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Announcements

 Homework #5 due Thurs Oct 6

 Lab 4 (cachelab) due Thurs Oct 13

 No new Homework released this week

 Upcoming: No in-class midterm, but Homework #6/#7 will be 
a low-stakes take-home midterm
▪ Out Mon Oct 10 at 10 pm ET. Due Fri Oct 14 at 11:59 pm ET.

▪ 80 minutes self-timed.  Covers through 9/29 lecture. Questions similar 
to homeworks, but only one attempt.  Open book.

▪ Tests what you’ve learned, as in a real midterm (and as in the Final).

▪ Low-stakes: Only 4% of grade (could even be your 2 “dropped” HWs).

▪ Oct 10 small groups will be a midterm review.
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Outline

 Caches (left over from previous lecture)
▪ Rearranging loops to improve spatial locality

▪ Using blocking to improve temporal locality

 Debugging
▪ Defects and Failures

▪ Scientific Debugging

▪ Tools

 Design
▪ Managing complexity

▪ Communication

▪ Naming

▪ Comments
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Matrix Multiplication Example

 Description:
▪ Multiply N x N matrices

▪ Matrix elements are 
doubles (8 bytes)

▪ O(N3) total operations

▪ N reads per source 
element

▪ N values summed per 
destination

▪ but may be able to 
hold in register

/* ijk */

for (i=0; i<n; i++)  {

for (j=0; j<n; j++) {

sum = 0.0;

for (k=0; k<n; k++) 

sum += a[i][k] * b[k][j];

c[i][j] = sum;

}

} 

Variable sum
held in register

matmult/mm.c
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Miss Rate Analysis for Matrix Multiply

 Assume:
▪ Block size = 64B (big enough for eight doubles)

▪ Matrix dimension (N) is very large

▪ Approximate 1/N as 0.0

▪ Cache is not even big enough to hold multiple rows

 Analysis Method:
▪ Look at access pattern of inner loop

A

k

i

B

k

j

C

i

j

= x
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Matrix Multiplication (ijk)

/* ijk */

for (i=0; i<n; i++)  {

for (j=0; j<n; j++) {

sum = 0.0;

for (k=0; k<n; k++) 

sum += a[i][k] * b[k][j];

c[i][j] = sum;

}

} 

Inner loop:

Column-wiseRow-wise Fixed

Miss rate for inner loop iterations:
A B C

0.0

matmult/mm.c

Block size = 64B (eight doubles)

Avg misses/iter = 1.125
0.125 1.0

A B C

(i,*)

(*,j)
(i,j)
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Matrix Multiplication (kij)

/* kij */

for (k=0; k<n; k++) {

for (i=0; i<n; i++) {

r = a[i][k];

for (j=0; j<n; j++)

c[i][j] += r * b[k][j];

}

}

A B C

(i,*)
(i,k) (k,*)

Inner loop:

Row-wise Row-wiseFixed

Miss rate for inner loop iterations:
A B C

0.0

matmult/mm.c

Block size = 64B (eight doubles)

0.125 0.125
Avg misses/iter = 0.25
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Matrix Multiplication (jki)

/* jki */

for (j=0; j<n; j++) {

for (k=0; k<n; k++) {

r = b[k][j];

for (i=0; i<n; i++)

c[i][j] += a[i][k] * r;

}

}

A B C

(*,j)

(k,j)

Inner loop:

(*,k)

Column-wise Column-wiseFixed

Miss rate for inner loop iterations:
A B C

0.0

matmult/mm.c

Block size = 64B (eight doubles)

1.0 1.0
Avg misses/iter = 2.0
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Summary of Matrix Multiplication

ijk (& jik): 
• 2 loads, 0 stores
• avg misses/iter = 1.125

kij (& ikj): 
• 2 loads, 1 store
• avg misses/iter = 0.25

jki (& kji): 
• 2 loads, 1 store
• avg misses/iter = 2.0

for (i=0; i<n; i++) {

for (j=0; j<n; j++) {

sum = 0.0;

for (k=0; k<n; k++) 

sum += a[i][k] * b[k][j];

c[i][j] = sum;

}

} 

for (k=0; k<n; k++) {

for (i=0; i<n; i++) {

r = a[i][k];

for (j=0; j<n; j++)

c[i][j] += r * b[k][j];   

}

}

for (j=0; j<n; j++) {

for (k=0; k<n; k++) {

r = b[k][j];

for (i=0; i<n; i++)

c[i][j] += a[i][k] * r;

}

}
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Core i7 Matrix Multiply Performance
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Matrix Multiplication Cache Miss Analysis

 Assume: 
▪ Matrix elements are doubles. Cache line = 8 doubles

▪ Cache size C << n (much smaller than n)

 First iteration (ijk): 

▪ n/8 + n = 9n/8 misses

▪ Afterwards in cache:
(schematic)

x= n

x=

8 wide

A

(i,*)

B

(*,j)

C

(i,j)
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Cache Miss Analysis (cont)
 Assume: 

▪ Matrix elements are doubles. Cache line = 8 doubles

▪ Cache size C << n (much smaller than n)

 Second iteration:
▪ Again:

n/8 + n = 9n/8 misses

 Total misses:
▪ (9n/8) n2 = (9/8) n3

x=

8 wide

n

A

(i,*)

B

(*,j)

C

(i,j)
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Blocked Matrix Multiplication
c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b  */

void mmm(double *a, double *b, double *c, int n) {

int i, j, k;

for (i = 0; i < n; i+=L)

for (j = 0; j < n; j+=L)

for (k = 0; k < n; k+=L)

/* L x L mini matrix multiplications */

for (i1 = i; i1 < i+L; i1++)

for (j1 = j; j1 < j+L; j1++)

for (k1 = k; k1 < k+L; k1++)

c[i1*n+j1] += a[i1*n + k1]*b[k1*n + j1];

}

a b

i1

j1

x
c

=
c

+

Block size L x L

matmult/bmm.c
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Cache Miss Analysis
 Assume: 

▪ Cache line = 8 doubles.  Blocking size L ≥ 8

▪ Cache size C << n (much smaller than n)

▪ Three blocks       fit into cache: 3L2 < C

 First (block) iteration:
▪ Misses per block: L2/8

▪ Blocks per Iteration: 2n/L

(omitting matrix c)

▪ Misses per Iteration:

2n/L x L2/8 = nL/4

▪ Afterwards in cache
(schematic) x=

x=

Block size L x L

n/L blocks
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Cache Miss Analysis
 Assume: 

▪ Cache line = 8 doubles.  Blocking size L ≥ 8

▪ Cache size C << n (much smaller than n)

▪ Three blocks       fit into cache: 3L2 < C

 Second (block) iteration:
▪ Same misses as

first iteration

▪ 2n/L x L2/8 = nL/4

 Total misses:
▪ nL/4 misses per iteration  x  (n/L)2 iterations = n3/(4L) misses

x=

Block size L x L

n/L blocks
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Blocking Summary

 No blocking (ijk): (9/8) n3 misses

 Blocking:  (1/(4L)) n3 misses

 Use largest block size L, such that L satisfies 3L2 < C
▪ Fit three blocks in cache!  Two input, one output.

 Reason for dramatic difference:
▪ Matrix multiplication has inherent temporal locality:

▪ Input data: 3n2, computation 2n3

▪ Every array elements used O(n) times!

▪ But program has to be written properly
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Outline

 Caches (left over from previous lecture)
▪ Rearranging loops to improve spatial locality

▪ Using blocking to improve temporal locality

 Debugging
▪ Defects and Failures

▪ Scientific Debugging

▪ Tools

 Design
▪ Managing complexity

▪ Communication

▪ Naming

▪ Comments
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After this lecture

 You will be able to:
▪ Describe the steps to debug complex code failures

▪ Identify ways to manage the complexity when programming

▪ State guidelines for communicating the intention of the code
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Atlas-Centaur

 Centaur second stage failed after entering an 
uncontrolled spin
▪ Investigation - turbopumps relied on gas expansion and clogged 

from plastic remnants of scouring pads

▪ Proposed Solution - Bake off plastic

 Next launch – second stage failed after entering an …
▪ Further investigation – a valve had been leaking for years

▪ Increased need for engine efficiency pushed this leak into 
failure range

 What happened?
▪ The second time they reproduced the failure

https://www.thespacereview.com/article/1321/1
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Defects and Infections

1. The programmer creates a defect 

2. The defect causes an infection 

3. The infection propagates 

4. The infection causes a failure



Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Curse of Debugging

 Not every defect causes a failure! 

 Testing can only show the presence of errors – not their 
absence. (Dijkstra 1972)
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Defects to Failures

 Code with defects will introduce erroneous or “infected” 
state
▪ Correct code may 

propagate this state

▪ Eventually an erroneous 
state is observed

 Some executions will not
trigger the defect
▪ Others will not propagate

“infected” state

 Debugging sifts through
the code to find the defect
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Explicit Debugging

 Stating the problem
▪ Describe the problem aloud or in writing

▪ A.k.a. “Rubber duck” or “teddy bear” method

▪ Often a comprehensive problem description is sufficient to solve 
the failure
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Scientific Debugging

Hypothesis

Problem 
Description

Code
Failing 
Runs

Other 
Runs

 Before debugging, you need to construct a hypothesis as 
to the defect
▪ Propose a possible defect and why it explains the failure conditions

 Ockham’s Razor (Occam’s Razor) – given several 
hypotheses, pick the simplest / closest to current work
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Scientific Debugging

Prediction

Experiment

Observation 
& Conclusion

Hypothesis

▪ Make predictions based on your hypothesis
▪ What do you expect to happen under new conditions

▪ What data could confirm or refute your hypothesis

▪ How can I collect that data?
▪ What experiments?

▪ What collection mechanism?

▪ Does the data refute the hypothesis?
▪ Refine the hypothesis based on the new inputs
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Scientific Debugging

Conclusion Diagnosis Fix Confirm

 A set of experiments has confirmed the hypothesis
▪ This is the diagnosis of the defect

 Develop a fix for the defect

 Run experiments to confirm the fix
▪ Otherwise, how do you know that it is fixed?
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Code with a Bug

int fib(int n)

{

int f, f0 = 1, f1 = 1;

while (n > 1) {

n = n - 1;

f = f0 + f1;

f0 = f1;

f1 = f;

}

return f;

}

int main(..) {

..

for (i = 9; i > 0; i--)

printf(“fib(%d)=%d\n”,

i, fib(i));

$ gcc -o fib fib.c

fib(9)=55 

fib(8)=34 

... 

fib(2)=2 

fib(1)=134513905

A defect has caused a failure.
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Constructing a Hypothesis

 Specification defined the first Fibonacci number as 1
▪ We have observed working runs (e.g., fib(2))

▪ We have observed a failing run

▪ We then read the code

 fib(1) failed // Hypothesis

Code Hypothesis

for (i = 9; …) Result depends on order of calls

while (n > 1) { Loop check is incorrect

int f; F is uninitialized
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Brute Force Approach

 First, compilation flags 
▪ MUST include “-Wall”

▪ Should include “-Werror”

Prompt> gcc -Wall -Werror -O3 -o badfib badfib.c

badfib.c: In function ‘fib’:

badfib.c:12:5: error: ‘f’ may be used uninitialized in this function [

return f;

^

cc1: all warnings being treated as errors
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Brute Force Approach

 First, compilation flags: “-Wall –Werror”

▪ MUST include “-Wall”

▪ Should include “-Werror”

 Second, other optimization levels
▪ Try at least –O3 and –O0

prompt>gcc -O3 -o badfib badfib.c

prompt>./badfib

...

fib(2)=2

fib(1)=0

fib(0)=0

prompt>gcc -O2 -o badfib badfib.c

prompt>./badfib

...

fib(2)=2

fib(1)=0

fib(0)=0

prompt>gcc -O1 -o badfib badfib.c

prompt>./badfib

...

fib(2)=2

fib(1)=9

fib(0)=9

prompt>gcc -O0 -o badfib badfib.c

prompt>./badfib

...

fib(2)=2

fib(1)=2

fib(0)=2
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Brute Force Approach

 First, compilation flags: “-Wall –Werror”

▪ MUST include “-Wall”

▪ Should include “-Werror”

 Second, other optimization levels
▪ Try at least –O3 and –O0

 Valgrind (even if your program appears to be working!)
▪ Run on both –O3 and –O0

▪ Only run after all warnings are gone!
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prompt> gcc -g  -O3 -o badfib badfib.c

prompt> valgrind badfib

==1462== Memcheck, a memory error detector

==1462== Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et al.

==1462== Using Valgrind-3.13.0 and LibVEX; rerun with -h for copyright info

==1462== Command: badfib

==1462== 

fib(9)=55

fib(8)=34

fib(7)=21

fib(6)=13

fib(5)=8

fib(4)=5

fib(3)=3

fib(2)=2

fib(1)=0

fib(0)=0

==1462== 

Valgrind is not perfect.  On –O3 it finds no errors!
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prompt> gcc -g  -O0 -o badfib badfib.c

prompt> valgrind badfib

==1561== Memcheck, a memory error detector

==1561== Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et al.

==1561== Using Valgrind-3.13.0 and LibVEX; rerun with -h for copyright info

==1561== Command: badfib

==1561== 

fib(9)=55

fib(8)=34

fib(7)=21

fib(6)=13

fib(5)=8

fib(4)=5

fib(3)=3

fib(2)=2

==1561== Conditional jump or move depends on uninitialised

==1561==    at 0x4E988DA: vfprintf (vfprintf.c:1642)

==1561==    by 0x4EA0F25: printf (printf.c:33)

Valgrind is not perfect, but pretty darn good.
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Constructing a Hypothesis

 Specification defined fib(1) = 1
▪ We have observed working runs (e.g., fib(2))

▪ We have observed a failing run

▪ We then read the code

 fib(1) failed // Hypothesis

Code Hypothesis

for (i = 9; …) Result depends on order of calls

while (n > 1) { Loop check is incorrect

int f; F is uninitialized

int fib(int n)

{

int f, f0 = 1, f1 = 1;

while (n > 1) {

n = n - 1;

f = f0 + f1;

f0 = f1;

f1 = f;

}

return f;

}
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Prediction

 Propose a new condition or conditions
▪ What will logically happen if your

hypothesis is correct?

▪ What data can be 

 fib(1) failed // Hypothesis
▪ // Result depends on order of calls

▪ If fib(1) is called first, it will return correctly.

▪ // Loop check is incorrect

▪ Change to n >= 1 and run again.

▪ // f is uninitialized

▪ Change to int f = 1;

int fib(int n)

{

int f, f0 = 1, f1 = 1;

while (n > 1) {

n = n - 1;

f = f0 + f1;

f0 = f1;

f1 = f;

}

return f;

}
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Experiment

 Identical to the conditions of a prior run
▪ Except with one condition changed

 Conditions
▪ Program input, using a debugger, altering the code

 fib(1) failed // Hypothesis
▪ If fib(1) is called first, it will return correctly.

▪ Fails.

▪ Change to n >= 1

▪ fib(1)=2

▪ fib(0)=...

▪ Change to int f = 1;

▪ Works.  Sometimes a prediction can be a fix.

int fib(int n)

{

int f, f0 = 1, f1 = 1;

while (n > 1) {

n = n - 1;

f = f0 + f1;

f0 = f1;

f1 = f;

}

return f;

}
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Observation
 What is the observed result?

▪ Factual observation, such as “Calling fib(1) will return 1.”

▪ The conclusion will interpret the observation(s)

 Don’t interfere.
▪ printf() can interfere

▪ Like quantum physics, sometimes observations are part of the 
experiment

 Proceed systematically.
▪ Update the conditions incrementally so each observation relates to 

a specific change

 Do NOT ever proceed past first bug.
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Debugging Tools

 Observing program state can require a variety of tools
▪ Debugger (e.g., gdb)

▪ What state is in local / global variables (if known)

▪ What path through the program was taken

▪ Valgrind

▪ Does execution depend on uninitialized variables

▪ Are memory accesses ever out-of-bounds
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Diagnosis

 A scientific hypothesis that explains current observations 
and makes future predictions becomes a theory
▪ We’ll call this a diagnosis

 Use the diagnosis to develop a fix for the defect
▪ Avoid post hoc, ergo propter hoc fallacy

▪ Or correlation does not imply causation

 Understand why the defect and fix relate

Once there was a program that only worked on Wednesday…
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Fix and Confirm

 Confirm that the fix resolves the failure

 If you fix multiple perceived defects, which fix was for the 
failure?
▪ Be systematic
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Learn

 Common failures and insights
▪ Why did the code fail?

▪ What are my common defects?

 Assertions and invariants
▪ Add checks for expected behavior

▪ Extend checks to detect the fixed failure

 Testing
▪ Every successful set of conditions is added to the test suite
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Quick and Dirty

 Not every problem needs scientific debugging
▪ Set a time limit: (for example)

▪ 0 minutes – -Wall, valgrind

▪ 1 – 10 minutes – Informal Debugging

▪ 10 – 60 minutes – Scientific Debugging

▪ > 60 minutes – Take a break / Ask for help
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Code Smells

 Use of uninitialized variables

 Unused values

 Unreachable code

 Duplicated code

 Bloated functions/methods

 Memory leaks

 Interface misuse

 Null pointers

Common ways in which code is likely to have bugs, 
either already or in the future 
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Quiz Time!

Canvas Quiz:  Day 11 – Design & Debugging
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Outline

 Caches (review of previous lecture)
▪ Using blocking to improve temporal locality

 Debugging
▪ Defects and Failures

▪ Scientific Debugging

▪ Tools

 Design
▪ Managing complexity

▪ Communication

▪ Naming

▪ Comments
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Design

 A good design needs to achieve many things:
▪ Performance

▪ Availability

▪ Modifiability, portability

▪ Scalability

▪ Security

▪ Testability

▪ Usability

▪ Cost to build, cost to operate
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Design

 A good design needs to achieve many things:
▪ Performance

▪ Availability

▪ Modifiability, portability

▪ Scalability

▪ Security

▪ Testability

▪ Usability

▪ Cost to build, cost to operate

But above all else: it must be readable
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Design

Good Design does: 

Complexity Management & 

Communication
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Complexity

 There are well known limits to how much complexity a 
human can manage easily.
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Complexity Management

 However, patterns can be very helpful...
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Complexity Management

Many techniques have been developed to help manage 
complexity:

 Separation of concerns

 Modularity

 Reusability

 Extensibility

 DRY

 Abstraction

 Information Hiding

 ...
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Managing Complexity

 Given the many ways to manage complexity
▪ Design code to be testable

▪ Try to reuse testable chunks
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Complexity Example

 Split a cache access into three+ testable components
▪ State all of the steps that a cache access requires

Convert address into tag, set index, block offset

Look up the set using the set index

Check if the tag matches any line in the set

If so, hit

If not a match, miss, then

Find the LRU block

Evict the LRU block

Read in the new line from memory

Update LRU

Update dirty if the access was a store

▪ Which steps depend on the operation being a load or a store?
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Complexity Example

 Split a cache access into three+ testable components
▪ State all of the steps that a cache access requires

Convert address into tag, set index, block offset

Look up the set using the set index

Check if the tag matches any line in the set

If so, hit

If not a match, miss, then

Find the LRU block

Evict the LRU block

Read in the new line from memory

Update LRU

Update dirty if the access was a store

▪ Which steps depend on the operation being a load or a store?
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Designs need to be testable

 Testable design
▪ Testing versus Contracts

▪ These are complementary techniques

 Testing and Contracts are 
▪ Acts of design more than verification

▪ Acts of documentation
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Designs need to be testable

 Testable design
▪ Testing versus Contracts*

▪ These are complementary techniques

 Testing and Contracts are 
▪ Acts of design more than verification

▪ Acts of documentation: executable documentation!

* A contract specifies in a precise and checkable way interfaces for software
components: preconditions, postconditions, and object invariants.
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Testing Example

 For your cache simulator, you can write your own traces
▪ Write a trace to test for a cache hit

L 50, 1
L 50, 1

▪ Write a trace to test dirty bytes in cache

S 100, 1
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Testable design is modular

 Modular code has: separation of concerns, encapsulation, 
abstraction
▪ Leads to: reusability, extensibility, readability, testability

 Separation of concerns
▪ Create helper functions so each function does “one thing”

▪ Functions should neither do too much nor too little

▪ Avoid duplicated code

 Encapsulation, abstraction, and respecting the interface
▪ Each module is responsible for its own internals

▪ No outside code “intrudes” on the inner workings of another module
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Trust the Compiler!

 Use plenty of temporary variables

 Use plenty of functions

 Let compiler do the math
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Communication

When writing code, the author is communicating with: 

 The machine

 Other developers of the system

 Code reviewers

 Their future self
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Communication

There are many techniques that have been developed 
around code communication:

 Tests

 Naming

 Comments

 Commit Messages

 Code Review

 Design Patterns

 ...
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Naming
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Avoid deliberately meaningless names:
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Naming is understanding

“If you don’t know what a thing should be 
called, you cannot know what it is. 

If you don’t know what it is, you cannot sit 
down and write the code.” 

- Sam Gardiner
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Better naming practices

1. Start with meaning and intention

2. Use words with precise meanings (avoid “data”, “info”, 
“perform”)

3. Prefer fewer words in names

4. Avoid abbreviations in names

5. Use code review to improve names

6. Read the code out loud to check that it sounds okay

7. Actually rename things
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Naming guidelines – Use dictionary words

 Only use dictionary words and abbreviations that appear 
in a dictionary.
▪ For example: FileCpy -> FileCopy

▪ Avoid vague abbreviations such as acc, mod, auth, etc..
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Avoid using single-letter names

 Single letters are unsearchable
▪ Give no hints as to the variable’s usage

 Exceptions are loop counters
▪ Especially if you know why i, j, etc were originally used
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Limit name character length

“Good naming limits individual name length, and reduces 
the need for specialized vocabulary” – Philip Relf
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Limit name word count

 Keep names to a four word maximum

 Limit names to the number of words that people can read 
at a glance.

 Which of each pair do you prefer?
a1) arraysOfSetsOfLinesOfBlocks

a2) cache

b1) evictedData

b2) evictedDataBytes
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Describe Meaning

 Use descriptive names.

 Avoid names with no meaning: a, foo, blah, tmp, etc

 There are reasonable exceptions:
void swap(int* a, int* b) {

int tmp = *a;

*a = *b;

*b = tmp;

}
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Use a large vocabulary

 Be more specific when possible:
▪ Person -> Employee

 What is size in this binaryTree?

struct binaryTree {

int size;

…

};
height

numChildren

subTreeNumNodes

keyLength
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Use problem domain terms

 Use the correct term in the problem domain’s language.
▪ Hint: as a student, consider the terms in the assignment

 In cachelab, consider the following:

line 

element
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Use opposites precisely

 Consistently use opposites in standard pairs
▪ first/end -> first/last
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Comments
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Don’t Comments

▪ Don’t say what the code does 
▪ because the code already says that

▪ Don’t explain awkward logic
▪ improve the code to make it clear

▪ Don’t add too many comments 
▪ it’s messy, and they get out of date
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Awkward Code

 Imagine someone (TA, employer, etc) has to read your 
code
▪ Would you rather rewrite or comment the following?

▪ How about?

▪ Both lines update program state in the same way.

(*(void **)((*(void **)(bp)) + DSIZE)) = (*(void **)(bp + DSIZE));

bp->prev->next = bp->next;
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Do Comments

 Answer the question: why the code exists

 When should I use this code?

 When shouldn’t I use it?

 What are the alternatives to this code?
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Why does this exist?

 Explain why a magic number is what it is.

 When should this code be used?  Is there an alternative?

// Each address is 64-bit, which is 16 + 1 hex characters

const int MAX_ADDRESS_LENGTH = 17;

unsigned power2(unsigned base, unsigned expo){

unsigned i;

unsigned result = 1;

for(i=0;i<expo;i++){

result+=result;

}

return result;

}
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How to write good comments

1. Write short comments of what the code will do.
1. Single line comments

2. Example: Write four one-line comments for quick sort

// Initialize locals

// Pick a pivot value

// Reorder array around the pivot

// Recurse
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How to write good comments

1. Write short comments of what the code will do.
1. Single line comments

2. Example: Write four one-line comments for quick sort

2. Write that code.

3. Revise comments / code
1. If the code or comments are awkward or complex

2. Join / Split comments as needed

4. Maintain code and comments
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Commit Messages

 Committing code to a source repository is a vital part of 
development
▪ Protects against system failures and typos:

▪ cat foo.c versus cat > foo.c

▪ The commit messages are your record of your work

▪ Communicating to your future self

▪ Describe in one line what you did

“Parses command line arguments”

“fix bug in unique tests, race condition not solved”

“seg list finished, performance is …”

 Use branches
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Summary

 Programs have defects
▪ Be systematic about finding them

 Programs are more complex than humans can manage
▪ Write code to be manageable

 Programming is not solitary, even if you are 
communicating with a grader or a future self
▪ Be understandable in your communication
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