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Review: Dynamic Memory Allocation

 Programmers use dynamic 
memory allocators (such as 
malloc) to acquire virtual 
memory (VM) at run time. 
 for data structures whose size 

is only known at runtime

 Dynamic memory allocators 
manage an area of process 
VM known as the heap. 

Application

Dynamic Memory Allocator

Heap

Kernel virtual memory

Memory-mapped region for
shared libraries

User stack
(created at runtime)

Unused
0

%rsp
(stack 
pointer)

Memory
invisible to
user code

brk

0x400000

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Loaded 
from 
the 
executable 
file

Run-time heap
(created by malloc)
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Review: Keeping Track of Free Blocks
 Method 1: Implicit list using length—links all blocks

 Method 2: Explicit list among the free blocks using pointers

 Method 3: Segregated free list
 Different free lists for different size classes

 Method 4: Blocks sorted by size
 Can use a balanced tree (e.g. Red-Black tree) with pointers within each 

free block, and the length used as a key

Need to tag
each block as
allocated/free

Need space
for pointers

Unused

32 48 32 16

32 48 32 16
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Review: Boundary Tags for Coalescing 
 Boundary tags

 Replicate size/allocated word at “bottom” (end) of free blocks
 Allows us to traverse the “list” backwards, but requires extra space
 Important and general technique!

Size

Format of
allocated and
free blocks

Payload and
padding

a = 1: Allocated block  
a = 0: Free block

Size: Total block size

Payload: Application data
(allocated blocks only)

a

Size aBoundary tag
(footer)

32 32 32 32 48 3248 32

Header

8 8

Disadvantage: Internal fragmentation
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Review: Internal vs. External Fragmentation
 For a given block, internal fragmentation occurs if payload is 

smaller than block size

 External fragmentation occurs when there is enough aggregate 
heap memory, but no single free block is large enough

Payload Internal 
fragmentation

Block

Internal 
fragmentation

p4 = malloc(7*sizeof(size_t))
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Review: No Boundary Tag for Allocated Blocks

Size

1 word

Payload

a = 1: Allocated block  
a = 0: Free block
b = 1: Previous block is allocated
b = 0: Previous block is free

Size: block size

Payload: application data

b1

Optional
padding

Size

Unallocated

b0

Size b0

1 word

Allocated
Block

Free
Block

 Boundary tag needed only for free blocks
 When sizes are multiples of 16, have 4 spare bits
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No Boundary Tag for Allocated Blocks
(Case 1)

m1 ?1

n 11

m2 11

m1 ?1

n 10

n 10

m2 01

Header: Use 2 bits (address bits always zero due to alignment):
(previous block allocated)<<1 | (current block allocated)

previous
block

block
being
freed

next
block
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No Boundary Tag for Allocated Blocks 
(Case 2)

m1 ?1

n 11

m2 10

m2 10

m1 ?1

n+m2 10

n+m2 10

previous
block

block
being
freed

next
block

Header: Use 2 bits (address bits always zero due to alignment):
(previous block allocated)<<1 | (current block allocated)
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m1 ?0

m1 ?0
n 01

m2 11

n+m1 ?0

n+m1 ?0
m2 01

No Boundary Tag for Allocated Blocks 
(Case 3)

previous
block

block
being
freed

next
block

Header: Use 2 bits (address bits always zero due to alignment):
(previous block allocated)<<1 | (current block allocated)
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No Boundary Tag for Allocated Blocks 
(Case 4)

previous
block

block
being
freed

next
block

m1 ?0

n 01

m2 10

m2 10

m1 ?0

n+m1+m2

n+m1+m2

?0

?0

Header: Use 2 bits (address bits always zero due to alignment):
(previous block allocated)<<1 | (current block allocated)
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Implicit Lists Summary
 Implementation: very simple
 Allocate cost: 
 linear time worst case

 Free cost: 
 constant time worst case
 even with coalescing

 Memory Overhead: 
 Depends on placement policy
 Strategies include first fit, next fit, and best fit

 Not used in practice for malloc/free because of linear-
time allocation
 used in many special purpose applications

 However, the concepts of splitting and boundary tag 
coalescing are general to all allocators
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Today
 Implicit free lists (review)
 Explicit free lists CSAPP 9.9.13
 Segregated free lists CSAPP 9.9.14
 Memory-related perils and pitfalls CSAPP 9.11
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Keeping Track of Free Blocks
 Method 1: Implicit list using length—links all blocks

 Method 2: Explicit list among the free blocks using pointers

 Method 3: Segregated free list
 Different free lists for different size classes

 Method 4: Blocks sorted by size
 Can use a balanced tree (e.g. Red-Black tree) with pointers within each 

free block, and the length used as a key

Unused

32 48 32 16

32 48 32 16
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Explicit Free Lists

 Maintain list(s) of free blocks, not all blocks
 Luckily we track only free blocks, so we can use payload area
 The “next” free block could be anywhere

 So we need to store forward/back pointers, not just sizes
 Still need boundary tags for coalescing

 To find adjacent blocks according to memory order

Size

Payload and
padding

a

Size a

Size a

Size a

Next

Prev

Allocated (as before) Free

Optional
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Explicit Free Lists
 Logically:

 Physically: blocks can be in any order

A B C

32 32 32 32 4848 3232 32 32

Forward (next) links

Back (prev) links

A B

C
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Allocating From Explicit Free Lists

Before

After

= malloc(…)

(with splitting)

conceptual graphic
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Freeing With Explicit Free Lists
 Insertion policy: Where in the free list do you put a newly 

freed block?
 Unordered
 LIFO (last-in-first-out) policy

 Insert freed block at the beginning of the free list
 FIFO (first-in-first-out) policy

 Insert freed block at the end of the free list
 Pro: simple and constant time
 Con: studies suggest fragmentation is worse than address ordered

 Address-ordered policy
 Insert freed blocks so that free list blocks are always in address order: 

addr(prev) < addr(curr) < addr(next)
 Con: requires search
 Pro: studies suggest fragmentation is lower than LIFO/FIFO



Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Freeing With a LIFO Policy (Case 1)

 Insert the freed block at the root of the list

free( )

Root

Root

Before

After

conceptual graphic
Allocated Allocated
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Freeing With a LIFO Policy (Case 2)

 Splice out adjacent successor block, coalesce both memory 
blocks, and insert the new block at the root of the list

free( )

Root

Before

Root

After

conceptual graphicAllocated Free
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Freeing With a LIFO Policy (Case 3)

 Splice out adjacent predecessor block, coalesce both memory 
blocks, and insert the new block at the root of the list

free( )

Root

Before

Root

After

conceptual graphic
AllocatedFree
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Freeing With a LIFO Policy (Case 4)

 Splice out adjacent predecessor and successor blocks, coalesce 
all 3 blocks, and insert the new block at the root of the list

free( )

Root

Before

Root

After

conceptual graphic
Free Free
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Some Advice: An Implementation Trick

 Use circular, doubly-linked list
 Support multiple approaches with single data structure
 First-fit vs. next-fit
 Either keep free pointer fixed or move as search list

 LIFO vs. FIFO
 Insert as next block (LIFO), or previous block (FIFO)

A B C D

Free
Pointer

FIFO Insertion
Point

LIFO Insertion
Point

Next fit
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Explicit List Summary
 Comparison to implicit list:
 Allocate is linear time in number of free blocks instead of all blocks

 Much faster when most of the memory is full 
 Slightly more complicated allocate and free because need to splice 

blocks in and out of the list
 Some extra space for the links (2 extra words needed for each block)

 Does this increase internal fragmentation?



Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
 Explicit free lists
 Segregated free lists
 Memory-related perils and pitfalls
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Keeping Track of Free Blocks
 Method 1: Implicit list using length—links all blocks

 Method 2: Explicit list among the free blocks using pointers

 Method 3: Segregated free list
 Different free lists for different size classes

 Method 4: Blocks sorted by size
 Can use a balanced tree (e.g. Red-Black tree) with pointers within each 

free block, and the length used as a key

Need to tag
each block as
allocated/free

Need space
for pointers

Unused

32 48 32 16

32 48 32 16
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Segregated List (Seglist) Allocators
 Each size class of blocks has its own free list

 Often have separate classes for each small size
 For larger sizes: One class for each size [𝟐𝟐𝒊𝒊 + 𝟏𝟏,𝟐𝟐𝒊𝒊+𝟏𝟏]

16

32-48

64–inf
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Seglist Allocator
 Given an array of free lists, each one for some size class

 To allocate a block of size n:
 Search appropriate free list for block of size m > n (i.e., first fit)
 If an appropriate block is found:

 Split block and place fragment on appropriate list 
 If no block is found, try next larger class

 Repeat until block is found

 If no block is found:
 Request additional heap memory from OS (using sbrk())
 Allocate block of n bytes from this new memory
 Place remainder as a single free block in appropriate size class.
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Seglist Allocator (cont.)
 To free a block:
 Coalesce and place on appropriate list 

 Advantages of seglist allocators vs. non-seglist allocators 
(both with first-fit)
 Higher throughput

 log time for power-of-two size classes vs. linear time
 Better memory utilization

 First-fit search of segregated free list approximates a best-fit 
search of entire heap.

 Extreme case: Giving each block its own size class is equivalent to 
best-fit.
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More Info on Allocators

 D. Knuth, The Art of Computer Programming, vol 1, 3rd edition, 
Addison Wesley, 1997
 The classic reference on dynamic storage allocation

 Wilson et al, “Dynamic Storage Allocation: A Survey and 
Critical Review”, Proc. 1995 Int’l Workshop on Memory 
Management, Kinross, Scotland, Sept, 1995.
 Comprehensive survey
 Available from CS:APP student site (csapp.cs.cmu.edu)
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Quiz Time!

Canvas Quiz:  Day 15 – Malloc Advanced



Carnegie Mellon

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
 Explicit free lists
 Segregated free lists
 Memory-related perils and pitfalls
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Memory-Related Perils and Pitfalls
 Dereferencing bad pointers
 Reading uninitialized memory
 Overwriting memory
 Referencing nonexistent variables
 Freeing blocks multiple times
 Referencing freed blocks
 Failing to free blocks
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Dereferencing Bad Pointers
 The classic scanf bug

int val;

...

scanf("%d", val);
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Reading Uninitialized Memory
 Assuming that heap data is initialized to zero

 Can avoid by using calloc

/* return y = Ax */
int *matvec(int **A, int *x) { 

int *y = malloc(N*sizeof(int));
int i, j;

for (i=0; i<N; i++)
for (j=0; j<N; j++)

y[i] += A[i][j]*x[j];
return y;

}
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Overwriting Memory
 Allocating the (possibly) wrong sized object

 Can you spot the bug?

int **p;

p = malloc(N*sizeof(int));

for (i=0; i<N; i++) {
p[i] = malloc(M*sizeof(int));

}
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Overwriting Memory
 Off-by-one errors

char **p;

p = malloc(N*sizeof(int *));

for (i=0; i<=N; i++) {
p[i] = malloc(M*sizeof(int));

}

char *p;

p = malloc(strlen(s));
strcpy(p,s);
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Overwriting Memory
 Not checking the max string size

 Basis for classic buffer overflow attacks

char s[8];
int i;

gets(s);  /* reads “123456789” from stdin */ 
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Overwriting Memory
 Misunderstanding pointer arithmetic

int *search(int *p, int val) {

while (p && *p != val)
p += sizeof(int);

return p;
}
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Overwriting Memory
 Referencing a pointer instead of the object it points to

 What gets decremented?
 (See next slide)

int *BinheapDelete(int **binheap, int *size) {
int *packet;
packet = binheap[0];
binheap[0] = binheap[*size - 1];
*size--;
Heapify(binheap, *size, 0);
return(packet);

}
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C operators
Operators Associativity
()  []  -> . ++ -- left to right
!  ~  ++ -- +  - *  & (type) sizeof right to left
*  /  % left to right
+  - left to right
<<  >> left to right
<  <=  >  >= left to right
==  != left to right
& left to right
^ left to right
| left to right
&& left to right
|| left to right
?: right to left
= += -= *= /= %= &= ^= != <<= >>= right to left
, left to right

 ->, (), and [] have high precedence, with * and & just below
 Unary +, -, and * have higher precedence than binary forms

Source: K&R page 53, updated

Unary

Postfix

Binary
Prefix

Unary

Binary
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Overwriting Memory
 Referencing a pointer instead of the object it points to

 Same effect as
 size--;

 Rewrite as
 (*size)--;

int *BinheapDelete(int **binheap, int *size) {
int *packet;
packet = binheap[0];
binheap[0] = binheap[*size - 1];
*size--;
Heapify(binheap, *size, 0);
return(packet);

}
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Referencing Nonexistent Variables
 Forgetting that local variables disappear when a function 

returns

int *foo () {
int val;

return &val;
}  



Carnegie Mellon

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Freeing Blocks Multiple Times
 Nasty!

x = malloc(N*sizeof(int));
<manipulate x>

free(x);

y = malloc(M*sizeof(int));
<manipulate y>

free(x);
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Referencing Freed Blocks
 Evil! 

x = malloc(N*sizeof(int));
<manipulate x>

free(x);
...

y = malloc(M*sizeof(int));
for (i=0; i<M; i++)

y[i] = x[i]++;
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Failing to Free Blocks (Memory Leaks)
 Slow, long-term killer! 

foo() {
int *x = malloc(N*sizeof(int));
...
return;

}
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Failing to Free Blocks (Memory Leaks)
 Freeing only part of a data structure

struct list {
int val;
struct list *next;

};

foo() {
struct list *head = malloc(sizeof(struct list));
head->val = 0;
head->next = NULL;
<create and manipulate the rest of the list>
...
free(head);
return;

}
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Dealing With Memory Bugs
 Debugger: gdb
 Good for finding bad pointer dereferences
 Hard to detect the other memory bugs

 Data structure consistency checker
 Runs silently, prints message only on error
 Use as a probe to zero in on error

 Binary translator:  valgrind
 Powerful debugging and analysis technique
 Rewrites text section of executable object file
 Checks each individual reference at runtime

 Bad pointers, overwrites, refs outside of allocated block

 glibc malloc contains checking code
 setenv MALLOC_CHECK_ 3 
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Supplemental slides
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Implicit Memory Management:
Garbage Collection
 Garbage collection: automatic reclamation of heap-allocated 

storage—application never has to explicitly free memory

 Common in many dynamic languages:
 Python, Ruby, Java, Perl, ML, Lisp, Mathematica

 Variants (“conservative” garbage collectors) exist for C and C++
 However, cannot necessarily collect all garbage

void foo() {
int *p = malloc(128);
return; /* p block is now garbage */

}
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Garbage Collection
 How does the memory manager know when memory can be 

freed?
 In general we cannot know what is going to be used in the future since it 

depends on conditionals
 But we can tell that certain blocks cannot be used if there are no 

pointers to them

 Must make certain assumptions about pointers
 Memory manager can distinguish pointers from non-pointers
 All pointers point to the start of a block 
 Cannot hide pointers 

(e.g., by coercing them to an int, and then back again)
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Classical GC Algorithms
 Mark-and-sweep collection (McCarthy, 1960)
 Does not move blocks (unless you also “compact”)

 Reference counting (Collins, 1960)
 Does not move blocks (not discussed)

 Copying collection (Minsky, 1963)
 Moves blocks (not discussed)

 Generational Collectors (Lieberman and Hewitt, 1983)
 Collection based on lifetimes

 Most allocations become garbage very soon
 So focus reclamation work on zones of memory recently allocated

 For more information: 
Jones and Lin, “Garbage Collection: Algorithms for Automatic 
Dynamic Memory”, John Wiley & Sons, 1996.
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Memory as a Graph
 We view memory as a directed graph
 Each block is a node in the graph 
 Each pointer is an edge in the graph
 Locations not in the heap that contain pointers into the heap are called 

root nodes  (e.g. registers, locations on the stack, global variables)

Root nodes

Heap nodes

Not-reachable
(garbage)

reachable

A node (block) is reachable if there is a path from any root to that node.

Non-reachable nodes are garbage (cannot be needed by the application)
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Mark and Sweep Collecting
 Can build on top of malloc/free package
 Allocate using malloc until you “run out of space”

 When out of space:
 Use extra mark bit in the head of each block
 Mark: Start at roots and set mark bit on each reachable block
 Sweep: Scan all blocks and free blocks that are not marked

After mark Mark bit set

After sweep freefree

root

Before mark

Note: arrows 
here denote 

memory refs, not 
free list ptrs. 
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Assumptions For a Simple Implementation
 Application
 new(n):  returns pointer to new block with all locations cleared
 read(b,i): read location i of block b into register
 write(b,i,v): write v into location i of block b

 Each block will have a header word
 addressed as b[-1], for a block b
 Used for different purposes in different collectors

 Instructions used by the Garbage Collector
 is_ptr(p): determines whether p is a pointer
 length(b):  returns the length of block b, not including the header
 get_roots():  returns all the roots
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Mark and Sweep Pseudocode

ptr mark(ptr p) {
if (!is_ptr(p)) return;        // if not pointer -> do nothing
if (markBitSet(p)) return;     // if already marked -> do nothing
setMarkBit(p);                 // set the mark bit
for (i=0; i < length(p); i++)  // recursively call mark on all words

mark(p[i]); //   in the block
return;

}      

Mark using depth-first traversal of the memory graph 
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Mark and Sweep Pseudocode

ptr mark(ptr p) {
if (!is_ptr(p)) return;        // if not pointer -> do nothing
if (markBitSet(p)) return;     // if already marked -> do nothing
setMarkBit(p);                 // set the mark bit
for (i=0; i < length(p); i++)  // recursively call mark on all words

mark(p[i]); //   in the block
return;

}      

Mark using depth-first traversal of the memory graph 
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Mark and Sweep Pseudocode

ptr mark(ptr p) {
if (!is_ptr(p)) return;        // if not pointer -> do nothing
if (markBitSet(p)) return;     // if already marked -> do nothing
setMarkBit(p);                 // set the mark bit
for (i=0; i < length(p); i++)  // recursively call mark on all words

mark(p[i]); //   in the block
return;

}      

Mark using depth-first traversal of the memory graph 
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Mark and Sweep Pseudocode

ptr mark(ptr p) {
if (!is_ptr(p)) return;        // if not pointer -> do nothing
if (markBitSet(p)) return;     // if already marked -> do nothing
setMarkBit(p);                 // set the mark bit
for (i=0; i < length(p); i++)  // recursively call mark on all words

mark(p[i]); //   in the block
return;

}      

Mark using depth-first traversal of the memory graph 
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Mark and Sweep Pseudocode

ptr mark(ptr p) {
if (!is_ptr(p)) return;        // if not pointer -> do nothing
if (markBitSet(p)) return;     // if already marked -> do nothing
setMarkBit(p);                 // set the mark bit
for (i=0; i < length(p); i++)  // for each word in p’s block

mark(p[i]); 
return;

}      

Mark using depth-first traversal of the memory graph 
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Mark and Sweep Pseudocode

ptr mark(ptr p) {
if (!is_ptr(p)) return;        // if not pointer -> do nothing
if (markBitSet(p)) return;     // if already marked -> do nothing
setMarkBit(p);                 // set the mark bit
for (i=0; i < length(p); i++)  // for each word in p’s block

mark(p[i]);                  //  make recursive call 
return;

}      

Mark using depth-first traversal of the memory graph 
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Mark and Sweep Pseudocode

ptr mark(ptr p) {
if (!is_ptr(p)) return;        // if not pointer -> do nothing
if (markBitSet(p)) return;     // if already marked -> do nothing
setMarkBit(p);                 // set the mark bit
for (i=0; i < length(p); i++)  // for each word in p’s block

mark(p[i]);                  //  make recursive call 
return;

}      

Mark using depth-first traversal of the memory graph 

Sweep using lengths to find next block
ptr sweep(ptr p, ptr end) {

while (p < end) { // for entire heap
if markBitSet(p)

clearMarkBit();
else if (allocateBitSet(p)) 

free(p);
p += length(p+1);

}     
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Mark and Sweep Pseudocode

ptr mark(ptr p) {
if (!is_ptr(p)) return;        // if not pointer -> do nothing
if (markBitSet(p)) return;     // if already marked -> do nothing
setMarkBit(p);                 // set the mark bit
for (i=0; i < length(p); i++)  // for each word in p’s block

mark(p[i]);                  //  make recursive call 
return;

}      

Mark using depth-first traversal of the memory graph 

Sweep using lengths to find next block
ptr sweep(ptr p, ptr end) {

while (p < end) { // for entire heap
if markBitSet(p) // did we reach this block?

clearMarkBit();
else if (allocateBitSet(p)) 

free(p);
p += length(p+1);

}     
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Mark and Sweep Pseudocode

ptr mark(ptr p) {
if (!is_ptr(p)) return;        // if not pointer -> do nothing
if (markBitSet(p)) return;     // if already marked -> do nothing
setMarkBit(p);                 // set the mark bit
for (i=0; i < length(p); i++)  // for each word in p’s block

mark(p[i]);                  //  make recursive call 
return;

}      

Mark using depth-first traversal of the memory graph 

Sweep using lengths to find next block
ptr sweep(ptr p, ptr end) {

while (p < end) { // for entire heap
if markBitSet(p) // did we reach this block?

clearMarkBit(); //  yes -> so just clear mark bit 
else if (allocateBitSet(p)) 

free(p);
p += length(p+1);

}     
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Mark and Sweep Pseudocode

ptr mark(ptr p) {
if (!is_ptr(p)) return;        // if not pointer -> do nothing
if (markBitSet(p)) return;     // if already marked -> do nothing
setMarkBit(p);                 // set the mark bit
for (i=0; i < length(p); i++)  // for each word in p’s block

mark(p[i]);                  //  make recursive call 
return;

}      

Mark using depth-first traversal of the memory graph 

Sweep using lengths to find next block
ptr sweep(ptr p, ptr end) {

while (p < end) { // for entire heap
if markBitSet(p) // did we reach this block?

clearMarkBit(); //  yes -> so just clear mark bit 
else if (allocateBitSet(p)) // never reached: is it allocated?

free(p);
p += length(p+1);

}     
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Mark and Sweep Pseudocode

ptr mark(ptr p) {
if (!is_ptr(p)) return;        // if not pointer -> do nothing
if (markBitSet(p)) return;     // if already marked -> do nothing
setMarkBit(p);                 // set the mark bit
for (i=0; i < length(p); i++)  // for each word in p’s block

mark(p[i]);                  //  make recursive call 
return;

}      

Mark using depth-first traversal of the memory graph 

Sweep using lengths to find next block
ptr sweep(ptr p, ptr end) {

while (p < end) { // for entire heap
if markBitSet(p) // did we reach this block?

clearMarkBit(); //  yes -> so just clear mark bit 
else if (allocateBitSet(p)) // never reached: is it allocated?

free(p); //  yes -> its garbage, free it
p += length(p+1);

}     
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Mark and Sweep Pseudocode

ptr mark(ptr p) {
if (!is_ptr(p)) return;        // if not pointer -> do nothing
if (markBitSet(p)) return;     // if already marked -> do nothing
setMarkBit(p);                 // set the mark bit
for (i=0; i < length(p); i++)  // for each word in p’s block

mark(p[i]);                  //  make recursive call 
return;

}      

Mark using depth-first traversal of the memory graph 

Sweep using lengths to find next block
ptr sweep(ptr p, ptr end) {

while (p < end) { // for entire heap
if markBitSet(p) // did we reach this block?

clearMarkBit(); //  yes -> so just clear mark bit 
else if (allocateBitSet(p)) // never reached: is it allocated?

free(p); //  yes -> its garbage, free it
p += length(p+1);           // goto next block

}     
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C Pointer Declarations: Test Yourself!
int *p

int *p[13]

int *(p[13])

int **p

int (*p)[13]

int *f()

int (*f)()

int (*(*x[3])())[5]

p is a pointer to int

p is an array[13] of pointer to int

p is an array[13] of pointer to int

p is a pointer to a pointer to an int

p is a pointer to an array[13] of int

f is a function returning a pointer to int

f is a pointer to a function returning int

x is an array[3] of pointers  to functions 
returning pointers to array[5] of ints

Source: K&R Sec 5.12
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C Pointer Declarations: Test Yourself!
int *p

int *p[13]

int *(p[13])

int **p

int (*p)[13]

int *f()

int (*f)()

int (*(*x[3])())[5]

int (*(*f())[13])()

p is a pointer to int

p is an array[13] of pointer to int

p is an array[13] of pointer to int

p is a pointer to a pointer to an int

p is a pointer to an array[13] of int

f is a function returning a pointer to int

f is a pointer to a function returning int

f is a function returning ptr to an array[13]
of pointers to functions returning int

x is an array[3] of pointers  to functions 
returning pointers to array[5] of ints

Source: K&R Sec 5.12
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Parsing:  int (*(*f())[13])()
int (*(*f())[13])() f

int (*(*f())[13])() f is a function
that returns a ptr

int (*(*f())[13])() f is a function that returns
a ptr to an array of 13 ptrs

int (*(*f())[13])() f is a function
that returns a ptr to an 
array of 13

int (*(*f())[13])() f is a function that returns
a ptr to an array of 13 ptrs
to functions returning an int

int (*(*f())[13])() f is a function
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