
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

14-513 18-613

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Dynamic Memory Allocation:
Advanced Concepts

18-213/18-613: Introduction to Computer Systems
15th Lecture, October 25, 2022

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Review: Dynamic Memory Allocation

 Programmers use dynamic
memory allocators (such as
malloc) to acquire virtual
memory (VM) at run time.
 for data structures whose size

is only known at runtime

 Dynamic memory allocators
manage an area of process
VM known as the heap.

Application

Dynamic Memory Allocator

Heap

Kernel virtual memory

Memory-mapped region for
shared libraries

User stack
(created at runtime)

Unused
0

%rsp
(stack
pointer)

Memory
invisible to
user code

brk

0x400000

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Loaded
from
the
executable
file

Run-time heap
(created by malloc)

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Review: Keeping Track of Free Blocks
 Method 1: Implicit list using length—links all blocks

 Method 2: Explicit list among the free blocks using pointers

 Method 3: Segregated free list
 Different free lists for different size classes

 Method 4: Blocks sorted by size
 Can use a balanced tree (e.g. Red-Black tree) with pointers within each

free block, and the length used as a key

Need to tag
each block as
allocated/free

Need space
for pointers

Unused

32 48 32 16

32 48 32 16

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Review: Boundary Tags for Coalescing
 Boundary tags

 Replicate size/allocated word at “bottom” (end) of free blocks
 Allows us to traverse the “list” backwards, but requires extra space
 Important and general technique!

Size

Format of
allocated and
free blocks

Payload and
padding

a = 1: Allocated block
a = 0: Free block

Size: Total block size

Payload: Application data
(allocated blocks only)

a

Size aBoundary tag
(footer)

32 32 32 32 48 3248 32

Header

8 8

Disadvantage: Internal fragmentation

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Review: Internal vs. External Fragmentation
 For a given block, internal fragmentation occurs if payload is

smaller than block size

 External fragmentation occurs when there is enough aggregate
heap memory, but no single free block is large enough

Payload Internal
fragmentation

Block

Internal
fragmentation

p4 = malloc(7*sizeof(size_t))

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Review: No Boundary Tag for Allocated Blocks

Size

1 word

Payload

a = 1: Allocated block
a = 0: Free block
b = 1: Previous block is allocated
b = 0: Previous block is free

Size: block size

Payload: application data

b1

Optional
padding

Size

Unallocated

b0

Size b0

1 word

Allocated
Block

Free
Block

 Boundary tag needed only for free blocks
 When sizes are multiples of 16, have 4 spare bits

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

No Boundary Tag for Allocated Blocks
(Case 1)

m1 ?1

n 11

m2 11

m1 ?1

n 10

n 10

m2 01

Header: Use 2 bits (address bits always zero due to alignment):
(previous block allocated)<<1 | (current block allocated)

previous
block

block
being
freed

next
block

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

No Boundary Tag for Allocated Blocks
(Case 2)

m1 ?1

n 11

m2 10

m2 10

m1 ?1

n+m2 10

n+m2 10

previous
block

block
being
freed

next
block

Header: Use 2 bits (address bits always zero due to alignment):
(previous block allocated)<<1 | (current block allocated)

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

m1 ?0

m1 ?0
n 01

m2 11

n+m1 ?0

n+m1 ?0
m2 01

No Boundary Tag for Allocated Blocks
(Case 3)

previous
block

block
being
freed

next
block

Header: Use 2 bits (address bits always zero due to alignment):
(previous block allocated)<<1 | (current block allocated)

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

No Boundary Tag for Allocated Blocks
(Case 4)

previous
block

block
being
freed

next
block

m1 ?0

n 01

m2 10

m2 10

m1 ?0

n+m1+m2

n+m1+m2

?0

?0

Header: Use 2 bits (address bits always zero due to alignment):
(previous block allocated)<<1 | (current block allocated)

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implicit Lists Summary
 Implementation: very simple
 Allocate cost:
 linear time worst case

 Free cost:
 constant time worst case
 even with coalescing

 Memory Overhead:
 Depends on placement policy
 Strategies include first fit, next fit, and best fit

 Not used in practice for malloc/free because of linear-
time allocation
 used in many special purpose applications

 However, the concepts of splitting and boundary tag
coalescing are general to all allocators

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
 Implicit free lists (review)
 Explicit free lists CSAPP 9.9.13
 Segregated free lists CSAPP 9.9.14
 Memory-related perils and pitfalls CSAPP 9.11

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Keeping Track of Free Blocks
 Method 1: Implicit list using length—links all blocks

 Method 2: Explicit list among the free blocks using pointers

 Method 3: Segregated free list
 Different free lists for different size classes

 Method 4: Blocks sorted by size
 Can use a balanced tree (e.g. Red-Black tree) with pointers within each

free block, and the length used as a key

Unused

32 48 32 16

32 48 32 16

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Explicit Free Lists

 Maintain list(s) of free blocks, not all blocks
 Luckily we track only free blocks, so we can use payload area
 The “next” free block could be anywhere

 So we need to store forward/back pointers, not just sizes
 Still need boundary tags for coalescing

 To find adjacent blocks according to memory order

Size

Payload and
padding

a

Size a

Size a

Size a

Next

Prev

Allocated (as before) Free

Optional

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Explicit Free Lists
 Logically:

 Physically: blocks can be in any order

A B C

32 32 32 32 4848 3232 32 32

Forward (next) links

Back (prev) links

A B

C

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Allocating From Explicit Free Lists

Before

After

= malloc(…)

(with splitting)

conceptual graphic

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Freeing With Explicit Free Lists
 Insertion policy: Where in the free list do you put a newly

freed block?
 Unordered
 LIFO (last-in-first-out) policy

 Insert freed block at the beginning of the free list
 FIFO (first-in-first-out) policy

 Insert freed block at the end of the free list
 Pro: simple and constant time
 Con: studies suggest fragmentation is worse than address ordered

 Address-ordered policy
 Insert freed blocks so that free list blocks are always in address order:

addr(prev) < addr(curr) < addr(next)
 Con: requires search
 Pro: studies suggest fragmentation is lower than LIFO/FIFO

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Freeing With a LIFO Policy (Case 1)

 Insert the freed block at the root of the list

free()

Root

Root

Before

After

conceptual graphic
Allocated Allocated

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Freeing With a LIFO Policy (Case 2)

 Splice out adjacent successor block, coalesce both memory
blocks, and insert the new block at the root of the list

free()

Root

Before

Root

After

conceptual graphicAllocated Free

Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Freeing With a LIFO Policy (Case 3)

 Splice out adjacent predecessor block, coalesce both memory
blocks, and insert the new block at the root of the list

free()

Root

Before

Root

After

conceptual graphic
AllocatedFree

Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Freeing With a LIFO Policy (Case 4)

 Splice out adjacent predecessor and successor blocks, coalesce
all 3 blocks, and insert the new block at the root of the list

free()

Root

Before

Root

After

conceptual graphic
Free Free

Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Some Advice: An Implementation Trick

 Use circular, doubly-linked list
 Support multiple approaches with single data structure
 First-fit vs. next-fit
 Either keep free pointer fixed or move as search list

 LIFO vs. FIFO
 Insert as next block (LIFO), or previous block (FIFO)

A B C D

Free
Pointer

FIFO Insertion
Point

LIFO Insertion
Point

Next fit

Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Explicit List Summary
 Comparison to implicit list:
 Allocate is linear time in number of free blocks instead of all blocks

 Much faster when most of the memory is full
 Slightly more complicated allocate and free because need to splice

blocks in and out of the list
 Some extra space for the links (2 extra words needed for each block)

 Does this increase internal fragmentation?

Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
 Explicit free lists
 Segregated free lists
 Memory-related perils and pitfalls

Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Keeping Track of Free Blocks
 Method 1: Implicit list using length—links all blocks

 Method 2: Explicit list among the free blocks using pointers

 Method 3: Segregated free list
 Different free lists for different size classes

 Method 4: Blocks sorted by size
 Can use a balanced tree (e.g. Red-Black tree) with pointers within each

free block, and the length used as a key

Need to tag
each block as
allocated/free

Need space
for pointers

Unused

32 48 32 16

32 48 32 16

Carnegie Mellon

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Segregated List (Seglist) Allocators
 Each size class of blocks has its own free list

 Often have separate classes for each small size
 For larger sizes: One class for each size [𝟐𝟐𝒊𝒊 + 𝟏𝟏,𝟐𝟐𝒊𝒊+𝟏𝟏]

16

32-48

64–inf

Carnegie Mellon

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Seglist Allocator
 Given an array of free lists, each one for some size class

 To allocate a block of size n:
 Search appropriate free list for block of size m > n (i.e., first fit)
 If an appropriate block is found:

 Split block and place fragment on appropriate list
 If no block is found, try next larger class

 Repeat until block is found

 If no block is found:
 Request additional heap memory from OS (using sbrk())
 Allocate block of n bytes from this new memory
 Place remainder as a single free block in appropriate size class.

Carnegie Mellon

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Seglist Allocator (cont.)
 To free a block:
 Coalesce and place on appropriate list

 Advantages of seglist allocators vs. non-seglist allocators
(both with first-fit)
 Higher throughput

 log time for power-of-two size classes vs. linear time
 Better memory utilization

 First-fit search of segregated free list approximates a best-fit
search of entire heap.

 Extreme case: Giving each block its own size class is equivalent to
best-fit.

Carnegie Mellon

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

More Info on Allocators

 D. Knuth, The Art of Computer Programming, vol 1, 3rd edition,
Addison Wesley, 1997
 The classic reference on dynamic storage allocation

 Wilson et al, “Dynamic Storage Allocation: A Survey and
Critical Review”, Proc. 1995 Int’l Workshop on Memory
Management, Kinross, Scotland, Sept, 1995.
 Comprehensive survey
 Available from CS:APP student site (csapp.cs.cmu.edu)

Carnegie Mellon

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Quiz Time!

Canvas Quiz: Day 15 – Malloc Advanced

Carnegie Mellon

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
 Explicit free lists
 Segregated free lists
 Memory-related perils and pitfalls

Carnegie Mellon

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory-Related Perils and Pitfalls
 Dereferencing bad pointers
 Reading uninitialized memory
 Overwriting memory
 Referencing nonexistent variables
 Freeing blocks multiple times
 Referencing freed blocks
 Failing to free blocks

Carnegie Mellon

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Dereferencing Bad Pointers
 The classic scanf bug

int val;

...

scanf("%d", val);

Carnegie Mellon

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Reading Uninitialized Memory
 Assuming that heap data is initialized to zero

 Can avoid by using calloc

/* return y = Ax */
int *matvec(int **A, int *x) {

int *y = malloc(N*sizeof(int));
int i, j;

for (i=0; i<N; i++)
for (j=0; j<N; j++)

y[i] += A[i][j]*x[j];
return y;

}

Carnegie Mellon

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Overwriting Memory
 Allocating the (possibly) wrong sized object

 Can you spot the bug?

int **p;

p = malloc(N*sizeof(int));

for (i=0; i<N; i++) {
p[i] = malloc(M*sizeof(int));

}

Carnegie Mellon

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Overwriting Memory
 Off-by-one errors

char **p;

p = malloc(N*sizeof(int *));

for (i=0; i<=N; i++) {
p[i] = malloc(M*sizeof(int));

}

char *p;

p = malloc(strlen(s));
strcpy(p,s);

Carnegie Mellon

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Overwriting Memory
 Not checking the max string size

 Basis for classic buffer overflow attacks

char s[8];
int i;

gets(s); /* reads “123456789” from stdin */

Carnegie Mellon

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Overwriting Memory
 Misunderstanding pointer arithmetic

int *search(int *p, int val) {

while (p && *p != val)
p += sizeof(int);

return p;
}

Carnegie Mellon

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Overwriting Memory
 Referencing a pointer instead of the object it points to

 What gets decremented?
 (See next slide)

int *BinheapDelete(int **binheap, int *size) {
int *packet;
packet = binheap[0];
binheap[0] = binheap[*size - 1];
*size--;
Heapify(binheap, *size, 0);
return(packet);

}

Carnegie Mellon

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

C operators
Operators Associativity
() [] -> . ++ -- left to right
! ~ ++ -- + - * & (type) sizeof right to left
* / % left to right
+ - left to right
<< >> left to right
< <= > >= left to right
== != left to right
& left to right
^ left to right
| left to right
&& left to right
|| left to right
?: right to left
= += -= *= /= %= &= ^= != <<= >>= right to left
, left to right

 ->, (), and [] have high precedence, with * and & just below
 Unary +, -, and * have higher precedence than binary forms

Source: K&R page 53, updated

Unary

Postfix

Binary
Prefix

Unary

Binary

Carnegie Mellon

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Overwriting Memory
 Referencing a pointer instead of the object it points to

 Same effect as
 size--;

 Rewrite as
 (*size)--;

int *BinheapDelete(int **binheap, int *size) {
int *packet;
packet = binheap[0];
binheap[0] = binheap[*size - 1];
*size--;
Heapify(binheap, *size, 0);
return(packet);

}

Carnegie Mellon

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Referencing Nonexistent Variables
 Forgetting that local variables disappear when a function

returns

int *foo () {
int val;

return &val;
}

Carnegie Mellon

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Freeing Blocks Multiple Times
 Nasty!

x = malloc(N*sizeof(int));
<manipulate x>

free(x);

y = malloc(M*sizeof(int));
<manipulate y>

free(x);

Carnegie Mellon

45Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Referencing Freed Blocks
 Evil!

x = malloc(N*sizeof(int));
<manipulate x>

free(x);
...

y = malloc(M*sizeof(int));
for (i=0; i<M; i++)

y[i] = x[i]++;

Carnegie Mellon

46Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Failing to Free Blocks (Memory Leaks)
 Slow, long-term killer!

foo() {
int *x = malloc(N*sizeof(int));
...
return;

}

Carnegie Mellon

47Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Failing to Free Blocks (Memory Leaks)
 Freeing only part of a data structure

struct list {
int val;
struct list *next;

};

foo() {
struct list *head = malloc(sizeof(struct list));
head->val = 0;
head->next = NULL;
<create and manipulate the rest of the list>
...
free(head);
return;

}

Carnegie Mellon

48Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Dealing With Memory Bugs
 Debugger: gdb
 Good for finding bad pointer dereferences
 Hard to detect the other memory bugs

 Data structure consistency checker
 Runs silently, prints message only on error
 Use as a probe to zero in on error

 Binary translator: valgrind
 Powerful debugging and analysis technique
 Rewrites text section of executable object file
 Checks each individual reference at runtime

 Bad pointers, overwrites, refs outside of allocated block

 glibc malloc contains checking code
 setenv MALLOC_CHECK_ 3

Carnegie Mellon

49Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Supplemental slides

Carnegie Mellon

51Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implicit Memory Management:
Garbage Collection
 Garbage collection: automatic reclamation of heap-allocated

storage—application never has to explicitly free memory

 Common in many dynamic languages:
 Python, Ruby, Java, Perl, ML, Lisp, Mathematica

 Variants (“conservative” garbage collectors) exist for C and C++
 However, cannot necessarily collect all garbage

void foo() {
int *p = malloc(128);
return; /* p block is now garbage */

}

Carnegie Mellon

52Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Garbage Collection
 How does the memory manager know when memory can be

freed?
 In general we cannot know what is going to be used in the future since it

depends on conditionals
 But we can tell that certain blocks cannot be used if there are no

pointers to them

 Must make certain assumptions about pointers
 Memory manager can distinguish pointers from non-pointers
 All pointers point to the start of a block
 Cannot hide pointers

(e.g., by coercing them to an int, and then back again)

Carnegie Mellon

53Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Classical GC Algorithms
 Mark-and-sweep collection (McCarthy, 1960)
 Does not move blocks (unless you also “compact”)

 Reference counting (Collins, 1960)
 Does not move blocks (not discussed)

 Copying collection (Minsky, 1963)
 Moves blocks (not discussed)

 Generational Collectors (Lieberman and Hewitt, 1983)
 Collection based on lifetimes

 Most allocations become garbage very soon
 So focus reclamation work on zones of memory recently allocated

 For more information:
Jones and Lin, “Garbage Collection: Algorithms for Automatic
Dynamic Memory”, John Wiley & Sons, 1996.

Carnegie Mellon

54Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory as a Graph
 We view memory as a directed graph
 Each block is a node in the graph
 Each pointer is an edge in the graph
 Locations not in the heap that contain pointers into the heap are called

root nodes (e.g. registers, locations on the stack, global variables)

Root nodes

Heap nodes

Not-reachable
(garbage)

reachable

A node (block) is reachable if there is a path from any root to that node.

Non-reachable nodes are garbage (cannot be needed by the application)

Carnegie Mellon

55Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Mark and Sweep Collecting
 Can build on top of malloc/free package
 Allocate using malloc until you “run out of space”

 When out of space:
 Use extra mark bit in the head of each block
 Mark: Start at roots and set mark bit on each reachable block
 Sweep: Scan all blocks and free blocks that are not marked

After mark Mark bit set

After sweep freefree

root

Before mark

Note: arrows
here denote

memory refs, not
free list ptrs.

Carnegie Mellon

56Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Assumptions For a Simple Implementation
 Application
 new(n): returns pointer to new block with all locations cleared
 read(b,i): read location i of block b into register
 write(b,i,v): write v into location i of block b

 Each block will have a header word
 addressed as b[-1], for a block b
 Used for different purposes in different collectors

 Instructions used by the Garbage Collector
 is_ptr(p): determines whether p is a pointer
 length(b): returns the length of block b, not including the header
 get_roots(): returns all the roots

Carnegie Mellon

57Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Mark and Sweep Pseudocode

ptr mark(ptr p) {
if (!is_ptr(p)) return; // if not pointer -> do nothing
if (markBitSet(p)) return; // if already marked -> do nothing
setMarkBit(p); // set the mark bit
for (i=0; i < length(p); i++) // recursively call mark on all words

mark(p[i]); // in the block
return;

}

Mark using depth-first traversal of the memory graph

Carnegie Mellon

58Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Mark and Sweep Pseudocode

ptr mark(ptr p) {
if (!is_ptr(p)) return; // if not pointer -> do nothing
if (markBitSet(p)) return; // if already marked -> do nothing
setMarkBit(p); // set the mark bit
for (i=0; i < length(p); i++) // recursively call mark on all words

mark(p[i]); // in the block
return;

}

Mark using depth-first traversal of the memory graph

Carnegie Mellon

59Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Mark and Sweep Pseudocode

ptr mark(ptr p) {
if (!is_ptr(p)) return; // if not pointer -> do nothing
if (markBitSet(p)) return; // if already marked -> do nothing
setMarkBit(p); // set the mark bit
for (i=0; i < length(p); i++) // recursively call mark on all words

mark(p[i]); // in the block
return;

}

Mark using depth-first traversal of the memory graph

Carnegie Mellon

60Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Mark and Sweep Pseudocode

ptr mark(ptr p) {
if (!is_ptr(p)) return; // if not pointer -> do nothing
if (markBitSet(p)) return; // if already marked -> do nothing
setMarkBit(p); // set the mark bit
for (i=0; i < length(p); i++) // recursively call mark on all words

mark(p[i]); // in the block
return;

}

Mark using depth-first traversal of the memory graph

Carnegie Mellon

61Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Mark and Sweep Pseudocode

ptr mark(ptr p) {
if (!is_ptr(p)) return; // if not pointer -> do nothing
if (markBitSet(p)) return; // if already marked -> do nothing
setMarkBit(p); // set the mark bit
for (i=0; i < length(p); i++) // for each word in p’s block

mark(p[i]);
return;

}

Mark using depth-first traversal of the memory graph

Carnegie Mellon

62Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Mark and Sweep Pseudocode

ptr mark(ptr p) {
if (!is_ptr(p)) return; // if not pointer -> do nothing
if (markBitSet(p)) return; // if already marked -> do nothing
setMarkBit(p); // set the mark bit
for (i=0; i < length(p); i++) // for each word in p’s block

mark(p[i]); // make recursive call
return;

}

Mark using depth-first traversal of the memory graph

Carnegie Mellon

63Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Mark and Sweep Pseudocode

ptr mark(ptr p) {
if (!is_ptr(p)) return; // if not pointer -> do nothing
if (markBitSet(p)) return; // if already marked -> do nothing
setMarkBit(p); // set the mark bit
for (i=0; i < length(p); i++) // for each word in p’s block

mark(p[i]); // make recursive call
return;

}

Mark using depth-first traversal of the memory graph

Sweep using lengths to find next block
ptr sweep(ptr p, ptr end) {

while (p < end) { // for entire heap
if markBitSet(p)

clearMarkBit();
else if (allocateBitSet(p))

free(p);
p += length(p+1);

}

Carnegie Mellon

64Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Mark and Sweep Pseudocode

ptr mark(ptr p) {
if (!is_ptr(p)) return; // if not pointer -> do nothing
if (markBitSet(p)) return; // if already marked -> do nothing
setMarkBit(p); // set the mark bit
for (i=0; i < length(p); i++) // for each word in p’s block

mark(p[i]); // make recursive call
return;

}

Mark using depth-first traversal of the memory graph

Sweep using lengths to find next block
ptr sweep(ptr p, ptr end) {

while (p < end) { // for entire heap
if markBitSet(p) // did we reach this block?

clearMarkBit();
else if (allocateBitSet(p))

free(p);
p += length(p+1);

}

Carnegie Mellon

65Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Mark and Sweep Pseudocode

ptr mark(ptr p) {
if (!is_ptr(p)) return; // if not pointer -> do nothing
if (markBitSet(p)) return; // if already marked -> do nothing
setMarkBit(p); // set the mark bit
for (i=0; i < length(p); i++) // for each word in p’s block

mark(p[i]); // make recursive call
return;

}

Mark using depth-first traversal of the memory graph

Sweep using lengths to find next block
ptr sweep(ptr p, ptr end) {

while (p < end) { // for entire heap
if markBitSet(p) // did we reach this block?

clearMarkBit(); // yes -> so just clear mark bit
else if (allocateBitSet(p))

free(p);
p += length(p+1);

}

Carnegie Mellon

66Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Mark and Sweep Pseudocode

ptr mark(ptr p) {
if (!is_ptr(p)) return; // if not pointer -> do nothing
if (markBitSet(p)) return; // if already marked -> do nothing
setMarkBit(p); // set the mark bit
for (i=0; i < length(p); i++) // for each word in p’s block

mark(p[i]); // make recursive call
return;

}

Mark using depth-first traversal of the memory graph

Sweep using lengths to find next block
ptr sweep(ptr p, ptr end) {

while (p < end) { // for entire heap
if markBitSet(p) // did we reach this block?

clearMarkBit(); // yes -> so just clear mark bit
else if (allocateBitSet(p)) // never reached: is it allocated?

free(p);
p += length(p+1);

}

Carnegie Mellon

67Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Mark and Sweep Pseudocode

ptr mark(ptr p) {
if (!is_ptr(p)) return; // if not pointer -> do nothing
if (markBitSet(p)) return; // if already marked -> do nothing
setMarkBit(p); // set the mark bit
for (i=0; i < length(p); i++) // for each word in p’s block

mark(p[i]); // make recursive call
return;

}

Mark using depth-first traversal of the memory graph

Sweep using lengths to find next block
ptr sweep(ptr p, ptr end) {

while (p < end) { // for entire heap
if markBitSet(p) // did we reach this block?

clearMarkBit(); // yes -> so just clear mark bit
else if (allocateBitSet(p)) // never reached: is it allocated?

free(p); // yes -> its garbage, free it
p += length(p+1);

}

Carnegie Mellon

68Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Mark and Sweep Pseudocode

ptr mark(ptr p) {
if (!is_ptr(p)) return; // if not pointer -> do nothing
if (markBitSet(p)) return; // if already marked -> do nothing
setMarkBit(p); // set the mark bit
for (i=0; i < length(p); i++) // for each word in p’s block

mark(p[i]); // make recursive call
return;

}

Mark using depth-first traversal of the memory graph

Sweep using lengths to find next block
ptr sweep(ptr p, ptr end) {

while (p < end) { // for entire heap
if markBitSet(p) // did we reach this block?

clearMarkBit(); // yes -> so just clear mark bit
else if (allocateBitSet(p)) // never reached: is it allocated?

free(p); // yes -> its garbage, free it
p += length(p+1); // goto next block

}

Carnegie Mellon

70Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

C Pointer Declarations: Test Yourself!
int *p

int *p[13]

int *(p[13])

int **p

int (*p)[13]

int *f()

int (*f)()

int (*(*x[3])())[5]

p is a pointer to int

p is an array[13] of pointer to int

p is an array[13] of pointer to int

p is a pointer to a pointer to an int

p is a pointer to an array[13] of int

f is a function returning a pointer to int

f is a pointer to a function returning int

x is an array[3] of pointers to functions
returning pointers to array[5] of ints

Source: K&R Sec 5.12

Carnegie Mellon

71Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

C Pointer Declarations: Test Yourself!
int *p

int *p[13]

int *(p[13])

int **p

int (*p)[13]

int *f()

int (*f)()

int (*(*x[3])())[5]

int (*(*f())[13])()

p is a pointer to int

p is an array[13] of pointer to int

p is an array[13] of pointer to int

p is a pointer to a pointer to an int

p is a pointer to an array[13] of int

f is a function returning a pointer to int

f is a pointer to a function returning int

f is a function returning ptr to an array[13]
of pointers to functions returning int

x is an array[3] of pointers to functions
returning pointers to array[5] of ints

Source: K&R Sec 5.12

Carnegie Mellon

72Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Parsing: int (*(*f())[13])()
int (*(*f())[13])() f

int (*(*f())[13])() f is a function
that returns a ptr

int (*(*f())[13])() f is a function that returns
a ptr to an array of 13 ptrs

int (*(*f())[13])() f is a function
that returns a ptr to an
array of 13

int (*(*f())[13])() f is a function that returns
a ptr to an array of 13 ptrs
to functions returning an int

int (*(*f())[13])() f is a function

	Slide Number 1
	Dynamic Memory Allocation: �Advanced Concepts��18-213/18-613: Introduction to Computer Systems	�15th Lecture, October 25, 2022
	Review: Dynamic Memory Allocation	
	Review: Keeping Track of Free Blocks
	Review: Boundary Tags for Coalescing
	Review: Internal vs. External Fragmentation
	Review: No Boundary Tag for Allocated Blocks
	No Boundary Tag for Allocated Blocks�(Case 1)
	No Boundary Tag for Allocated Blocks (Case 2)
	No Boundary Tag for Allocated Blocks (Case 3)
	No Boundary Tag for Allocated Blocks (Case 4)
	Implicit Lists Summary
	Today
	Keeping Track of Free Blocks
	Explicit Free Lists
	Explicit Free Lists
	Allocating From Explicit Free Lists
	Freeing With Explicit Free Lists
	Freeing With a LIFO Policy (Case 1)
	Freeing With a LIFO Policy (Case 2)
	Freeing With a LIFO Policy (Case 3)
	Freeing With a LIFO Policy (Case 4)
	Some Advice: An Implementation Trick
	Explicit List Summary
	Today
	Keeping Track of Free Blocks
	Segregated List (Seglist) Allocators
	Seglist Allocator
	Seglist Allocator (cont.)
	More Info on Allocators
	Quiz Time!
	Today
	Memory-Related Perils and Pitfalls
	Dereferencing Bad Pointers
	Reading Uninitialized Memory
	Overwriting Memory
	Overwriting Memory
	Overwriting Memory
	Overwriting Memory
	Overwriting Memory
	C operators
	Overwriting Memory
	Referencing Nonexistent Variables
	Freeing Blocks Multiple Times
	Referencing Freed Blocks
	Failing to Free Blocks (Memory Leaks)
	Failing to Free Blocks (Memory Leaks)
	Dealing With Memory Bugs
	Supplemental slides
	Implicit Memory Management:�Garbage Collection
	Garbage Collection
	Classical GC Algorithms
	Memory as a Graph
	Mark and Sweep Collecting
	Assumptions For a Simple Implementation
	Mark and Sweep Pseudocode
	Mark and Sweep Pseudocode
	Mark and Sweep Pseudocode
	Mark and Sweep Pseudocode
	Mark and Sweep Pseudocode
	Mark and Sweep Pseudocode
	Mark and Sweep Pseudocode
	Mark and Sweep Pseudocode
	Mark and Sweep Pseudocode
	Mark and Sweep Pseudocode
	Mark and Sweep Pseudocode
	Mark and Sweep Pseudocode
	C Pointer Declarations: Test Yourself!
	C Pointer Declarations: Test Yourself!
	Parsing: int (*(*f())[13])()

