
March 2003, ver. 1.0 Application Note 295

Gold Code Generator
Reference Design
Altera Corporation 1

Introduction Gold codes are a set of specific sequences found in systems employing
spread spectrum or code-division multiple access (CDMA) techniques.
These systems are often used in communications equipment such as
cellular telephones, global positioning systems (GPS), and Very Small
Aperture Satellite Terminals (VSATS). Gold codes have cross-correlation
properties necessary in a multi-user environment, where one code must
be distinguished from several codes existing in the same spectrum.

This application note describes the implementation of the Gold Code
Generator reference design, based on the 3rd Generation Partnership
Project (3GPP) specifications for the WCDMA Universal Mobile
Telecommunications Systems (UMTS) uplink channel.

Using the time division multiplexing (TDM) technique, the gold code
generator is able to generate 32 unique codes simultaneously and
efficiently, using the same resources of a single code generator. The design
also includes a Nios® embedded processor which handles the tasks of
initializing the code generator and switching between different code sets.

Background
Information

Pseudorandom Noise Sequences

The pseudorandom noise (PN) sequences are a series of 1’s and 0’s which
lack any definite pattern, and look statistically independent and
uniformly distributed. The sequences are deterministic, but exhibit noise
properties similar to randomness.

The PN sequence generator is usually made up of shift registers with
feedback. By linearly combining elements from taps of the shift register
and feeding them back to the input of the generator, you can obtain a
sequence of much longer repeat length using the same number of delay
elements in the shift register. Hence, these blocks are also referred to as
linear feedback shift registers (LFSR).

The length of the shift register, the number of taps, and their positions in
the LFSR, are important to generate PN sequences with desirable auto-
correlation and cross-correlation properties.

Scrambling Codes in CDMA

Code Division Multiple Access (CDMA) networks allow multiple users to
transmit simultaneously within the same wideband radio channel. In
order to enable frequency re-use, the networks employ the spread
spectrum technique.
AN-295-1.0

AN 295: Gold Code Generator Reference Design
The main principle of spread spectrum communication is using
wideband, noise-like signals to increase the bandwidth occupancy. As a
result of larger bandwidth, the power spectral density is lower, which
enables multiple signals to occupy the same band with minimum
interference.

During the spreading process, CDMA distributes the signal across the
entire allotted frequency spectrum by combining the data signal with a
scrambling code which is independent of the transmitted signal. In a
multi-path environment, each addressee is assigned a unique scrambling
code. The correlation property of these codes makes it possible to generate
a distinction between the signals, which allows the different paths to be
decoded by the receiver.

Gold Code
Generator
Functional
Description

The scrambling codes used in 3G CDMA wiresless systems are based on
“Gold” codes. Gold codes are obtained by combining two PN sequences
and modulo-2 adding, or XORing, the output together. These codes have
specific cross-correlation properties, to allow as many users as possible,
with minimum interference.

Using a set of polynomials, you can construct the PN sequences (also
known as m-sequences). This reference design uses a set of specific
primitive polynomials over Galois Field 2 (GF[2]) as described in the 3rd
Generation Partnership Project (3GPP) Technical Specification 25.213.

The x-sequence uses the following polynomial:

X25 + X3 + 1

The y-sequence uses the following polynomial:

X25 + X3 + X2 + X + 1

The specifications require the use of 25-stage LFSRs.

The final result is a long scrambling code, Clong,1n and Clong,2n, generated
by summing (using modulo-two addition) the outputs of two PN code
sequence generators.

Figure 1 shows the uplink long scrambling code generator block diagram.
2 Altera Corporation

AN 295: Gold Code Generator Reference Design
Figure 1. Uplink Long Scrambling Code Generator

Reference
Design
Description

The Altera Gold Code Generator reference design implements a gold code
generator targeting the Altera® EP20K400EFC484 device on the APEX™
Nios® development board. You can use this design as a reference for the
following.

■ a scrambling code generator for uplink and downlink channels in 3G
CDMA wireless systems

■ a spreading signal generator in a Global Positioning System (GPS)

The reference design implements a gold code generator which results in
complex-valued long scrambling sequences Clong,1n and Clong,2n. These
are separate codes for I and Q. The generation of the sequences is based on
an LFSR implementation, as shown in Figure 1. As a result of using the
TDM time-sharing technique, the intermediate values of the code need to
be stored in two separate RAM blocks.

The reference design also includes a Nios embedded processor to provide
an interface to a higher layer in the protocol, which is used to change the
initial conditions in the LFSR. The initial condition is also referred to as the
“fill” state of the LFSR. By default, the initial values are read from the
init_i.hex, and init_q.hex files.

Figure 2 shows a block diagram of the Gold Code Generator reference
design.

LSBMSB
Clong,1n

Clong,2n
Altera Corporation 3

AN 295: Gold Code Generator Reference Design
Figure 2. Gold Code Generator Reference Design Block Diagram

Port Description

Table 1 describes the ports in the Gold Code Generator reference design.

CPU PIO

DMA
buffer_ram

UART

ext
RAM/Flash

I/F

ref_32_system
pn_generator

RAM I

RAM Q

code_gen_lfsr

Nios Embedded Processor and Peripherals
Gold Code Generator

standard_32

Table 1. Gold Code Generator Ports (Part 1 of 2)

Port Name Port Type Description

Nios CPU and Code Generator

CLK_DRV_clk_to_apex In Clock

RESET_SWITCH_out In Reset

Code Generator

clken In Clock enable

stop In Stop code generator

Clong_1n Out Long scrambling sequences,
Clong, 1n

Clong_2n Out Long scrambling sequences,
Clong, 2n

data_valid Out Indicates data on output ports
Clong_1n and Clong_2n are valid.

set_code Out Indicates end of each time-sharing
period (32 clock cycles).
4 Altera Corporation

AN 295: Gold Code Generator Reference Design
stop_code_gen Out Indicates code generator is
stopped. This can be controlled
using the “stop” port, or directly
from software. Code generator is
also stopped during updating of
seed values from software.

External RAM and Flash

SRAM_Hi_data-
SRAM_Lo_data[31..0]

In/out Data to/from off-chip SRAM/Flash

FLASH_high_address_bit
s-SRAM_Lo_address-
FLASH_a0-
APEX_a0[19..0]

Out Address bus to off-chip
SRAM/Flash

SRAM_Hi_be_n-
SRAM_Lo_be_n[3..0]

Out Byte enable for off-chip memory

SRAM_Lo_oe_n Out Read enable for off-chip memory

SRAM_Hi_cs_n Out Chip select for upper 16-bit SRAM

SRAM_Lo_cs_n Out Chip select for lower 16-bit SRAM

FLASH_ce_n Out Chip select for Flash

FLASH_we_n Out Write enable for Flash

SRAM_Lo_we_n Out Write enable for SRAM

UART

DB9_CONNECTOR_rxd In RxD pin for UART

DB9_CONNECTOR_rxd_
uart2

In RxD pin for UART (debugger)

DB9_CONNECTOR_txd Out TxD pin for UART

DB9_CONNECTOR_txd_
uart2

Out TxD pin for UART (debugger)

Miscellaneous

FLASH_a16 Out Flash and RAM chip A17 signals
are wired to separate I/O pins for
designs using RAM as 16-bit wide
device.

HEADER_SWITCH_
enable1_n

Out Enable the switchable, 5V-tolerant
proto card pins for the LCD display

Table 1. Gold Code Generator Ports (Part 2 of 2)

Port Name Port Type Description
Altera Corporation 5

AN 295: Gold Code Generator Reference Design
The pn_generator Block

The LFSR in the code_gen_lfsr block is implemented using logic cells
(LCs). The most significant bits (MSBs) of both the I code, and Q code are
updated based on modulo-2 addition or XOR functions, as shown in
Figure 3. Data is read from the respective RAM blocks, processed and
written back to memory every clock cycle, to generate 32 separate codes
using the time-sharing method. For example, read from address 0, process
the code, and write it back to address 0. Next, read from address 1, process
the code and write back to address 1, and so on. Upon the final write back
to address 31, it cycles back to address 0.

Using a TDM factor of 32, the pn_generator block has to run at

32 x 3.84 MHz = 122.88 MHz

in order to support the chip rate of 3.84 Mchip/s (in compliance with the
universal terrestrial radio access [UTRA] time division duplex [TDD]
specifications in CDMA systems).

Figure 3. Gold Code Generator pn_generator Block

25 25
2525

I Code
Start Values

Q Code
Start Values

PN Generator 1 PN Generator 2

Clong, 1n Clong, 2n

32 x 3

32
Q Code

Current Value
I Code

Current Value
6 Altera Corporation

AN 295: Gold Code Generator Reference Design
The code generator also has the option of selecting three additional code
sets stored in memory by changing the upper bits of the memory address
port. Each code set consists of 32 codes. The upper three memory banks
are only needed if there is a request from the higher level protocol to stop
producing one code, and to insert another. This is controlled directly by
the software code via the Parallel Input Output (PIO) peripheral attached
to the Nios processor.

The code set values in the RAM blocks can be updated directly if the user
decides to change the initialization values in the LFSR. Because of this, the
pn_generator block also has a multiplexing scheme to switch between
the values from the Nios processor and the code_gen_lfsr block
during write operations to the RAM blocks.

The ref_32_system Block

The ref_32_system block describes the Nios system and a set of
peripherals. This block provides an interface which emulates message-
passing from higher layers in the protocol to the code generator block.
This includes changing the initialization values of the LFSR, changing the
code sets, and stopping/restarting the code generator.

The initialization values are stored as variables in the software code,
pn_dma.c. Changing the initialization values of the LFSR involves
updating the RAM blocks in the pn_generator block. These updates to
ram_blk_i, and ram_blk_q are independent of each other. Using a
direct memory access (DMA) block and a buffer RAM block, a set of 32
new values are updated at a time.

The reference design supports four individual code sets, each with 32
codes, resulting in RAM blocks segmented into four separate banks.
When making updates to the initialization values of the LFSR, or changing
code sets, the user needs to specify the memory bank. This information is
passed to the pn_generator block via the PIO peripheral. By default, the
code generator operates on Memory Bank 1.

During both the changing of the initialization values of the LFSR, and the
changing of the code sets, the code generator is stopped. The user also has
the ability to stop the code generator directly in hardware, using the stop
port.
Altera Corporation 7

AN 295: Gold Code Generator Reference Design
Getting Started This section describes how to install the Gold Code Generator reference
design and walks you through the design flow.

Hardware & Software Requirements

To use the Gold Code Generator reference design, you must have the
following software installed on your system.

■ The Quartus II software version 2.1, or later
■ SOPC Builder version 2.7, or later
■ The ModelSim-Altera software version 5.6a, or later

Design Installation

Altera provides the Gold Code Generator reference design as a single,
compressed (.zip format) file. To install the files, perform the following
steps.

1 You can download the reference design from the Altera web site
at http://www.altera.com.

1. Save the executable file gold_code_generator.zip onto your hard
disk.

You can delete this file after you finish installing the design files.

2. Open the Windows Explorer utility, and navigate to the directory in
which you have saved the gold_code_generator.zip file.

3. Double-click on the gold_code_generator.zip file to launch the
WinZip™ program.

4. Extract the zipped files to your own installation directory.

Figure 4 shows the directory structure created by the reference design zip
file, and describes selected files.
8 Altera Corporation

AN 295: Gold Code Generator Reference Design
Figure 4. The Directory Structure Created by the Reference Design .zip File

Walkthrough of the Design

Altera provides the source files of the reference design, which you can use
to synthesize, place-and-route, and simulate the design. This section walks
you through the design flow for the reference design, using these three
steps.

1. Compile in the Quartus II software

2. Simulate in the ModelSim-Altera software

3. Run the reference design on the Nios APEX development board

doc
Contains documentation including the following:
AN295: The Gold Code Generator Reference Design
gold_code_generator_readme-v1.0.0.txt readme file

project
Contains the Gold Code generator HDL source code and the
Quartus II software files for synthesis and place-and-route, including the following:
standard_32.bdf - Top-level of the Gold Code generator
standard_32.quartus - The Quartus II project file
ref_32_system.v - The wrapper file which connects all of the peripherals to the
Nios processor system
ref_32_system.ptf - The peripheral text file which describes the peripherals and the
Nios cpu system used in the SOPC Builder software
pn_generator.v - The memory block control signal generation circuitry
code_gen_lfsr.v - The code generator circuitry
lfsr_poly_0.v, lfsr_poly_1.v - The linear feedback shift register circuitry
ram_blk_i.v, ram_blk_q.v - The memory blocks to store the seed values

 simulation

 modelsim
 Contains Modelsim simulation files, including the following:
 pn_gen_tb.v - The testbench
 run_script.do - The functional simulation execution script for the pn_generator block

 cpu_sdk

 src
 Contains the software files, including the following:
 pn_dma.c - The C-code with main routine and all sub-routines for the four
 separate menus.

<installation directory>
Altera Corporation 9

AN 295: Gold Code Generator Reference Design
10 Altera Corporation

Compile in the Quartus II Software

The <installation directory>\project directory contains the Quartus II
software version 2.1 project files. These include source files for synthesis
and place-and-route within the Quartus II software, and necessary
constraint files for the design target (the EP20K200EFC484 device) on the
Nios APEX development board.

The following source files are included in the <installation
directory>\project directory.

■ standard_32.bdf
This is the top-level of the Gold Code generator.

■ standard_32.quartus
This is the Quartus II project file.

■ ref_32_system.v
This is the wrapper file which connects all the peripherals to the
Nios processor system.

■ ref_32_system.ptf
This is the peripheral text file which describes the peripherals and
the Nios processor system used in the SOPC Builder software.

■ pn_generator.v
This is the memory block control signal-generation circuitry.

■ code_gen_lfsr.v
This is the code generator circuitry.

■ lfsr_poly_0.v, lfsr_poly_1.v
This is the linear feedback shift register circuitry.

■ ram_blk_i.v, ram_blk_q.v
These are the memory blocks that store the seed values.

To compile the Altera-provided project files, follow these steps.

1. Run the Quartus II software.

2. Choose File > Open Project.

3. Browse to the <installation directory>\project directory.

4. Select the project file standard_32.quartus file and click Open.

5. Choose File > Open and select the standard_32.bdf file and click
Open.

AN 295: Gold Code Generator Reference Design
6. Double-click on the ref_32_system symbol to bring up the SOPC
Builder software.

7. Click on the Generate button to generate all of the Nios processor-
related files. When all of the files are generated, click on Exit to close
the SOPC Builder software.

8. Choose Processing > Compile Mode.

9. Choose Processing > Compile Settings and select standard_32 as
the Compilation focus in the General tab.

10. Click on OK.

11. Choose Processing > Start Compilation.

Simulate in the ModelSim-Altera Software

Prior to running the behavioral simulation in ModelSim, it is necessary to
change the path settings in the <installation directory>
\project\simulation\modelsim\run_script.do file to point to the
location of the files, and the ModelSim-Altera software, using the
“path_name” and “modelsim_path” variables, respectively.

To perform behavioral simulation with the ModelSim software, perform
the following steps.

1. Start the ModelSim-Altera software.

2. Choose File >Change Directory.

3. Browse to the <installation directory>
\project\simulation\modelsim directory and click Open.

4. Choose Macro > Execute Macro.

5. Browse to the run_script.do script, and click Open.

The simulation results are displayed in a waveform as shown in Figure 5.
The testbench initializes all of the design registers and simulates the write
operations from the Nios embedded processor when updates are made to
the seed values in the RAM blocks within the pn_generator block.
Altera Corporation 11

AN 295: Gold Code Generator Reference Design
Figure 5. Behavioral Simulation of the pn_generator Block in the ModelSim Software

Run the Design on the Nios APEX Development Board

Connect the Cables to the Board

Before running the design on the APEX Nios development board, you
must connect the cables to the board.

1 Refer to the Nios Embedded Processor Getting Started User Guide for
more details on setting up the development board. Refer to the
Nios Embedded Processor Development Board Data Sheet for more
details on the board itself.

Perform the following steps to connect the cables.

1. Connect the power adapter cable to the board and plug it into a 110V
AC power outlet.

2. Connect the ByteBlasterMV™ cable between your machine and the
the board’s 10-pin JTAG header for APEX configuration.

3. Connect an RS-232 cable to your machine and to the board.
12 Altera Corporation

AN 295: Gold Code Generator Reference Design
Configure the APEX Device

Perform the following steps to configure the APEX device.

1. Run the Quartus II software.

2. Choose Processing > Open Programmer.

3. Click on the Add File button.

4. Browse to the <installation directory>\project directory.

5. Select the file standard_32.sof and click on Open.

6. Turn on the Program/Configure option.

7. Click Start to configure the APEX device.

Compile and Download the Reference Design Executable File

Before you download the software executable, you need to compile the
C-code pn_dma.c file, using the GNU Pro Compiler.

1 Refer to the Nios Embedded Processor Software Development
Reference Manual for details on the commands.

Perform the following steps to compile and download the software
executable.

1. Run the Nios SDK Shell.

The shell window appears and displays a shell prompt.

2. Navigate to the <installation directory>\project\cpu_sdk\src
directory.

3. Type nios-build pn_dma.c <return> at the Nios SDK Shell
prompt.

The Nios build utility will invoke the compiler and linker and
produce several intermediate files, and an executable (.srec) file.

4. Type nios-run pna_dma.srec <return> to download the srec file
over the serial port and begin execution.

Your Nios system is now running, and you will see the Main Menu,
as shown in Figure 6.
Altera Corporation 13

AN 295: Gold Code Generator Reference Design
Figure 6. Nios Processor Main Menu

The clken and stop input signals are controlled by DIP_SWITCH_1 and
DIP_SWITCH_2, respectively. The stop_code_gen, set_code, and
data_valid output signals can be viewed on the 2-digit seven-segment
display on the board, as shown in Figure 7.

Figure 7. The 2-Digit, Seven-Segment Display

The clong_1n, and clong_2n scrambling codes are connected to LED1
and LED2, respectively.

R11

V17

D18V8

Y7

U11

Y17

V18
R10

W17

C18W18

U8

T11

Y18

U18

A B

C

A: stop_code_gen
B: set_code
C: data_valid
14 Altera Corporation

AN 295: Gold Code Generator Reference Design
Altera Corporation 15

Resource Usage

For APEX devices, the Gold Code Generator reference design requires the
device resources shown in Table 2.

Table 3 shows the resource usage of the two main blocks in the Gold Code
Generator reference design.

Support For information or support for the Gold Code Generator reference design,
go to http://mysupport.altera.com or contact Altera Applications.

Conclusion The Gold Code Generator reference design is efficient because the
implementation allows time sharing. In reusing the same resources, the
code generator is able to produce 32 separate codes simultaneously. The
design also works at a sub-system level where the code generator is able
to interact with a higher layer in the protocol. This is achieved using the
Nios embedded processor where it provides the interface to transfer high-
level messages to the code generator (to change the initialization values of
the LFSR, and the selection of the code sets). This reference design
presents a building block that will help shorten the development time of
your W-CDMA system.

Table 2. Required APEX Device Resources

Logic Cells Memory Bits I/O Pins

4351 41088 77

Table 3. Main Blocks Resource Usage

Block Name Logic Cells Memory Bits

ref_32_system 4094 34688

pn_generator 257 6400

AN 295: Gold Code Generator Reference Design
16 Altera Corporation

	AN 295, Gold Code Generator Reference Design
	Introduction
	Background Information
	Pseudorandom Noise Sequences
	Scrambling Codes in CDMA

	Gold Code Generator Functional Description
	Reference Design Description
	Port Description
	The pn_generator Block
	The ref_32_system Block

	Getting Started
	Hardware & Software Requirements
	Design Installation
	Walkthrough of the Design
	Compile in the Quartus II Software
	Simulate in the ModelSim-Altera Software
	Run the Design on the Nios APEX Development Board

	Resource Usage

	Support
	Conclusion

