simulta-
neous spikes, which are repeated rhythmically at theta
frequency (3–12 Hz). These regular cycles established through
the rhythmic modulation of buffer neurons by septal input
contain asymmetric intervals of buffered activity (on the
depolarizing flank of theta modulation) and of afferent input
to the buffer (Jacobs et al., 2007). Ourmodel aims to present the
realistic membrane response to theta modulation. Recurrent
inhibition believed to be responsible for observed gamma os-
cillations (25–50 Hz) maintains the ordinal separation of
successive buffered items, as an interneuron network is
activated by buffer spikes (Lisman and Idiart, 1995).

Non-overlapping spiking representations require one or
more pyramidal buffer neurons for each of the items presented
during a simulation. The number of spiking neurons that
represent different items presented during a simulation need
not be the same. To produce the simulation results shown, we
used two to eight spiking pyramidal neurons to represent an
item and a single model interneuron to represent inhibitory
activity generated by the network-wide activation of an
interneuron network. The response of the model interneuron
does not exhibit after-depolarization.

Our proposed mechanism for first-in first-out (FIFO)
replacement of items in a buffer that queues items in the
(“forward”) order of experience (Koene and Hasselmo, 2007)
does not depend on the number of spikes that represent a
buffered item or that represent a novel input, as shown in Fig.
1B, in which each item is represented by either five or six
spiking neurons of a population of 32 model pyramidal
neurons. Item replacement is both triggered by and targeted
to the theta phase of buffered spikes. A description of the
responses and interactions of neurons involved in the
proposed mechanism is included in Appendix A.

Input to specialized subsets of pyramidal neurons is
modulated by theta rhythm, such that one subset is activated
in response to buffer neuron spikes that occur at the theta
phase during which the last buffered item is reactivated in a
full buffer (designated in Appendix A as “Pf ” neurons).
Another subset is activated in response to novel input to the
buffer (designated in Appendix A as “Pi” neurons). When both
the full buffer and input detecting neurons spike, phase-
locked activity is elicited in a set of interneurons (designated
as “Ir” interneurons in Appendix A) that deliver “replacement
inhibition” to the persistent firing pyramidal neurons of the
buffer. Fig. 2 shows the membrane responses that the
mechanism elicits in persistent firing pyramidal neurons
during simulated buffering and replacement of six items.
One membrane response curve is shown for each of the items
A to F, which were represented in the simulation by 5, 2, 8, 4, 3,
and 7 spiking neurons, respectively.

At the first item reactivation phase, the degree of depolariza-
tion by thetamodulation and the ADP response of the persistent
firing pyramidal cells are tuned, so that the firing threshold can
be reached only at that phase, where the combination of theta
modulation and ADP is maximal for those neurons involved in
the item representation. At that phase, replacement inhibition
suppresses spiking and consequently terminates persistent
firing of the neurons that were used for the spiking representa-
tion of the first item. Subsequent buffered item spikes shift to
earlier theta phases and are followed by repetition of the spike
pattern that represents a new buffered item (Fig. 2). The capacity
of thebuffermodel is adjustablebymodifying thephaseatwhich
spiking can be elicited in the full buffer signaling neurons (Pf
neurons in Appendix A), up to a maximum imposed by the
number of gamma cycles that fit into the reactivation interval of
each theta cycle.

In tasks such as delayed spatial alternation, which
require temporal context-dependent episodic memory, an
order reversing buffer can achieve one-shot acquisition of a
sequence. Repetition of spike patterns in the reverse order of
the corresponding experience enables spike-timing-depen-
dent potentiation (STDP) of synapses in hippocampal
recurrent networks and hippocampal associative retrieval
in the reversed order, as recorded in recent experiments
(Foster and Wilson, 2006), which can retrieve events in a
preceding temporal context and enable correct decision
making in the behavioral task (Koene and Hasselmo, 2006a,
b). Our implementation of the reversed order buffer differs
from that of the forward order buffer in two ways: (1) A
different phase offset of afferent input results in order
reversal, since novel spikes are repeated as the first spike
pattern during the next theta cycle. (2) First-in first-out
queuing in the reversing buffer requires no explicit mecha-
nism to achieve correct item replacement. Fig. 3 shows
reversed order buffering of six items that were each
represented by subsets of five or six spiking neurons from
a simulated population of 32 pyramidal cells.

As the membrane response traces in Fig. 3 show, even
though the reactivation order of item spikes in the buffer is
reversed, the network still functions as a first-in first-out
buffer, since the earliest item buffered (A in Fig. 3) is also the
first item to be terminated when new input (F in Fig. 3) enters
the full buffer. In the reversed order buffer model, pattern
separating recurrent gamma inhibition shifts the reactivation
of earlier items into later phases of the theta cycle when the
reactivated spikes of new input appear first in the buffered
sequence. Once shifting is completed in a full buffer, the new
reactivation phase of earliest item spikes falls into the
hyperpolarizing interval of the theta modulation. That termi-
nates the persistent firing. In order to test the effects of
individual parameter differences between model ECII neu-
rons, we constructed a grid of independentlymodifiable buffer
neurons in the Catacomb model.
3. Results

In our previously demonstrated default configuration of the
buffer model (Koene and Hasselmo, 2007), we achieved robust
buffer function with gamma intervals of item separation that
enables spike-timing-dependent potentiation (STDP) in the
presence of noise (Fig. 4). Although the effects of noise on a
neuron'smembrane potentialmay affect the timing of a spike,
this drift is countered by the recurrent inhibition, which
promotes coherence. Eventually, drift of spike times causes
participating neurons to drop out of the buffered persistent
spiking, but without interfering with the sequence order of
buffered items. Maintaining the order, even as item



Fig. 3 – The membrane potentials of one neuron in each of six item representations (A to F), sustained in a reversed order
buffer. During the simulation, each item was represented by a subset of five (A, C, E, F) or six (B, D) spiking neurons from a
population of 32model pyramidal cells. The buffer model uses no explicit item replacementmechanism, but demonstrates five
item capacity in this simulation.
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expression is weakened in proportion to an item's age in the
buffer, is a useful property that can support reliable episodic
encoding.
Fig. 4 – Simulationswith noise in themodel of six buffered items
between two and eight spikes (total of 29 spiking neurons). Susta
strong noise levels, an initial selection of spikes that reactivate i
representation (13 of the 29 neurons). (B) When noise levels are e
adjacent gamma intervals and a gradual drop out of spikes (exam
Despite the separation of spikes in each pattern, the order of spik
simulations, so that the order of item representations in a buffer
The present implementation of the ECII model retains the
same buffer performance, even though it no longer includes
phasicmodulation that was used in our earlier implementation
(A to F), each represented by spike patterns that initially elicit
ined spiking at low levels of noise is shown in Fig. 1B. (A) At
n the same gamma interval is sustained for each item
levated further, those representations exhibit separation into
ples indicated by “separation” and “drop-out” arrows).
es sustained for consecutive items was not violated in these
ed sequence was maintained.



Fig. 5 – Correct reversed buffer spiking for 15 items (A to O) represented by 4 spiking neurons per item, with a buffer capacity of
five items (e.g. K, L, M, N, O). The simulated buffer model did not utilize transmission modulation to regulate afferent and
recurrent activity.
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(Koene and Hasselmo, 2007) to suppress transmission of
afferent input when buffered spikes are reactivated and to
suppress recurrent inhibition during the input interval of each
theta cycle (Fig. 5). This was expected: Circuitry regulating the
input ensures that input spikes appear only at the designated
input phase, and that phase is sufficiently separated from the
phase of the first buffered spike, so that recurrent inhibition due
to spikes elicited by afferent input has no effect.

Buffer function depends entirely on the ADP response in our
model. A rise time constant that is significantly less than the
duration of a theta cycle does not enable spike reactivation at
theta rhythm. In contrast, a time constant that is too longhas the
potential to disrupt the timing of individual buffer items. We
explore the effect of larger rise time constants, specifically an
ADP response that can affect more than two theta cycles. Due to
the reset of ADP following each spike, the extended intrinsic
response to after-depolarization with greater time constants did
not affect simulatedmaintenance of buffered items. Fig. 6 shows
the membrane responses of five buffered items during a
Fig. 6 – The membrane potential of one neuron in each of five re
pyramidal neurons that exhibit after-depolarization responses t
involved first-in first-out reversed order buffering of 15 items, ea
simulation with a sequence of 15 input items. Each item was
represented by four spiking neurons from a population of 60
model pyramidal cells. A forward order buffer model with in-
creased ADP rise time constant does require a stronger replace-
ment inhibition to terminate persistent firing of the oldest item.

Increasing the rise time constant of ADP can decrease
robustness of the buffer in noisy conditions. Strong ADP at
intervals greater than one theta cycle can allow spiking, even if
the spike time has been shifted significantly by noise. Instead of
merelyweakening item representations inwhich shifted spikes
drop out, buffered item representations may overlap and
interfere if shifted spikes merge into adjacent spike patterns.
Whether this is a problem depends on two factors, namely
(1) whether it is necessary to retrieve clear representations of
individual items during tasks that depend on the retrieval of
specific episodes, and (2) whether strong autoassociative
encoding of individual items in other regions of the hippocam-
pus cansufficiently correct thespiking representations that best
match spike patterns in retrieved episodes.
versed order buffered items (A to E), simulated with model
hat span more than two theta cycles. The full simulation
ch of which was represented by four spiking neurons.



Fig. 7 – Simulated spike responses of five reversed order buffered item representations (A to E, with four spiking neurons each)
in which pyramidal neurons were modeled with differences in the individual after-depolarization response rise time
constant. Sustained spikes of neurons three and four drop-out (“drop-out” arrows). The sustained spikes of neuron eight,
though initially elicited as part of the representation of the third item, become associated with the representation of the second
item (“shift” arrow).
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The effect of differences between the ADP parameters of indi-
vidual pyramidal neurons in the samenetwork is shown in Fig. 7:

1. Differences that amount to less than 15% of the ADP rise
time constant (most neurons shown in Fig. 7) did not affect
the participation of neurons in buffer function. Recurrent
inhibition was strong enough to enforce synchronization.

2. A changeof theADP rise timeconstant from140ms to 90ms
(neuron 3) and 100 ms (neuron 4) was the first value at
which the ADP did not last long enough for the neurons to
participate in buffering for more than a few cycles. Re-
activation ceased as new items settled into a specific theta
phase, when the interval for persistent spiking is equal to a
theta cycle. The intervals were smaller when a new item
was still shifting from late phase to earlier phases.

3. Achangeof theADP rise timeconstant from140ms to160ms
(neuron 8) was the first value at which the ADP difference
caused a shift of the reactivated spike into another gamma
Fig. 8 – Simulated forward order buffering inmodels withmodifi
a simulation with seven consecutive items (A to G) represented b
neurons). The increased duration of the theta cycles was able to
patterns. (B) Stronger network-wide recurrent “gamma” inhibition
or six spikes each. Buffer capacity was reduced to three items.
interval. As a consequence, the neuron was dropped from
the representation of the third item, and recruited into the
representation of the second item. Such desynchronization
also occurred in simulations where some neurons had even
larger ADP rise time constants.

The effect of differences betweenADP time constantsmay be
non-criticalwhen thenumber of candidate spiking neurons that
mayparticipate in the buffered representation of an item is large
enough. Participation is self-selective for suitable parameters
during the initial cycles of itembuffering. Synapsesmay then be
strengthened between input cues and successful buffered spike
patterns.

Changing the strengthof recurrent inhibitionor changing the
frequency of theta rhythm directly affects buffer capacity.
Lowering the theta frequency (Fig. 8A) increases the number of
item representations that can be sustained in each cycle, but
reduces the number of cycles and therefore repetitions within a
ed theta and gamma intervals. (A) Reduced theta frequency in
y patterns of three to five spikes each (a total of 26 spiking
accommodate the sustained reactivation of all seven spike
in a simulationwith six items represented by patterns of five



Fig. 9 – Membrane potential of pyramidal neurons in a
simulated buffer with network-wide weak inhibition by
“gamma” interneurons, with two items represented by two
spiking neurons each. After about seven cycles of reactivation
of the secondbuffered item representation, the twoconsecutive
spike patterns merge into a single pattern of synchronous
spikes. The membrane potential responses shown here were
the result of a simulationwith a buffer containing 32 persistent
firing pyramidal cells, of which subsets of five or six spiking
neurons represented six different items.
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given time span. That reduction can proportionately affect the
strength of encoding by STDP in recurrent networks of the
hippocampus during that time span. Strengthening recurrent
“gamma” inhibition (Fig. 8B) increases the time interval between
sustained spike patterns, which decreases the number of
buffered items that can be sustained in each cycle. Weakening
recurrent inhibition (Fig. 9) increases that number, but buffer
Fig. 10 – Spike responses during simulated reverse ordered buff
inhibition experienced by individual buffer neurons. (A) Three it
when some model neurons experience stronger “gamma” inhib
between t=1100ms and t=1500ms (“delayed” arrow), but is then
by neuron four causes drop out of its spiking after t=1400ms (“dr
other figures.) (B) Eight item representations (A to H) consisting o
weaker “gamma” inhibition. After t=3000 ms, the spiking neuro
with spike patterns sustaining items different than the two they
function breaks down if the inhibition is too weak to maintain
adequate item separation, so that spike patterns representing
consecutive items merge.

A network-wide theta rhythm may be assumed for ECII, yet
the strength of recurrent inhibitory connections targeting
individual pyramidal neurons may differ. We investigate con-
sequencesof such individualdifferences.Whenspecificneurons
experienced a 20% greater amplitude of recurrent inhibition
(raised from 50 nS to 60 nS), their participation in item repre-
sentations in a reversing buffer was not affected (Fig. 10A). Once
that difference was changed to 50% (75 nS) in model neurons 3
and 4, neuron 4 exhibited reduced buffering capacity and
dropped out once the buffer was presented with a third item.
Neuron 3was less affected, due to its later phase of reactivation.

When specific neurons experienced less inhibition (from
50 nS to 40 nS for neuron 3 and to 30 nS for neuron 4), the
shorter period of inhibitionmay cause spikes of those neurons
to shift to an earlier gamma interval of the buffer (Fig. 10B). As
this occurs during the first cycles of item buffering, such shifts
imply that the weakly inhibited neurons will not participate in
item representations established by reliable coherence.
4. Discussion

Individual differences between the model parameters of buffer
neurons may affect reliable buffer function and may affect the
capacity of the buffer in terms of the number of spike patterns
that may be sustained in short-term memory. At the system
level, thiscapacity affectshippocampal encodingand retrieval of
episodic memory. Buffer capacity determines how many items
may be added to the buffer as spike pattern input until the first
item isdropped from thequeue. In spatial tasks, this determines
the effective area of the place fields thatmay be associatedwith
place cell activity elicited in the hippocampus (Fig. 11). In
general, the ordinal distance acrosswhich connections between
items in an episode may be strengthened during heteroassocia-
tive encoding is affected.Asdiscussedbelow, theeffective size of
ering with differences between the strength of recurrent
em representations (A to C) consisting of four spikes each,
ition. Spiking of neuron three is delayed during buffer cycles
realigned. The difference of recurrent inhibition experienced
op-out” arrow). (Note the difference in time scale compared to
f four spikes each, when some model neurons experience
ns three and four become aligned and therefore associated
had previously been aligned with (“shift” arrows).



Fig. 11 – The relationship between effective hippocampal
place fields and buffer capacity. Black curved lines indicate
positions during a spatial task, at which the onset of spiking
of a place cell (numbered 1 to 6) registers as input to ECII.
Buffering that spike until threemore input items are received
results in the effective place field indicated by the
cross-hatched area. If the spike is lost only after five more
input items are received, then the effective place field is
indicated by the cross-hatched plus right-diagonal area.
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place fields established by the buffer capacity of ECII pyramidal
neurons may through recurrent collaterals in ECII interact with
grid activity of ECII stellate cells (Hafting et al., 2005).

Individual differences have two main consequences:

1. Subsets of neurons with similar parameters form functional
categories. Input spikesmay be sustained inmultiple buffers
with properties determined by the category of the participat-
ing neurons. During behavioral tasks, ECII may providemore
than one short-term buffered representation of episodic
activity to the hippocampal system. A significant example of
useful multiple buffer resources are the forward order and
reversed order buffer types, for which the neuralmechanism
differs only in terms of the delay with which input arrives at
ECII neurons, the theta phase offset of novel input. In future
work, we will investigate the parallel operation of multiple
buffers, which in some cases may also involve establishing
lateral innervation by separate groups of interneurons.

2. A neuron with different parameter valuesmay not be able to
participate in a specific item representation or may drop out
after a few cycles. Neuron drop-out is also a common and
gradually increasing consequence of noise. Spike drop-outs
reduce the representing neuron ensemble size. When this
reduction occurs gradually, due to the effects of noise in the
buffer, the combined output spiking activity of representa-
tions for each buffered item is proportional to an item's age
(the duration for which it has been sustained) in the buffer. A
translation such as this, of the ordinal buffer position of an
item (time-domain) to a corresponding activity level can be
useful as a way to provide working memory of context
(Howard and Kahana, 2002).
A noisy persistent firing buffer with repeated sequence
activity at theta rhythm is not the only proposed mecha-
nism with which to achieve a distributed representation of
temporal context. Sustained graded firing rates in layer V of
EC (ECV) have been proposed as a useful mechanism to
support the activity of such population-coded context
representations (Fransén et al., 2006; Howard and Kahana,
2002). The graded firing rates shown to be sustained in ECV
are not a suitable buffer for ordered spike sequences during
heteroassociative encoding by STDP. By contrast, the
regular spiking exhibited by ECII pyramidal neurons with
ADP is very well suited to that purpose.

Large ensemble sizes can mitigate the functional conse-
quences of parameter and noise related spike drop-out. ECII
contains many neurons, and between tasks the resource can be
recycled into new item representations. Nevertheless, the
minimum reliable ensemble size does place a limit on the
number of successful item representations that may be estab-
lished and buffered in ECII during behavior. Unlike encoding in
associative memory networks, overlapping representations are
not desirable, sincepersistent spiking inECII is specifically useful
as a one-shot short-term memory for novel items. Existing
recurrent fiber connections between pyramidal neurons in ECII
may imply natural attractors that are expressed as neural
ensembles with consistent coherent spiking. Such ensembles
may form reliable and even pattern-completing representations
when activated during the presentation of input to ECII.

As shown here and previously (Koene and Hasselmo,
2007), changing the duration of the theta cycles or of spike
suppression by recurrent inhibition directly controls the
capacity of the proposed buffer model. A greater duration of
the ADP response can be accommodated readily in the
reverse order form of the buffer, while the forward order
buffer then requires a proportionally stronger inhibition to
terminate items for first-in-first-out replacement. In future
work, we will simulate the response dynamics of ECII
pyramidal cells in more detail, and we will consider the
causes of different realistic time constants of ADP that have
been proposed by Fransén et al. (2002) and by Andrade (1991).

We speculate that the potential for multiple buffers with
different item capacity limits supported by ECII pyramidal cell
activity may interact with ECII stellate cell activity that exhibits
grid-like place-dependent activity at different spatial grid
frequencies (Hafting et al., 2005). The persistent firing could
allow linking of specific item representations to active grid cells,
or could perturb the spatial pattern of firing in a manner that
influences context-dependent firing of place cells. The stellate
cell output thenprojects to regions of the hippocampus, such as
the dentate gyrus and region CA3 (Heinemann et al., 2000).

There are some functional limitations to the buffer model.
Smaller intervals between successive retrievedspikepatterns in
the buffer enable buffering of longer sequences, but short-term
buffer function deteriorates at recurrent inhibition strengths
below Ggamma=2.5 nS, since the inhibition becomes insufficient
to reliably separate item spike patterns when spike times are
shiftedby realistic noise.Recent studies of associations between
changes in gamma frequency oscillations and effectiveness of
encoding in humans provide a compelling justification for this
limitation (Sederberg et al., 2007). It is plausible that strong
gamma oscillations are needed to maintain item separation.

As implemented, the buffer model contains no direct
recurrent connections between buffer pyramidal neurons.
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Consequently, no attractor network functions, such as pattern
completion, are possible without involving a separate recurrent
network during retrieval. Item representations in the buffer
automatically separate into distinct subsets of spikingpyramidal
neurons. This leads to competing demands: On one hand, item
spike patterns that involve a large number of neurons canmore
robustly buffer a sequences of item representation by noisy
persistent firing.On theotherhand, itempatterns representedby
large non-overlapping sets of neurons can limit the number of
item representations that may be generated for a task.

Properties of the buffer model, specifically after-hyperpolar-
ization and the functional “reset” of saturated ADP responses
following a spike, necessitate a formof repetition blindness2 for a
specific context-dependent representation of item input that is
identical to a buffered item (Koene, 2001, ch. 5). As spikes are
dropped from the noisy representation of a buffered item, those
spikes become available for renewed activation when place cell
spikes continue to be elicited in large or non-sparse ECII place
fields. Both a gradual decrease of item activity and a gradually
renewed activity are therefore possible, which may be mirrored
by the rate of stellate grid cell activity around grid nodes.
Depending on the buffer capacity, the first buffered item will be
replaced after a specific number of other place cell inputs are
received, which correspond to overlapping place fields in ECII. If
the current location is still within the spatial boundaries ofmany
of the same large overlapping place fields, then input similar to
that which elicited the recently replaced item may return to the
buffer. This sequenceofbuffer events, via recurrentoutput toECII
stellate cells, can interact with the observed regular spacing of
gridnodeswith elevated spike rates and the lowspike rate spaces
between them.

Our model provides a robust short-term memory used to
simulate behavioral tasks, especially those that depend on
regular cycles of alternating encoding and retrieval of episodic
memory (Hasselmo et al., 2002; Cannon et al., 2003; Koene et al.,
2003; Koene and Hasselmo, 2005; McGaughy et al., 2005; Ergorul
andEichenbaum, 2006).Thebuffermodel is alsoable togenerate
reversed order sequences that enable reversed heteroassocia-
tive encoding by STDP. Here, we examined the effect of
differences in the values of significant model parameters.
Significant effects resulted from differences in the time
constants of the ADP response, from different phase offsets of
afferent input spikes, fromdifferent theta frequencies, and from
differences in the strength of recurrent inhibition. Relatively
small differences between the parameter values of individual
model neurons do not critically affect buffer function. Greater
differences lead either to spike drop-out or to spikes that shift
between adjacent item representations. Groups of many
neurons in ECII with similar parameter values may function as
parallel buffers with distinct properties.

Previously (Koene and Hasselmo, 2007), we described a pos-
sible connection between the optimal separation of buffered
items by recurrent inhibition for robust buffer operation, as first
proposed by Lisman and Idiart (1995), and a 4±1 short-term
memory capacity limit espoused by Cowan (2001). Present
results suggest that ECII may provide resource subsets for
2 The neural mechanism that may accomplish “novelty detec-
tion” in the hippocampal system is often thought to involve a
comparison function in CA1 (Lisman, 1999).
multiple buffers with different characteristics in terms of item
separation, buffer capacity, and sequence order, mechanistic
differences thatmaybe involved in the category-dependent and
chunking-dependentdifferencesofmeasuredshort-termmem-
ory capacity (Wickens, 1984; Daneman and Merikle, 1996).

Self-selection of appropriate resources in terms of neurons
with similar characteristic model parameter values may be the
main mechanism to assure adequate buffer operation. Such
selective appropriation is a cheap solution in evolutionary
terms, since the plentiful production of neurons and synapses
in ECII is a straightforward developmental step. Neurons with
similar parameters can provide buffer function with group-
specific properties. Grouping is further aided by the existence of
a priori recurrent connections in the network of pyramidal
neurons inECII.Wewill investigate self-selection in futurework,
which will require simulating hundreds of ECII model neurons.
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Appendix A

For the simulations presented here, the short-term buffermodel
was implemented with leaky integrate-and-fire neurons, in
which an explicit membrane capacitance determines the time-
constant of exponential decay to resting potential. The mem-
brane potential of all modeled neurons and interneurons is
modulated by rhythmic input at a theta frequency of 8 Hz,
synaptic input, intrinsic after-hyperpolarization, and a leak cur-
rent. The thetamodulation is introduced to the neurons through
inhibitory synaptic input that is driven by an abstractedmodel of
fiberspropagatingactivity fromthemedial septum. Inaddition to
this, the modeled pyramidal neurons of layer II of entorhinal
cortex that are supposed to sustain persistent firing experience
after-depolarization. The conductance response of each of these
currents is described by a double-exponential function,

giðtÞ ¼ Gianormðexp ð�t=sfall;iÞ � exp ð�t=srise;iÞÞ; ð1Þ

where Gi is the characteristic amplitude of the conductance
response for a specificmembrane current, and τfall,i and τrise,i are
its fall and rise time constants. A normalizing factoranorm is used
to insure that the maximum value of gi(t) is Gi,

anorm ¼ 1=ðexp ð�tmax=sfall;iÞ � exp ð�tmax=srise;iÞÞ; ð2Þ

with the time offset of the maximum response value,

tmax ¼ ln
sfall;i=srise;i

ð1=srise;iÞ � ð1=sfall;iÞ
� �

: ð3Þ

http://askja.bu.edu


Table 1 – Default parameter values ofmodeledmembrane
currents in the short-term buffer simulations

Membrane current τrise
(ms)

τfall
(ms)

G
(nS)

Erev
(mV)

Pyramidal buffer neurons
After-hyperpolarization 10−4 30 23 −90
After-depolarization 125 125 30 −45
Asymmetric theta modulation 0.1 20 10 −90
Input from “gamma” interneuron 0.1 2.5 100 −70
Leak 9 111 −60

“Gamma” interneuron
After-hyperpolarization 10−4 4 100 −90
Input from buffer pyramidal neurons 1 2 30 0
Leak 10 100 −70

Leak currents are modeled as exponential decay functions to
resting potential, and therefore have only one time constant. Leak
conductance is related to the leak time constant by Gleak=C /τleak.
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Computed individual time-specific conductance values gi(t)
determine contributions to the change Δv of the membrane
potential V during a small time interval Δt,

Dv ¼

X
i

ðgiDtðErev;i � VÞÞ

Cþ
X
i

ðgiDtÞ
; ð4Þ

where C=1 mF is the membrane capacitance and Erev,i the
reversal potential of a contributing membrane current. The
firing threshold is −50 mV. The pyramidal neuron resting
potential is −60 mV, and the interneuron resting potential is
−70mV. Action potentials have a duration of 1ms and followed
by a 2ms refractory period and by after-hyperpolarization. The
default parameter values used in simulations were introduced
in Koene and Hasselmo (2007) and are shown in Table 1. The
Fig. 12 – Simulated responses of the membrane potential of spe
that may interact to elicit first-in first-out item replacement in a
represents the combined activity of all intrinsic spiking pyramida
unit represents pyramidal neurons that activate once during each
Pi unit represents pyramidal neurons that activate once during e
buffer. Dotted circles indicate the buffer activity during three spu
that receive input from Pf and Pi neurons. Ir spikes exert replace
response trace of Ir interneurons shows two occasions that elicit
sixth afferent input stimuli appear.
recurrent connectivity in the buffer network is such that the
interneuron representing interneuron network activity
receives input from all pyramidal buffer neurons and sends
spike output to all pyramidal buffer neurons.

In simulations with noise, noise was added through
simulated current clamps of individual neurons driven by a
first order autoregressive process (a model for the response to
noise that is similar toa randomwalk)withPoissondistribution,
a mean value of 0, an amplitude of 1 pA, and a regression
parameter of 0.5. Strong noise had amplitude values up to
±10 pA, and very strong noise had amplitude values between
±60 and ±70 pA.

In Fig. 12, we show interacting specialized pyramidal
neurons and interneurons that demonstrate that a first-in
first-out item replacement function is possible in the forward
order persistent firing buffer model. The mechanism demon-
strated was introduced in Koene and Hasselmo (2007).

Symbolic units simplify the description of the replacement
mechanism in Fig. 12. The PADP unit is a superposition of all the
pyramidal buffer neurons that spike persistently, due to an
intrinsic mechanism such as after-depolarization. The units Pf
and Pi are simplified representations of two ensembles of
pyramidal neurons that do not exhibit intrinsic spiking. The
ensemble represented by Pi receives external input. The
ensemble represented by Pf receives feedback from the
intrinsically spiking pyramidal buffer neurons. The Pf and Pi
unitswere implemented in themodelnetworkas two individual
pyramidal neurons. Similarly, the Ir unit represents an ensem-
ble of interneurons that is driven separately from those
interneurons responsible for inhibition at gamma intervals.
The Ir unit was implemented as a single interneuron receiving
input from the neuron implementations of the Pf and Pi units.

The trace of the symbolic PADP unit shows when any of the
pyramidal neurons in the buffer that experience intrinsic after-
depolarization reactivate tomaintain itemspike patterns. Septal
input at theta frequency modulates the membrane potential of
cialized populations of pyramidal neurons and interneurons
persistent firing short-term buffer. The PADP unit shown
l neurons in our model of layer II of entorhinal cortex. The Pf
theta cycle in which the buffer is filled to capacity, while the
ach theta cycle in which afferent input elicits activity in the
rious “full buffer” spikes. The Ir unit represents interneurons
ment inhibition at PADP buffer pyramidal neurons. The
replacement inhibition spikes, namely when the fifth and
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Pf (full buffer detecting) andPi (buffer inputdetecting) neuronsat
the same phase as the membrane potential of buffer neurons
represented in the PADP trace.

The neural mechanism shown is tuned to a forward-order
buffer with a sequence capacity of four items. The efficacy of
transmission throughoutput connections frombuffer neurons
(represented by PADP ) to Pf neurons is modulated at theta
frequency, to strongly transmit only spikes at the theta phase
interval of a reactivated fourth item in the buffer. If a fourth
item is reactivated in the buffer, then Pf neurons spike.
Spurious “full buffer” spikes in Fig. 12 (spikes in Pf below
dotted ellipses) occur immediately after first, second, and third
item afferent input stimulation. In those cases, reactivated
item spikes have yet to shift into earlier phases of the theta
cycle.

The output of Pf and Pi neurons converges at specialized
interneurons (Ir). Septal input at theta frequency modulates
the membrane potential of the interneurons, effectively
imposing a phase-lock on the timing of possible spikes elicited
at Ir. The combination of full buffer and afferent input signals
therefore elicits theta phase synchronized spikes of the Ir
interneurons. The phase-lock ensures that Ir activity inhibits
activity at the phase of first item reactivation in the short-term
buffer. First item reactivation is tuned to be possible only at
the maximum depolarization by the combination of theta
modulation and ADP at that phase. Consequently, the interval
of suppression by “replacement inhibition” causes termina-
tion of the persistent first item spike pattern.
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