
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

14-513 18-613

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Design and Debugging

18-213/613: Introduction to Computer Systems
11th Lecture, October 4, 2022

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Announcements

 Homework #5 due Thurs Oct 6

 Lab 4 (cachelab) due Thurs Oct 13

 No new Homework released this week

 Upcoming: No in-class midterm, but Homework #6/#7 will be
a low-stakes take-home midterm
▪ Out Mon Oct 10 at 10 pm ET. Due Fri Oct 14 at 11:59 pm ET.

▪ 80 minutes self-timed. Covers through 9/29 lecture. Questions similar
to homeworks, but only one attempt. Open book.

▪ Tests what you’ve learned, as in a real midterm (and as in the Final).

▪ Low-stakes: Only 4% of grade (could even be your 2 “dropped” HWs).

▪ Oct 10 small groups will be a midterm review.

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Outline

 Caches (left over from previous lecture)
▪ Rearranging loops to improve spatial locality

▪ Using blocking to improve temporal locality

 Debugging
▪ Defects and Failures

▪ Scientific Debugging

▪ Tools

 Design
▪ Managing complexity

▪ Communication

▪ Naming

▪ Comments

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Matrix Multiplication Example

 Description:
▪ Multiply N x N matrices

▪ Matrix elements are
doubles (8 bytes)

▪ O(N3) total operations

▪ N reads per source
element

▪ N values summed per
destination

▪ but may be able to
hold in register

/* ijk */

for (i=0; i<n; i++) {

for (j=0; j<n; j++) {

sum = 0.0;

for (k=0; k<n; k++)

sum += a[i][k] * b[k][j];

c[i][j] = sum;

}

}

Variable sum
held in register

matmult/mm.c

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Miss Rate Analysis for Matrix Multiply

 Assume:
▪ Block size = 64B (big enough for eight doubles)

▪ Matrix dimension (N) is very large

▪ Approximate 1/N as 0.0

▪ Cache is not even big enough to hold multiple rows

 Analysis Method:
▪ Look at access pattern of inner loop

A

k

i

B

k

j

C

i

j

= x

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Matrix Multiplication (ijk)

/* ijk */

for (i=0; i<n; i++) {

for (j=0; j<n; j++) {

sum = 0.0;

for (k=0; k<n; k++)

sum += a[i][k] * b[k][j];

c[i][j] = sum;

}

}

Inner loop:

Column-wiseRow-wise Fixed

Miss rate for inner loop iterations:
A B C

0.0

matmult/mm.c

Block size = 64B (eight doubles)

Avg misses/iter = 1.125
0.125 1.0

A B C

(i,*)

(*,j)
(i,j)

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Matrix Multiplication (kij)

/* kij */

for (k=0; k<n; k++) {

for (i=0; i<n; i++) {

r = a[i][k];

for (j=0; j<n; j++)

c[i][j] += r * b[k][j];

}

}

A B C

(i,*)
(i,k) (k,*)

Inner loop:

Row-wise Row-wiseFixed

Miss rate for inner loop iterations:
A B C

0.0

matmult/mm.c

Block size = 64B (eight doubles)

0.125 0.125
Avg misses/iter = 0.25

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Matrix Multiplication (jki)

/* jki */

for (j=0; j<n; j++) {

for (k=0; k<n; k++) {

r = b[k][j];

for (i=0; i<n; i++)

c[i][j] += a[i][k] * r;

}

}

A B C

(*,j)

(k,j)

Inner loop:

(*,k)

Column-wise Column-wiseFixed

Miss rate for inner loop iterations:
A B C

0.0

matmult/mm.c

Block size = 64B (eight doubles)

1.0 1.0
Avg misses/iter = 2.0

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary of Matrix Multiplication

ijk (& jik):
• 2 loads, 0 stores
• avg misses/iter = 1.125

kij (& ikj):
• 2 loads, 1 store
• avg misses/iter = 0.25

jki (& kji):
• 2 loads, 1 store
• avg misses/iter = 2.0

for (i=0; i<n; i++) {

for (j=0; j<n; j++) {

sum = 0.0;

for (k=0; k<n; k++)

sum += a[i][k] * b[k][j];

c[i][j] = sum;

}

}

for (k=0; k<n; k++) {

for (i=0; i<n; i++) {

r = a[i][k];

for (j=0; j<n; j++)

c[i][j] += r * b[k][j];

}

}

for (j=0; j<n; j++) {

for (k=0; k<n; k++) {

r = b[k][j];

for (i=0; i<n; i++)

c[i][j] += a[i][k] * r;

}

}

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Core i7 Matrix Multiply Performance

1

10

100

50 100 150 200 250 300 350 400 450 500 550 600 650 700
Array size (n)

jki

kji

ijk

jik

kij

ikj ijk / jik

jki / kji

kij / ikj

Cycles per inner loop iteration

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Matrix Multiplication Cache Miss Analysis

 Assume:
▪ Matrix elements are doubles. Cache line = 8 doubles

▪ Cache size C << n (much smaller than n)

 First iteration (ijk):

▪ n/8 + n = 9n/8 misses

▪ Afterwards in cache:
(schematic)

x= n

x=

8 wide

A

(i,*)

B

(*,j)

C

(i,j)

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Cache Miss Analysis (cont)
 Assume:

▪ Matrix elements are doubles. Cache line = 8 doubles

▪ Cache size C << n (much smaller than n)

 Second iteration:
▪ Again:

n/8 + n = 9n/8 misses

 Total misses:
▪ (9n/8) n2 = (9/8) n3

x=

8 wide

n

A

(i,*)

B

(*,j)

C

(i,j)

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Blocked Matrix Multiplication
c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b */

void mmm(double *a, double *b, double *c, int n) {

int i, j, k;

for (i = 0; i < n; i+=L)

for (j = 0; j < n; j+=L)

for (k = 0; k < n; k+=L)

/* L x L mini matrix multiplications */

for (i1 = i; i1 < i+L; i1++)

for (j1 = j; j1 < j+L; j1++)

for (k1 = k; k1 < k+L; k1++)

c[i1*n+j1] += a[i1*n + k1]*b[k1*n + j1];

}

a b

i1

j1

x
c

=
c

+

Block size L x L

matmult/bmm.c

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Cache Miss Analysis
 Assume:

▪ Cache line = 8 doubles. Blocking size L ≥ 8

▪ Cache size C << n (much smaller than n)

▪ Three blocks fit into cache: 3L2 < C

 First (block) iteration:
▪ Misses per block: L2/8

▪ Blocks per Iteration: 2n/L

(omitting matrix c)

▪ Misses per Iteration:

2n/L x L2/8 = nL/4

▪ Afterwards in cache
(schematic) x=

x=

Block size L x L

n/L blocks

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Cache Miss Analysis
 Assume:

▪ Cache line = 8 doubles. Blocking size L ≥ 8

▪ Cache size C << n (much smaller than n)

▪ Three blocks fit into cache: 3L2 < C

 Second (block) iteration:
▪ Same misses as

first iteration

▪ 2n/L x L2/8 = nL/4

 Total misses:
▪ nL/4 misses per iteration x (n/L)2 iterations = n3/(4L) misses

x=

Block size L x L

n/L blocks

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Blocking Summary

 No blocking (ijk): (9/8) n3 misses

 Blocking: (1/(4L)) n3 misses

 Use largest block size L, such that L satisfies 3L2 < C
▪ Fit three blocks in cache! Two input, one output.

 Reason for dramatic difference:
▪ Matrix multiplication has inherent temporal locality:

▪ Input data: 3n2, computation 2n3

▪ Every array elements used O(n) times!

▪ But program has to be written properly

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Outline

 Caches (left over from previous lecture)
▪ Rearranging loops to improve spatial locality

▪ Using blocking to improve temporal locality

 Debugging
▪ Defects and Failures

▪ Scientific Debugging

▪ Tools

 Design
▪ Managing complexity

▪ Communication

▪ Naming

▪ Comments

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

After this lecture

 You will be able to:
▪ Describe the steps to debug complex code failures

▪ Identify ways to manage the complexity when programming

▪ State guidelines for communicating the intention of the code

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Atlas-Centaur

 Centaur second stage failed after entering an
uncontrolled spin
▪ Investigation - turbopumps relied on gas expansion and clogged

from plastic remnants of scouring pads

▪ Proposed Solution - Bake off plastic

 Next launch – second stage failed after entering an …
▪ Further investigation – a valve had been leaking for years

▪ Increased need for engine efficiency pushed this leak into
failure range

 What happened?
▪ The second time they reproduced the failure

https://www.thespacereview.com/article/1321/1

Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Defects and Infections

1. The programmer creates a defect

2. The defect causes an infection

3. The infection propagates

4. The infection causes a failure

Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Curse of Debugging

 Not every defect causes a failure!

 Testing can only show the presence of errors – not their
absence. (Dijkstra 1972)

Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Defects to Failures

 Code with defects will introduce erroneous or “infected”
state
▪ Correct code may

propagate this state

▪ Eventually an erroneous
state is observed

 Some executions will not
trigger the defect
▪ Others will not propagate

“infected” state

 Debugging sifts through
the code to find the defect

Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Explicit Debugging

 Stating the problem
▪ Describe the problem aloud or in writing

▪ A.k.a. “Rubber duck” or “teddy bear” method

▪ Often a comprehensive problem description is sufficient to solve
the failure

Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Scientific Debugging

Hypothesis

Problem
Description

Code
Failing
Runs

Other
Runs

 Before debugging, you need to construct a hypothesis as
to the defect
▪ Propose a possible defect and why it explains the failure conditions

 Ockham’s Razor (Occam’s Razor) – given several
hypotheses, pick the simplest / closest to current work

Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Scientific Debugging

Prediction

Experiment

Observation
& Conclusion

Hypothesis

▪ Make predictions based on your hypothesis
▪ What do you expect to happen under new conditions

▪ What data could confirm or refute your hypothesis

▪ How can I collect that data?
▪ What experiments?

▪ What collection mechanism?

▪ Does the data refute the hypothesis?
▪ Refine the hypothesis based on the new inputs

Carnegie Mellon

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Scientific Debugging

Conclusion Diagnosis Fix Confirm

 A set of experiments has confirmed the hypothesis
▪ This is the diagnosis of the defect

 Develop a fix for the defect

 Run experiments to confirm the fix
▪ Otherwise, how do you know that it is fixed?

Carnegie Mellon

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Code with a Bug

int fib(int n)

{

int f, f0 = 1, f1 = 1;

while (n > 1) {

n = n - 1;

f = f0 + f1;

f0 = f1;

f1 = f;

}

return f;

}

int main(..) {

..

for (i = 9; i > 0; i--)

printf(“fib(%d)=%d\n”,

i, fib(i));

$ gcc -o fib fib.c

fib(9)=55

fib(8)=34

...

fib(2)=2

fib(1)=134513905

A defect has caused a failure.

Carnegie Mellon

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Constructing a Hypothesis

 Specification defined the first Fibonacci number as 1
▪ We have observed working runs (e.g., fib(2))

▪ We have observed a failing run

▪ We then read the code

 fib(1) failed // Hypothesis

Code Hypothesis

for (i = 9; …) Result depends on order of calls

while (n > 1) { Loop check is incorrect

int f; F is uninitialized

Carnegie Mellon

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Brute Force Approach

 First, compilation flags
▪ MUST include “-Wall”

▪ Should include “-Werror”

Prompt> gcc -Wall -Werror -O3 -o badfib badfib.c

badfib.c: In function ‘fib’:

badfib.c:12:5: error: ‘f’ may be used uninitialized in this function [

return f;

^

cc1: all warnings being treated as errors

Carnegie Mellon

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Brute Force Approach

 First, compilation flags: “-Wall –Werror”

▪ MUST include “-Wall”

▪ Should include “-Werror”

 Second, other optimization levels
▪ Try at least –O3 and –O0

prompt>gcc -O3 -o badfib badfib.c

prompt>./badfib

...

fib(2)=2

fib(1)=0

fib(0)=0

prompt>gcc -O2 -o badfib badfib.c

prompt>./badfib

...

fib(2)=2

fib(1)=0

fib(0)=0

prompt>gcc -O1 -o badfib badfib.c

prompt>./badfib

...

fib(2)=2

fib(1)=9

fib(0)=9

prompt>gcc -O0 -o badfib badfib.c

prompt>./badfib

...

fib(2)=2

fib(1)=2

fib(0)=2

Carnegie Mellon

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Brute Force Approach

 First, compilation flags: “-Wall –Werror”

▪ MUST include “-Wall”

▪ Should include “-Werror”

 Second, other optimization levels
▪ Try at least –O3 and –O0

 Valgrind (even if your program appears to be working!)
▪ Run on both –O3 and –O0

▪ Only run after all warnings are gone!

Carnegie Mellon

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

prompt> gcc -g -O3 -o badfib badfib.c

prompt> valgrind badfib

==1462== Memcheck, a memory error detector

==1462== Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et al.

==1462== Using Valgrind-3.13.0 and LibVEX; rerun with -h for copyright info

==1462== Command: badfib

==1462==

fib(9)=55

fib(8)=34

fib(7)=21

fib(6)=13

fib(5)=8

fib(4)=5

fib(3)=3

fib(2)=2

fib(1)=0

fib(0)=0

==1462==

Valgrind is not perfect. On –O3 it finds no errors!

Carnegie Mellon

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

prompt> gcc -g -O0 -o badfib badfib.c

prompt> valgrind badfib

==1561== Memcheck, a memory error detector

==1561== Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et al.

==1561== Using Valgrind-3.13.0 and LibVEX; rerun with -h for copyright info

==1561== Command: badfib

==1561==

fib(9)=55

fib(8)=34

fib(7)=21

fib(6)=13

fib(5)=8

fib(4)=5

fib(3)=3

fib(2)=2

==1561== Conditional jump or move depends on uninitialised

==1561== at 0x4E988DA: vfprintf (vfprintf.c:1642)

==1561== by 0x4EA0F25: printf (printf.c:33)

Valgrind is not perfect, but pretty darn good.

Carnegie Mellon

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Constructing a Hypothesis

 Specification defined fib(1) = 1
▪ We have observed working runs (e.g., fib(2))

▪ We have observed a failing run

▪ We then read the code

 fib(1) failed // Hypothesis

Code Hypothesis

for (i = 9; …) Result depends on order of calls

while (n > 1) { Loop check is incorrect

int f; F is uninitialized

int fib(int n)

{

int f, f0 = 1, f1 = 1;

while (n > 1) {

n = n - 1;

f = f0 + f1;

f0 = f1;

f1 = f;

}

return f;

}

Carnegie Mellon

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Prediction

 Propose a new condition or conditions
▪ What will logically happen if your

hypothesis is correct?

▪ What data can be

 fib(1) failed // Hypothesis
▪ // Result depends on order of calls

▪ If fib(1) is called first, it will return correctly.

▪ // Loop check is incorrect

▪ Change to n >= 1 and run again.

▪ // f is uninitialized

▪ Change to int f = 1;

int fib(int n)

{

int f, f0 = 1, f1 = 1;

while (n > 1) {

n = n - 1;

f = f0 + f1;

f0 = f1;

f1 = f;

}

return f;

}

Carnegie Mellon

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Experiment

 Identical to the conditions of a prior run
▪ Except with one condition changed

 Conditions
▪ Program input, using a debugger, altering the code

 fib(1) failed // Hypothesis
▪ If fib(1) is called first, it will return correctly.

▪ Fails.

▪ Change to n >= 1

▪ fib(1)=2

▪ fib(0)=...

▪ Change to int f = 1;

▪ Works. Sometimes a prediction can be a fix.

int fib(int n)

{

int f, f0 = 1, f1 = 1;

while (n > 1) {

n = n - 1;

f = f0 + f1;

f0 = f1;

f1 = f;

}

return f;

}

Carnegie Mellon

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Observation
 What is the observed result?

▪ Factual observation, such as “Calling fib(1) will return 1.”

▪ The conclusion will interpret the observation(s)

 Don’t interfere.
▪ printf() can interfere

▪ Like quantum physics, sometimes observations are part of the
experiment

 Proceed systematically.
▪ Update the conditions incrementally so each observation relates to

a specific change

 Do NOT ever proceed past first bug.

Carnegie Mellon

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Debugging Tools

 Observing program state can require a variety of tools
▪ Debugger (e.g., gdb)

▪ What state is in local / global variables (if known)

▪ What path through the program was taken

▪ Valgrind

▪ Does execution depend on uninitialized variables

▪ Are memory accesses ever out-of-bounds

Carnegie Mellon

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Diagnosis

 A scientific hypothesis that explains current observations
and makes future predictions becomes a theory
▪ We’ll call this a diagnosis

 Use the diagnosis to develop a fix for the defect
▪ Avoid post hoc, ergo propter hoc fallacy

▪ Or correlation does not imply causation

 Understand why the defect and fix relate

Once there was a program that only worked on Wednesday…

Carnegie Mellon

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Fix and Confirm

 Confirm that the fix resolves the failure

 If you fix multiple perceived defects, which fix was for the
failure?
▪ Be systematic

Carnegie Mellon

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Learn

 Common failures and insights
▪ Why did the code fail?

▪ What are my common defects?

 Assertions and invariants
▪ Add checks for expected behavior

▪ Extend checks to detect the fixed failure

 Testing
▪ Every successful set of conditions is added to the test suite

Carnegie Mellon

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Quick and Dirty

 Not every problem needs scientific debugging
▪ Set a time limit: (for example)

▪ 0 minutes – -Wall, valgrind

▪ 1 – 10 minutes – Informal Debugging

▪ 10 – 60 minutes – Scientific Debugging

▪ > 60 minutes – Take a break / Ask for help

Carnegie Mellon

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Code Smells

 Use of uninitialized variables

 Unused values

 Unreachable code

 Duplicated code

 Bloated functions/methods

 Memory leaks

 Interface misuse

 Null pointers

Common ways in which code is likely to have bugs,
either already or in the future

Carnegie Mellon

45Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Quiz Time!

Canvas Quiz: Day 11 – Design & Debugging

Carnegie Mellon

46Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Outline

 Caches (review of previous lecture)
▪ Using blocking to improve temporal locality

 Debugging
▪ Defects and Failures

▪ Scientific Debugging

▪ Tools

 Design
▪ Managing complexity

▪ Communication

▪ Naming

▪ Comments

Carnegie Mellon

47Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Design

 A good design needs to achieve many things:
▪ Performance

▪ Availability

▪ Modifiability, portability

▪ Scalability

▪ Security

▪ Testability

▪ Usability

▪ Cost to build, cost to operate

Carnegie Mellon

48Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Design

 A good design needs to achieve many things:
▪ Performance

▪ Availability

▪ Modifiability, portability

▪ Scalability

▪ Security

▪ Testability

▪ Usability

▪ Cost to build, cost to operate

But above all else: it must be readable

Carnegie Mellon

49Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Design

Good Design does:

Complexity Management &

Communication

Carnegie Mellon

50Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Complexity

 There are well known limits to how much complexity a
human can manage easily.

Carnegie Mellon

51Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Complexity Management

 However, patterns can be very helpful...

Carnegie Mellon

52Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Complexity Management

Many techniques have been developed to help manage
complexity:

 Separation of concerns

 Modularity

 Reusability

 Extensibility

 DRY

 Abstraction

 Information Hiding

 ...

Carnegie Mellon

53Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Managing Complexity

 Given the many ways to manage complexity
▪ Design code to be testable

▪ Try to reuse testable chunks

Carnegie Mellon

54Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Complexity Example

 Split a cache access into three+ testable components
▪ State all of the steps that a cache access requires

Convert address into tag, set index, block offset

Look up the set using the set index

Check if the tag matches any line in the set

If so, hit

If not a match, miss, then

Find the LRU block

Evict the LRU block

Read in the new line from memory

Update LRU

Update dirty if the access was a store

▪ Which steps depend on the operation being a load or a store?

Carnegie Mellon

55Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Complexity Example

 Split a cache access into three+ testable components
▪ State all of the steps that a cache access requires

Convert address into tag, set index, block offset

Look up the set using the set index

Check if the tag matches any line in the set

If so, hit

If not a match, miss, then

Find the LRU block

Evict the LRU block

Read in the new line from memory

Update LRU

Update dirty if the access was a store

▪ Which steps depend on the operation being a load or a store?

Carnegie Mellon

56Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Designs need to be testable

 Testable design
▪ Testing versus Contracts

▪ These are complementary techniques

 Testing and Contracts are
▪ Acts of design more than verification

▪ Acts of documentation

Carnegie Mellon

57Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Designs need to be testable

 Testable design
▪ Testing versus Contracts*

▪ These are complementary techniques

 Testing and Contracts are
▪ Acts of design more than verification

▪ Acts of documentation: executable documentation!

* A contract specifies in a precise and checkable way interfaces for software
components: preconditions, postconditions, and object invariants.

Carnegie Mellon

58Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Testing Example

 For your cache simulator, you can write your own traces
▪ Write a trace to test for a cache hit

L 50, 1
L 50, 1

▪ Write a trace to test dirty bytes in cache

S 100, 1

Carnegie Mellon

59Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Testable design is modular

 Modular code has: separation of concerns, encapsulation,
abstraction
▪ Leads to: reusability, extensibility, readability, testability

 Separation of concerns
▪ Create helper functions so each function does “one thing”

▪ Functions should neither do too much nor too little

▪ Avoid duplicated code

 Encapsulation, abstraction, and respecting the interface
▪ Each module is responsible for its own internals

▪ No outside code “intrudes” on the inner workings of another module

Carnegie Mellon

60Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Trust the Compiler!

 Use plenty of temporary variables

 Use plenty of functions

 Let compiler do the math

Carnegie Mellon

61Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Communication

When writing code, the author is communicating with:

 The machine

 Other developers of the system

 Code reviewers

 Their future self

Carnegie Mellon

62Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Communication

There are many techniques that have been developed
around code communication:

 Tests

 Naming

 Comments

 Commit Messages

 Code Review

 Design Patterns

 ...

Carnegie Mellon

63Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Naming

Carnegie Mellon

64Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Avoid deliberately meaningless names:

Carnegie Mellon

65Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Naming is understanding

“If you don’t know what a thing should be
called, you cannot know what it is.

If you don’t know what it is, you cannot sit
down and write the code.”

- Sam Gardiner

Carnegie Mellon

66Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Better naming practices

1. Start with meaning and intention

2. Use words with precise meanings (avoid “data”, “info”,
“perform”)

3. Prefer fewer words in names

4. Avoid abbreviations in names

5. Use code review to improve names

6. Read the code out loud to check that it sounds okay

7. Actually rename things

Carnegie Mellon

67Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Naming guidelines – Use dictionary words

 Only use dictionary words and abbreviations that appear
in a dictionary.
▪ For example: FileCpy -> FileCopy

▪ Avoid vague abbreviations such as acc, mod, auth, etc..

Carnegie Mellon

68Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Avoid using single-letter names

 Single letters are unsearchable
▪ Give no hints as to the variable’s usage

 Exceptions are loop counters
▪ Especially if you know why i, j, etc were originally used

Carnegie Mellon

69Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Limit name character length

“Good naming limits individual name length, and reduces
the need for specialized vocabulary” – Philip Relf

Carnegie Mellon

70Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Limit name word count

 Keep names to a four word maximum

 Limit names to the number of words that people can read
at a glance.

 Which of each pair do you prefer?
a1) arraysOfSetsOfLinesOfBlocks

a2) cache

b1) evictedData

b2) evictedDataBytes

Carnegie Mellon

71Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Describe Meaning

 Use descriptive names.

 Avoid names with no meaning: a, foo, blah, tmp, etc

 There are reasonable exceptions:
void swap(int* a, int* b) {

int tmp = *a;

*a = *b;

*b = tmp;

}

Carnegie Mellon

72Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Use a large vocabulary

 Be more specific when possible:
▪ Person -> Employee

 What is size in this binaryTree?

struct binaryTree {

int size;

…

};
height

numChildren

subTreeNumNodes

keyLength

Carnegie Mellon

73Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Use problem domain terms

 Use the correct term in the problem domain’s language.
▪ Hint: as a student, consider the terms in the assignment

 In cachelab, consider the following:

line

element

Carnegie Mellon

74Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Use opposites precisely

 Consistently use opposites in standard pairs
▪ first/end -> first/last

Carnegie Mellon

75Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Comments

Carnegie Mellon

76Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Don’t Comments

▪ Don’t say what the code does
▪ because the code already says that

▪ Don’t explain awkward logic
▪ improve the code to make it clear

▪ Don’t add too many comments
▪ it’s messy, and they get out of date

Carnegie Mellon

77Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Awkward Code

 Imagine someone (TA, employer, etc) has to read your
code
▪ Would you rather rewrite or comment the following?

▪ How about?

▪ Both lines update program state in the same way.

(*(void **)((*(void **)(bp)) + DSIZE)) = (*(void **)(bp + DSIZE));

bp->prev->next = bp->next;

Carnegie Mellon

78Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Do Comments

 Answer the question: why the code exists

 When should I use this code?

 When shouldn’t I use it?

 What are the alternatives to this code?

Carnegie Mellon

79Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Why does this exist?

 Explain why a magic number is what it is.

 When should this code be used? Is there an alternative?

// Each address is 64-bit, which is 16 + 1 hex characters

const int MAX_ADDRESS_LENGTH = 17;

unsigned power2(unsigned base, unsigned expo){

unsigned i;

unsigned result = 1;

for(i=0;i<expo;i++){

result+=result;

}

return result;

}

Carnegie Mellon

80Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

How to write good comments

1. Write short comments of what the code will do.
1. Single line comments

2. Example: Write four one-line comments for quick sort

// Initialize locals

// Pick a pivot value

// Reorder array around the pivot

// Recurse

Carnegie Mellon

81Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

How to write good comments

1. Write short comments of what the code will do.
1. Single line comments

2. Example: Write four one-line comments for quick sort

2. Write that code.

3. Revise comments / code
1. If the code or comments are awkward or complex

2. Join / Split comments as needed

4. Maintain code and comments

Carnegie Mellon

82Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Commit Messages

 Committing code to a source repository is a vital part of
development
▪ Protects against system failures and typos:

▪ cat foo.c versus cat > foo.c

▪ The commit messages are your record of your work

▪ Communicating to your future self

▪ Describe in one line what you did

“Parses command line arguments”

“fix bug in unique tests, race condition not solved”

“seg list finished, performance is …”

 Use branches

Carnegie Mellon

83Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary

 Programs have defects
▪ Be systematic about finding them

 Programs are more complex than humans can manage
▪ Write code to be manageable

 Programming is not solitary, even if you are
communicating with a grader or a future self
▪ Be understandable in your communication

Carnegie Mellon

84Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Acknowledgements

 Some debugging content derived from:
▪ http://www.whyprogramsfail.com/slides.php

 Some code examples for design are based on:
▪ “The Art of Readable Code”. Boswell and Foucher. 2011.

 Lecture originally written by
▪ Michael Hilton and Brian Railing

http://www.whyprogramsfail.com/slides.php

