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Today: Machine Programming I: Basics

m History of Intel processors and architectures  CSAPP 3.1
m Assembly Basics: Registers, operands, move CSAPP 3.3-3.4
m Arithmetic & logical operations CSAPP 3.5
m C, assembly, machine code CSAPP 3.2
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Intel x86 Processors

m Dominate laptop/desktop/server market

m Evolutionary design
= Backwards compatible up until 8086, introduced in 1978
= Added more features as time goes on
m x86 is a Complex Instruction Set Computer (CISC)
= Many different instructions with many different formats
= But, only small subset encountered with Linux programs
m Compare: Reduced Instruction Set Computer (RISC)
= RISC: *very few* instructions, with *very few* modes for each

= RISC can be quite fast (but Intel still wins on speed!)
® Current RISC renaissance (e.g., ARM, RISCV), especially for low-power
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Intel x86 Evolution: Milestones

Name Date Transistors MHz

m 8086 1978 29K 5-10
= First 16-bit Intel processor. Basis for IBM PC & DOS
= 1MB address space

m 386 1985 275K 16-33

= First 32 bit Intel processor , referred to as 1A32
= Added “flat addressing”, capable of running Unix

m Pentium 4E 2004 125M 2800-3800
= First 64-bit Intel x86 processor, referred to as x86-64

m Core 2 2006 291M 1060-3333
® First multi-core Intel processor

m Corei?7 2008 731M 1600-4400

= Four cores (our shark machines)
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Intel x86 Processors, cont.

m Machine Evolution

= 386 1985 0.3M lntegiateq=Hgﬁiﬁry'ﬁihirallen;-:=;_3='-t:h DBE_B?
= Pentium 1993 3.1M s {10 "
" Pentium/MMX 1997 4.5M Core0 Core 1 Core2 Core3
= PentiumPro 1995 6.5M

= Pentum Il 1999  8.2M =

= Pentium4 2000 42M [} .

= Core 2 Duo 2006 291M L Shared L3 Cache

= Corei7 2008 731M
= Corei7 Skylake 2015 1.9B

m Added Features

" |nstructions to support multimedia operations

" |nstructions to enable more efficient conditional operations
® Transition from 32 bits to 64 bits

" More cores
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Intel x86 Processors, cont.

m Past Generations Process technology

= 1t Pentium Pro 1995 600 nm
= 1t Pentium Il 1999 250 nm
= 1t Pentium4 2000 180 nm
" 1% Core 2Duo 2006 65 nm Process technology dimension
m Recent & Upcoming Generations = width of narrowest wires
1. Nehalem 2008 45 nm (10 nm = 100 atoms wide)
2. SandyBridge 2011 32 nm
3. vy Bridge 2012 22 nm
4. Haswell 2013 22 nm
5. Broadwell 2014 14 nm
6. Skylake 2015 14 nm
/. Kaby Lake 2016 14 nm
8. Coffee Lake 2017 14 nm
9. Cannon Lake 2018 10 nm
10. Ice Lake 2019 10 nm
11. Tiger Lake 2020 10 nm
12. Alder Lake 2021 10 nm

13. Raptor Lake 20227 10 nm
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x86 Clones: Advanced Micro Devices (AMD)

m Historically
= AMD has followed just behind Intel
= A little bit slower, a lot cheaper

m Then

= Recruited top circuit designers from Digital Equipment Corp. and
other downward trending companies

= Built Opteron: tough competitor to Pentium 4
= Developed x86-64, their own extension to 64 bits

m Recent Years

" Intel got its act together
= 1995-2011: Lead semiconductor “fab” in world
= 2018: #2 largest by SS (#1 is Samsung)
= 2019-2022: back-and-forth with Samsung for #1

= AMD fell behind
= Relies on external semiconductor manufacturer GlobalFoundaries
= ca. 2019 CPUs (e.g., Ryzen) are competitive again (with TSMC)
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Intel’s 64-Bit History
m 2001: Intel Attempts Radical Shift from IA32 to I1A64

= Totally different architecture (Itanium, AKA “Itanic”)
= Executes IA32 code only as legacy
= Performance disappointing

m 2003: AMD Steps in with Evolutionary Solution
= x86-64 (now called “AMD64”)

m Intel Felt Obligated to Focus on IA64
= Hard to admit mistake or that AMD is better

m 2004: Intel Announces EM64T extension to I1A32

= Extended Memory 64-bit Technology
= Almost identical to x86-64!

m Virtually all modern x86 processors support x86-64
= But, lots of code still runs in 32-bit mode

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10
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Our Coverage

m IA32
® The traditional x86
" For 15/18-213: RIP, Summer 2015

m Xx86-64

= The standard
" shark> gcc hello.c
" shark> gcc —m64 hello.c

m Presentation
= Book covers x86-64
= Web aside on IA32
= We will only cover x86-64

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition "



Today: Machine Programming I: Basics

m History of Intel processors and architectures
m Assembly Basics: Registers, operands, move
m Arithmetic & logical operations

|

C, assembly, machine code

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12
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Levels of Abstraction

C programmer

Assembly programmer

#include <stdio.h>
int main () {
int i, n = 10, t1 = 0, t2 = 1, nxt;
for (i = 1; 1 <= n; ++i){
printf("sd, ", tl1);
nxt = tl + t2;
tl = t2;

t2 = nxt; } Seems Iike nice

return 0; }

clean layers...

CPU

PC

Memo
Addresses Y
Registers >
Data Code
> Data
Condition Instructions Stack
Codes *

Computer Designer

@l Gates, clocks, circuit layout, ...

A
B

—D Q_

Q D

— 6_

13
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Definitions

m Architecture: (also ISA: instruction set architecture) The
parts of a processor design that one needs to understand
for writing correct machine/assembly code

= Examples: instruction set specification, registers

= Machine Code: The byte-level programs that a processor executes
= Assembly Code: A text representation of machine code

m Microarchitecture: Implementation of the architecture
= Examples: cache sizes and core frequency

m Example ISAs:
" Intel: x86, IA32, Itanium, x86-64
= ARM: Used in almost all mobile phones
= RISC V: Recent open-source ISA

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14



Assembly/Machine Code View

CPU Memory
Addresses
Registers >
& Data Code
PC < > Data
Condition Instructions Stack
Codes <

Programmer-Visible State

= PC: Program counter " Memory

= Address of next instruction " Byte addressable array

= Called “RIP” (x86-64)
= Register file

= Code and user data
= Stack to support procedures

= Heavily used program data

= Condition codes

= Store status information about most
recent arithmetic or logical operation

= Used for conditional branching

Bryant al 15
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Assembly Characteristics: Data Types

m “Integer” data of 1, 2, 4, or 8 bytes
= Data values
= Addresses (untyped pointers)

m Floating point data of 4, 8, or 10 bytes
m (SIMD vector data types of 8, 16, 32 or 64 bytes)
m Code: Byte sequences encoding series of instructions

m No aggregate types such as arrays or structures

= Just contiguously allocated bytes in memory

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16
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x86-64 Integer Registers

$rax $eax $r8 $r8d

$rbx $ebx $r9 $r9d

$rcx $ecx $rl0 $rl0od
srdx %edx rll srlld
srsi %esi %rl2 srl2d
Srdi sedi $rl3 $rl3d
3rsp %esp srl4 $rldd
srbp %ebp $rl5 $r15d

= Can reference low-order 4 bytes (also low-order 1 & 2 bytes)
= Not part of memory (or cache)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17
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Some History: IA32 Registers Origin

(mostly obsolete)

—
$eax g$ax $ah gal accumulate
o secx scx %ch $cl counter
o
o
= sedx $dx %dh %d1 data
a
©
o $ebx 2bx $bh sbl base
o
a0 0 - o . source
°esl1l $s1i e
. . destination
Sedi1i sdi destt
-
o g stack
< S ]
€SP e pointer
base
sebp $bp :
pointer
\ )
Y

16-bit virtual registers
backwards compatibility)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third EditiSn 18
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Assembly Characteristics: Operations

m Transfer data between memory and register
" |Load data from memory into register
= Store register data into memory

m Perform arithmetic function on register or memory data

m Transfer control
" Unconditional jumps to/from procedures
= Conditional branches
" |ndirect branches

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19
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Moving Data srax
m Moving Data SICX
ource, Dest $rdx
o
m Operand Types srbx
Immediate: Constant integer data srsi
= Example: $0x400, $-533 Srdi
= Like C constant, but prefixed with *$”’ Srsp
o
= Encoded with 1, 2, or 4 bytes
: . : srbp
= Register: One of 16 integer registers
= Example: $rax, %rl3
P SrN

= But $rsp reserved for special use

= Simplest example: ($rax) :
Warning: Intel docs use

mov Dest, Source

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20
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movq Operand Combinations

Source Dest Src,Dest C Analog
4 Reg movqg $0x4,%rax temp = 0x4;
Imm
Mem movg $-147, (%$rax) *p = -147;

movqg %rax, $rdx temp2 = templ;
movq < Reg Reg q p P
Mem movq %rax, (5rdx) *p = temp;

N Mem Reg movq (%rax) , srdx temp = *p;

Cannot do memory-memory transfer with a single instruction

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21
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Simple Memory Addressing Modes

m Normal (R) Mem[Reg[R]]
= Register R specifies memory address
= Aha! Pointer dereferencing in C

movqg (%rcx) ,srax

m Displacement D(R) Mem|[Reg[R]+D]
= Register R specifies start of memory region
" Constant displacement D specifies offset

movqg 8 (%rbp) , $rdx

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22



Example of Simple Addressing Modes

void

whatAmI (<type> a, <type> b)

{

??27?°?

} whatAmI:
movq (%rdi) , %rax
movq %$rsi), %rdx
movq $rdx, (%rdi)
movq $rax, (%rsi)
ret

] grsi
$rdi

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition
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Example of Simple Addressing Modes

void swap
(long *xp, long *yp)
{ swap:
long t0 = *xp; movq (%$rdi) , %rax
long t1 = *yp; movq %$rsi), %rdx
*xp = tl1; movq grdx, (%rdi)
*yp = tO0; movq $rax, (%rsi)
} ret

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 24



Understanding Swap()

void swap

(long *xp, long *yp)

{
long t0 = *xp;
long t1 = *yp;
*xp = tl1;
*yp = tO0;
}
Register Value
$rdi Xp
srsi YP swap:
$rax t0 movq
srdx tl movq
movq
movq

ret

Registers
$rdi o
grsi
srax
Srdx

$rdi) , %rax
%$rsi), %rdx
$rdx, (%rdi)
$rax, (%rsi)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

H* H H I

Carnegie Mellon

Memory

*xp
*yp = tO0

*xp

tl

25



Understanding Swap()

] Memory
Reglsters Address
: 123 | 0x120
$rdi| 0x120
0x118
$rsi| 0x100
0x110
srax 0x108
$rdx 456 | 0x100
swap:
movqgq $rdi), %rax # t0 = *xp
movqg $rsi), %rdx # tl = *yp
movqg $rdx, (%rdi) # *xp = tl
movqg $rax, (%rsi) # *yp = tO

ret

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26
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Understanding Swap()

] Memory
Reglsters Address
: 123 | 0x120
$rdi| 0x120
0x118
$rsi| 0x100
0x110
Srdx 456 | 0x100
swap:
movqg $rdi), %rax # t0 = *xp
movqg $rsi), %rdx # tl = *yp
movq $rdx, (%rdi) # *xp = tl
movqg $rax, (%rsi) # *yp = tO

ret

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27



Understanding Swap()

] Memory
Registers Address
: 123 | 0x120
$rdi| 0x120
0x118
$rsi| 0x100
0x110
$rax 123 0x108
Srdx 456 |€ 456 | 0x100
swap:
movqg $rdi), %rax # t0 = *xp
movq $rsi), %rdx # tl = *yp
movq $rdx, (%rdi) # *xp = tl
movqg $rax, (%rsi) # *yp = tO

ret

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28
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Understanding Swap()

] Memory
Reglsters Address
456 | 0x120
$rdi| 0x120
0x118
$rsi| 0x100
0x110
$rax 123 0x108
Srdx 456 456 | 0x100
swap:
movqg $rdi), %rax # t0 = *xp
movqg $rsi), %rdx # tl = *yp
movqg $rdx, (%rdi) # *xp = tl
movqg $rax, (%rsi) # *yp = tO

ret

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29
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Understanding Swap()

] Memory
Reglsters Address
456 | 0x120
$rdi| 0x120
0x118
$rsi| 0x100
0x110
%rax 123 \ OX108
$rdx 456 123 | 0x100
swap:
movqg $rdi), %rax # t0 = *xp
movqg $rsi), %rdx # tl = *yp
movq $rdx, (%rdi) # *xp = tl
movqg $rax, (%rsi) # *yp = tO

ret

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30
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Simple Memory Addressing Modes

m Normal (R) Mem[Reg[R]]
= Register R specifies memory address
= Aha! Pointer dereferencing in C

movqg (%rcx) ,srax

m Displacement D(R) Mem|[Reg[R]+D]
= Register R specifies start of memory region
" Constant displacement D specifies offset

movqg 8 (%rbp) , $rdx

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3



Complete Memory Addressing Modes

m Most General Form
D(Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]+ D]
= D: Constant “displacement” 1, 2, or 4 bytes
= Rb: Base register: Any of 16 integer registers

= Ri: Index register: Any, except for $rsp
=S Scale: 1, 2, 4, or 8 (why these numbers?)

m Special Cases

(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]]
D(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]+D]
(Rb,Ri,S) Mem[Reg[Rb]+S*Reg|[Ri]]

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32
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Address Computation Examples

D(Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]+ D]
" D: Constant “displacement” 1, 2, or 4 bytes
Rb: Base register: Any of 16 integer registers

$rdx O0x£f000

$rcx 0x0100

= Ri: Indexregister: Any, except for $rsp
= S: Scale: 1, 2, 4, or 8 (why these numbers?)
Expression Address Computation Address

0x8 (%$rdx)

$rdx, srcx)

$rdx, %$rcx,4)

0x80 (,5rdx, 2)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3
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Address Computation Examples

$rdx O0x£f000

$rcx 0x0100

Expression Address Computation Address

0x8 (%$rdx) O0x£f000 + O0x8 O0x£f008
$rdx, $rcx) 0x£f000 + 0x100 0x£f100
$rdx, %rcx,4) 0xf000 + 4*0x100 |0x£f400
0x80 (, $rdx, 2) 2*0x£f000 + 0x80 0x1e080

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34



Today: Machine Programming I: Basics

m History of Intel processors and architectures
m Assembly Basics: Registers, operands, move
m Arithmetic & logical operations

m C, assembly, machine code

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 35
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Address Computation Instruction

m leaqSrc, Dst

= Srcis address mode expression
= Set Dst to address denoted by expression

m Uses
" Computing addresses without a memory reference
= E.g., translationof p = &x[i];
= Computing arithmetic expressions of the form x + k*y
= k=1,2,4,0r8

m Example
long ml2 (long x .
{ g miz{long x) Converted to ASM by compiler:
return x*12; leaq (%rdi,%rdi,2), $rax # t = x+2*x

} salg $2, %rax # return t<<2

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 36
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Some Arithmetic Operations

m Two Operand Instructions:
Format Computation
addg Src,Dest Dest = Dest + Src
subqg Src,Dest Dest = Dest — Src
imulg  SrcDest Dest = Dest * Src

shlqg Src,Dest Dest = Dest << Src Synonym: salq
sarqg Src,Dest Dest = Dest >> Src Arithmetic
shrqg Src,Dest Dest = Dest >> Src Logical

X0orq Src,Dest Dest = Dest * Src

andg Src,Dest Dest = Dest & Src

orqg Src,Dest Dest = Dest | Src

m Watch out for argument order! Src,Dest
(Warning: Intel docs use “op Dest,Src”)

m No distinction between signed and unsigned int (why?)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 37
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Quiz Time!

& = @& canvas.cmu.edu/courses/28981/quizzes 2 Y 2 0O °
At 10-. ) — . .
gﬂ‘ﬂ(l)%’le — 18613/18213 > Quizzes 63 Student View
University
Fall 2022 .
+ Quiz
Account Home
) Announcements &
Dashboard v Assignment Quizzes
Syllabus
|
Courses Assignments 7 Day2-Binaryand Int o
. ! Closed | Due Sep 1 at 2:45pm | 4 pts | 4 Questions
Quizzes
Grades ] Day 3 - Floating Point ©
” Closed | Due Sep 6 at 2:45pm | 3 pts | 3 Questions
Zoom
. Day 4 - Machine Basics
Panopto Recordings b4 ye ) ) o
Not available until Sep 8 at 12:15pm | Due Sep 8 at 2:45pm | 3 pts | 3 Questions
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Some Arithmetic Operations

m One Operand Instructions

incqg Dest Dest = Dest + 1
decqg Dest Dest = Dest — 1
neqgq Dest Dest = — Dest
notq Dest Dest = ~“Dest

m See book for more instructions

= Depending how you count, there are 2,034 total x86 instructions

= (If you count all addr modes, op widths, flags, it’s actually 3,683)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 39
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Arithmetic Expression Example

arith:
leaq (%$rdi, %rsi), %Srax

long arith addq $rdx, S%rax
(long x, long y, long z) leaq (%rsi,%rsi,2), %$rdx
{ salqg $4, %$rdx

long tl1 = x+y; leaq 4 (%rdi,%$rdx), %rcx

long t2 = z+tl; imulqg $rcx, %Srax

long t3 = x+4; ret

long t4 =y * 48; ] ]

long t5 = t3 + t4; Interesting Instructions

long rval = t2 * t5; = Jleagq: address computation

return rval; = salq: shift
} = imulq: multiplication

= Curious: only used once...

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 40



Understanding Arithmetic Expression

Example

arith:
leaq (%$rdi, %rsi), %rax # tl
long arith addgq $rdx, %$rax # t2
(long x, long y, long z) leaq (%rsi,%rsi,2), %$rdx
{ salqg $4, %$rdx # t4
long tl1 = x+y; leaq 4 (%rdi,%rdx), %rcx # t5
long t2 = z+tl; imulq $rcx, %$rax # rval
long t3 = x+4; ret

long t4 =y * 48;

oy £ = 5 o E Register | Usels) _____

long rval = t2 * t5;

return rval; srdi Argument x
} srsi Argument y
Srdx Argument z,
t4
$rax tl, t2, rval

$rcx t5

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition M



Today: Machine Programming I: Basics

m History of Intel processors and architectures
m Assembly Basics: Registers, operands, move
m Arithmetic & logical operations

|

C, assembly, machine code

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 42



Turning C into Object Code

= Codeinfiles pl.c p2.c

= Compile with command: gcec -Og pl.c p2.c -o p
= Use basic optimizations (-Og) [New to recent versions of GCC]
= Put resulting binary in file p

text C program (pl.c p2.c)

Compiler (gcc -Og -S)

A

text Asm program (pl.s p2.s)

Assembler (gcc or as)

v

binary Object program (pl.o p2.0) Static libraries
(.a)

Linker (gcc or 1d)

v

binary Executable program (p)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 43
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Compiling Into Assembly

C Code (sum.c) Generated x86-64 Assembly
long plus(long x, long y) sumstore:
pushq srbx
void sumstore(long x, long vy, movq srdx, %rbx
long *dest) call plus
{ movq $rax, (%rbx)
long t = plus(x, y):; pPoprg Srbx
*dest = t; ret
}

Obtain (on shark machine) with command
gcec -Og —S sum.c
Produces file sum. s

Warning: Will get very different results on non-Shark
machines (Andrew Linux, Mac 0S-X, ...) due to different
versions of gcc and different compiler settings.
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What it really looks like

.globl sumstore
.type sumstore, @function
sumstore:
.LFB35:
.cfi_ startproc
pushgq %rbx
.cfi def cfa offset 16
.cfi offset 3, -16
movq $rdx, S%rbx
call plus
movq g$rax, (%rbx)
PoPad Srbx
.cfi def cfa offset 8
ret
.cfi endproc
.LFE35:

.size sumstore, .-sumstore
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What it really looks like

Things that look weird
and are preceded by a “’
sumstore: are generally directives.

pushgq %rbx

sumstore:
pushqg Srbx
) o

movq srdx, %rbx movq srdx, $%$rbx

call plus
call plus : .

movq $rax, (%rbx)
movq $rax, (%rbx) .

PopPq $rbx
Popg $rbx ret

ret

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 46



Carnegie Mellon

Assembly Characteristics: Data Types

m “Integer” data of 1, 2, 4, or 8 bytes
= Data values
= Addresses (untyped pointers)

m Floating point data of 4, 8, or 10 bytes
m (SIMD vector data types of 8, 16, 32 or 64 bytes)
m Code: Byte sequences encoding series of instructions

m No aggregate types such as arrays or structures

= Just contiguously allocated bytes in memory
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Assembly Characteristics: Operations

m Transfer data between memory and register
" |Load data from memory into register
= Store register data into memory

m Perform arithmetic function on register or memory data

m Transfer control
" Unconditional jumps to/from procedures
= Conditional branches
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Object Code

Code for sumstore
m Assembler

0x0400595: _
[ |
0x53 Translates . s into .o
0x48 = Binary encoding of each instruction
0x89 = Nearly-complete image of executable code
0xd3 o o
Ozeg = Missing linkages between code in different
Oxf2 files
Oxff m Linker
Oxff _ | f ) o
Oxff Resolves references between files

e Total of 14 bytes

0x48 = Combines with static run-time libraries

0x89 e Each instruction
0x03 1, 3, or 5 bytes

Ox5b e Starts at address
Oxc3 0x0400595 = Linking occurs when program begins

execution

= E.g.,codeformalloc, printf

= Some libraries are dynamically linked
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Machine Instruction Example
m C Code

= Store value t where designated by
dest

*dest = t;

m Assembly
= Move 8-byte value to memory

movqg %rax, (%rbx)

= Quad words in x86-64 parlance
= Operands:

t: Register $rax

dest: Register $rbx

*dest: MemoryM[%$rbx]

m Object Code

= 3-byte instruction
= Stored at address 0x40059e

0x40059e: 48 89 03
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Disassembling Object Code

Disassembled

0000000000400595 <sumstore>:
400595: 53 push $rbx
400596: 48 89 d3 mov $rdx, $rbx
400599: e8 f2 ff ff ff callg 400590 <plus>
40059%9e: 48 89 03 mov $rax, (%$rbx)
4005al1l: 5b pop $rbx
4005a2: c3 retq

m Disassembler
objdump -d sum
= Useful tool for examining object code
= Analyzes bit pattern of series of instructions
= Produces approximate rendition of assembly code
= Can berunon either a.out (complete executable) or . o file
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Alternate Disassembly
Disassembled

Dump of assembler code for function sumstore:
0x0000000000400595 <+0>: push $rbx
0x0000000000400596 <+1>: mov $rdx, Srbx
0x0000000000400599 <+4>: callg 0x400590 <plus>
0x000000000040059%e <+9>: mov g$rax, (%$rbx)
0x00000000004005a1 <+12>:pop $rbx
0x00000000004005a2 <+13>:retq

m Within gdb Debugger

" Disassemble procedure
gdb sum

disassemble sumstore
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Alternate Disassembly
Disassembled

Object
Code
Dump of assembler code for function sumstore:

0x0400595: 0x0000000000400595 <+0>: push  %rbx

0x53 0x0000000000400596 <+1>: mov $rdx, $rbx

0x48 0x0000000000400599 <+4>: callg 0x400590 <plus>

0x89 0x000000000040059e <+9>: mov $rax, ($rbx)

0xd3 0x00000000004005al <+12>:pop $rbx

Oxe8 0x00000000004005a2 <+13>:retq

Ox£f2

Oxff

g:ii m Within gdb Debugger

0x48 = Disassemble procedure

0x89 gdb sum

0x03 i

0x5b disassemble sumstore

Oxc3 = Examine the 14 bytes starting at sumstore

x/14xb sumstore
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What Can be Disassembled?

% objdump -d WINWORD.EXE
WINWORD.EXE: file format pei-i386

No symbols in "WINWORD.EXE".
Disassembly of section .text.:

30001000 <.text>:

30001000:

30001001: i i .

30001003 : .Reverse engmeeru?g forbidden by
30001005: Microsoft End User License Agreement
3000100a:

m Anything that can be interpreted as executable code
m Disassembler examines bytes and reconstructs assembly source
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Machine Programming I: Summary

m History of Intel processors and architectures
= Evolutionary design leads to many quirks and artifacts
m C, assembly, machine code

= New forms of visible state: program counter, registers, ...

= Compiler must transform statements, expressions, procedures into
low-level instruction sequences

m Assembly Basics: Registers, operands, move

" The x86-64 move instructions cover wide range of data movement
forms

m Arithmetic

= Ccompiler will figure out different instruction combinations to
carry out computation
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