
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

14-513 18-613

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Exceptional Control Flow: Signals

18-213/18-613: Introduction to Computer Systems
18th Lecture, November 3, 2022

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Announcements
 Homework #8 due Today (Nov 3)

 Malloc Final due Monday (Nov 7)

 Shell lab out Monday (Nov 7)

 Homework #9 due Thursday (Nov 10)

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Reaping Child Processes
 Idea
 When process terminates, it still consumes system resources

 Examples: Exit status, various OS tables
 Called a “zombie”

 Living corpse, half alive and half dead

 Reaping
 Performed by parent on terminated child (using wait or waitpid)
 Parent is given exit status information
 Kernel then deletes zombie child process

 What if parent doesn’t reap?
 If any parent terminates without reaping a child, then the orphaned

child should be reaped by init process (pid == 1)
 Unless ppid == 1! Then need to reboot…

 So, only need explicit reaping in long-running processes
 e.g., shells and servers

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

linux> ./forks 7 &
[1] 6639
Running Parent, PID = 6639
Terminating Child, PID = 6640
linux> ps

PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
6639 ttyp9 00:00:03 forks
6640 ttyp9 00:00:00 forks <defunct>
6641 ttyp9 00:00:00 ps

Zombie
Example

forks.c
linux> ./forks 7 &
[1] 6639
Running Parent, PID = 6639
Terminating Child, PID = 6640

linux> ./forks 7 &
[1] 6639
Running Parent, PID = 6639
Terminating Child, PID = 6640
linux> ps

PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
6639 ttyp9 00:00:03 forks
6640 ttyp9 00:00:00 forks <defunct>
6641 ttyp9 00:00:00 ps

linux> kill 6639
[1] Terminated
linux> ps

PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
6642 ttyp9 00:00:00 ps

 ps shows child process as
“defunct” (i.e., a zombie)

 Killing parent allows child to
be reaped by init

void fork7() {
if (fork() == 0) {

/* Child */
printf("Terminating Child, PID = %d\n", getpid());
exit(0);

} else {
printf("Running Parent, PID = %d\n", getpid());
while (1)

; /* Infinite loop */
}

}

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

wait: Synchronizing with Children
 Parent reaps a child by calling the wait function

 int wait(int *child_status)
 Suspends current process until one of its children terminates
 Implemented as syscall

Parent Process Kernel code

Exception

Returns

syscall
…

And, potentially other user
processes, including a child
of parent

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

wait: Synchronizing with Children
 Parent reaps a child by calling the wait function

 int wait(int *child_status)
 Suspends current process until one of its children terminates
 Return value is the pid of the child process that terminated
 If child_status != NULL, then the integer it points to will be set

to a value that indicates reason the child terminated and the exit
status:
 Checked using macros defined in wait.h

– WIFEXITED, WEXITSTATUS, WIFSIGNALED,
WTERMSIG, WIFSTOPPED, WSTOPSIG,
WIFCONTINUED

– See textbook for details

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

wait: Synchronizing with Children

void fork9() {
int child_status;

if (fork() == 0) {
printf("HC: hello from child\n");
exit(0);

} else {
printf("HP: hello from parent\n");
wait(&child_status);
printf("CT: child has terminated\n");

}
printf("Bye\n");

}

printf wait printffork

printf
exit

HP

HC

CT
Bye

forks.c

Feasible output:
HC
HP
CT
Bye

Infeasible output:
HP
CT
Bye
HC

Feasible output(s):
HC HP
HP HC
CT CT
Bye Bye

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Another wait Example
 If multiple children completed, will take in arbitrary order
 Can use macros WIFEXITED and WEXITSTATUS to get information about

exit status

void fork10() {
pid_t pid[N];
int i, child_status;

for (i = 0; i < N; i++)
if ((pid[i] = fork()) == 0) {

exit(100+i); /* Child */
}

for (i = 0; i < N; i++) { /* Parent */
pid_t wpid = wait(&child_status);
if (WIFEXITED(child_status))

printf("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));

else
printf("Child %d terminate abnormally\n", wpid);

}
} forks.c

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

waitpid: Waiting for a Specific Process
 pid_t waitpid(pid_t pid, int *status, int options)

 Suspends current process until specific process terminates
 Various options (see textbook)

void fork11() {
pid_t pid[N];
int i;
int child_status;

for (i = 0; i < N; i++)
if ((pid[i] = fork()) == 0)

exit(100+i); /* Child */
for (i = N-1; i >= 0; i--) {

pid_t wpid = waitpid(pid[i], &child_status, 0);
if (WIFEXITED(child_status))

printf("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));

else
printf("Child %d terminate abnormally\n", wpid);

}
} forks.c

waitpid(-1, &child_status, 0)

is equivalent to

wait(&child_status);

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

execve: Loading and Running Programs

 int execve(char *filename, char *argv[], char *envp[])

 Loads and runs in the current process:
 Executable file filename

 Can be object file or script file beginning with #!interpreter
(e.g., #!/bin/bash)

 …with argument list argv
 By convention argv[0]==filename

 …and environment variable list envp
 “name=value” strings (e.g., USER=droh)
 getenv, putenv, printenv

 Overwrites code, data, and stack
 Retains PID, open files and signal context

 Called once and never returns
 …except if there is an error

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

execve Example

envp[n] = NULL
envp[n-1]

envp[0]
…

"USER=droh"

"PWD=/usr/droh"

environ

if ((pid = Fork()) == 0) { /* Child runs program */
if (execve(myargv[0], myargv, environ) < 0) {

printf("%s: Command not found.\n", myargv[0]);
exit(1);

}
}

 Execute "/bin/ls –lt /usr/include" in child process
using current environment:

myargv[argc] = NULL
myargv[2]

myargv[0]
myargv[1]

"/bin/ls"
"-lt"
"/usr/include"

myargv

(argc == 3)

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Structure of
the stack when
a new program
starts

Null-terminated
environment variable strings

Null-terminated
command-line arg strings

envp[n] == NULL
envp[n-1]

...
envp[0]

argv[argc] = NULL
argv[argc-1]

...
argv[0]

Future stack frame for
main

environ
(global var)

Bottom of stack

Top of stack

argv
(in %rsi)

envp
(in %rdx)

Stack frame for
libc_start_main

argc
(in %rdi)

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The execve Function Revisited
 To load and run a new

program a.out in the
current process using
execve:

 Free vm_area_struct’s
and page tables for old areas

 Create vm_area_struct’s
and page tables for new
areas
 Programs and initialized data

backed by object files.
 .bss and stack backed by

anonymous files.

 Set PC to entry point in
.text
 Linux will fault in code and

data pages as needed.

Memory mapped region
for shared libraries

Runtime heap (via malloc)

Program text (.text)

Initialized data (.data)

Uninitialized data (.bss)

User stack

0

Private, demand-zero

libc.so
.data
.text Shared, file-backed

Private, demand-zero

Private, demand-zero

Private, file-backed

a.out
.data
.text

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Exceptions & Processes - Summary
 Exceptions
 Events that require nonstandard control flow
 Generated externally (interrupts) or internally (traps and faults)

 Processes
 At any given time, system has multiple active processes
 Only one can execute at a time on any single core
 Each process appears to have total control of

processor + private memory space

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
 Shells CSAPP 8.4.6
 Signals CSAPP 8.5

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Linux Process Hierarchy

Login shell

ChildChild

GrandchildGrandchild

[0]

Daemon
e.g. httpd

init [1]

Login shell

Child

…

Note: you can view the
hierarchy using the Linux
pstree command

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Shell Programs
 A shell is an application program that runs programs on behalf

of the user.
 sh Original Unix shell (Stephen Bourne, AT&T Bell Labs, 1977)
 csh/tcsh BSD Unix C shell
 bash “Bourne-Again” Shell (default Linux shell)

 Simple shell
 Described in the textbook, starting at p. 753
 Implementation of a very elementary shell
 Purpose

 Understand what happens when you type commands
 Understand use and operation of process control operations

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Simple Shell Example
linux> ./shellex
> /bin/ls -l csapp.c
-rw-r--r-- 1 bryant users 23053 Jun 15 2015 csapp.c
> /bin/ps

PID TTY TIME CMD
31542 pts/2 00:00:01 tcsh
32017 pts/2 00:00:00 shellex
32019 pts/2 00:00:00 ps
> /bin/sleep 10 &
32031 /bin/sleep 10 &
> /bin/ps
PID TTY TIME CMD

31542 pts/2 00:00:01 tcsh
32024 pts/2 00:00:00 emacs
32030 pts/2 00:00:00 shellex
32031 pts/2 00:00:00 sleep
32033 pts/2 00:00:00 ps
> quit

Note: Must give full pathnames for programs

Run program in background

Sleep is running in background

Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Simple Shell Implementation
 Basic loop

 Read line from command line
 Execute the requested operation

 Built-in command (only one implemented is quit)
 Load and execute program from file

int main(int argc, char** argv)
{

char cmdline[MAXLINE]; /* command line */

while (1) {
/* read */
printf("> ");
Fgets(cmdline, MAXLINE, stdin);
if (feof(stdin))

exit(0);

/* evaluate */
eval(cmdline);

}
...

Execution is a
sequence of
read/evaluate
steps

shellex.c

Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Simple Shell eval Function
void eval(char *cmdline)
{

char *argv[MAXARGS]; /* Argument list execve() */
char buf[MAXLINE]; /* Holds modified command line */
int bg; /* Should the job run in bg or fg? */
pid_t pid; /* Process id */

strcpy(buf, cmdline);
bg = parseline(buf, argv);
if (argv[0] == NULL)

return; /* Ignore empty lines */

if (!builtin_command(argv)) {
if ((pid = Fork()) == 0) { /* Child runs user job */

if (execve(argv[0], argv, environ) < 0) {
printf("%s: Command not found.\n", argv[0]);
exit(0);

}
}

/* Parent waits for foreground job to terminate */
if (!bg) {

int status;
if (waitpid(pid, &status, 0) < 0)

unix_error("waitfg: waitpid error");
}
else

printf("%d %s", pid, cmdline);
}
return;

} shellex.cshellex.c

parseline will parse ‘buf’ into
‘argv’ and return whether or not
input line ended in ‘&’

Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Simple Shell eval Function
void eval(char *cmdline)
{

char *argv[MAXARGS]; /* Argument list execve() */
char buf[MAXLINE]; /* Holds modified command line */
int bg; /* Should the job run in bg or fg? */
pid_t pid; /* Process id */

strcpy(buf, cmdline);
bg = parseline(buf, argv);
if (argv[0] == NULL)

return; /* Ignore empty lines */

if (!builtin_command(argv)) {
if ((pid = Fork()) == 0) { /* Child runs user job */

if (execve(argv[0], argv, environ) < 0) {
printf("%s: Command not found.\n", argv[0]);
exit(0);

}
}

/* Parent waits for foreground job to terminate */
if (!bg) {

int status;
if (waitpid(pid, &status, 0) < 0)

unix_error("waitfg: waitpid error");
}
else

printf("%d %s", pid, cmdline);
}
return;

} shellex.cshellex.c

Ignore empty lines.

Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Simple Shell eval Function
void eval(char *cmdline)
{

char *argv[MAXARGS]; /* Argument list execve() */
char buf[MAXLINE]; /* Holds modified command line */
int bg; /* Should the job run in bg or fg? */
pid_t pid; /* Process id */

strcpy(buf, cmdline);
bg = parseline(buf, argv);
if (argv[0] == NULL)

return; /* Ignore empty lines */

if (!builtin_command(argv)) {
if ((pid = Fork()) == 0) { /* Child runs user job */

if (execve(argv[0], argv, environ) < 0) {
printf("%s: Command not found.\n", argv[0]);
exit(0);

}
}

/* Parent waits for foreground job to terminate */
if (!bg) {

int status;
if (waitpid(pid, &status, 0) < 0)

unix_error("waitfg: waitpid error");
}
else

printf("%d %s", pid, cmdline);
}
return;

} shellex.cshellex.c

If it is a ‘built in’ command, then
handle it here in this program.
Otherwise fork/exec the program
specified in argv[0]

Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Simple Shell eval Function
void eval(char *cmdline)
{

char *argv[MAXARGS]; /* Argument list execve() */
char buf[MAXLINE]; /* Holds modified command line */
int bg; /* Should the job run in bg or fg? */
pid_t pid; /* Process id */

strcpy(buf, cmdline);
bg = parseline(buf, argv);
if (argv[0] == NULL)

return; /* Ignore empty lines */

if (!builtin_command(argv)) {
if ((pid = Fork()) == 0) { /* Child runs user job */

if (execve(argv[0], argv, environ) < 0) {
printf("%s: Command not found.\n", argv[0]);
exit(0);

}
}

/* Parent waits for foreground job to terminate */
if (!bg) {

int status;
if (waitpid(pid, &status, 0) < 0)

unix_error("waitfg: waitpid error");
}
else

printf("%d %s", pid, cmdline);
}
return;

} shellex.cshellex.c

Create child

Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Simple Shell eval Function
void eval(char *cmdline)
{

char *argv[MAXARGS]; /* Argument list execve() */
char buf[MAXLINE]; /* Holds modified command line */
int bg; /* Should the job run in bg or fg? */
pid_t pid; /* Process id */

strcpy(buf, cmdline);
bg = parseline(buf, argv);
if (argv[0] == NULL)

return; /* Ignore empty lines */

if (!builtin_command(argv)) {
if ((pid = Fork()) == 0) { /* Child runs user job */

if (execve(argv[0], argv, environ) < 0) {
printf("%s: Command not found.\n", argv[0]);
exit(0);

}
}

/* Parent waits for foreground job to terminate */
if (!bg) {

int status;
if (waitpid(pid, &status, 0) < 0)

unix_error("waitfg: waitpid error");
}
else

printf("%d %s", pid, cmdline);
}
return;

} shellex.cshellex.c

Start argv[0].
Remember execve only returns on
error.

Carnegie Mellon

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Simple Shell eval Function
void eval(char *cmdline)
{

char *argv[MAXARGS]; /* Argument list execve() */
char buf[MAXLINE]; /* Holds modified command line */
int bg; /* Should the job run in bg or fg? */
pid_t pid; /* Process id */

strcpy(buf, cmdline);
bg = parseline(buf, argv);
if (argv[0] == NULL)

return; /* Ignore empty lines */

if (!builtin_command(argv)) {
if ((pid = Fork()) == 0) { /* Child runs user job */

if (execve(argv[0], argv, environ) < 0) {
printf("%s: Command not found.\n", argv[0]);
exit(0);

}
}

/* Parent waits for foreground job to terminate */
if (!bg) {

int status;
if (waitpid(pid, &status, 0) < 0)

unix_error("waitfg: waitpid error");
}
else

printf("%d %s", pid, cmdline);
}
return;

} shellex.cshellex.c

If running child in
foreground, wait until
it is done.

Carnegie Mellon

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Simple Shell eval Function
void eval(char *cmdline)
{

char *argv[MAXARGS]; /* Argument list execve() */
char buf[MAXLINE]; /* Holds modified command line */
int bg; /* Should the job run in bg or fg? */
pid_t pid; /* Process id */

strcpy(buf, cmdline);
bg = parseline(buf, argv);
if (argv[0] == NULL)

return; /* Ignore empty lines */

if (!builtin_command(argv)) {
if ((pid = Fork()) == 0) { /* Child runs user job */

if (execve(argv[0], argv, environ) < 0) {
printf("%s: Command not found.\n", argv[0]);
exit(0);

}
}

/* Parent waits for foreground job to terminate */
if (!bg) {

int status;
if (waitpid(pid, &status, 0) < 0)

unix_error("waitfg: waitpid error");
}
else{

printf("%d %s", pid, cmdline);
}

}
return;

}

shellex.cshellex.c

If running child in
background, print pid
and continue doing
other stuff.

Carnegie Mellon

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Simple Shell eval Function
void eval(char *cmdline)
{

char *argv[MAXARGS]; /* Argument list execve() */
char buf[MAXLINE]; /* Holds modified command line */
int bg; /* Should the job run in bg or fg? */
pid_t pid; /* Process id */

strcpy(buf, cmdline);
bg = parseline(buf, argv);
if (argv[0] == NULL)

return; /* Ignore empty lines */

if (!builtin_command(argv)) {
if ((pid = Fork()) == 0) { /* Child runs user job */

if (execve(argv[0], argv, environ) < 0) {
printf("%s: Command not found.\n", argv[0]);
exit(0);

}
}

/* Parent waits for foreground job to terminate */
if (!bg) {

int status;
if (waitpid(pid, &status, 0) < 0)

unix_error("waitfg: waitpid error");
}
else

printf("%d %s", pid, cmdline);
}
return;

} shellex.cshellex.c

Oops. There is a
problem with
this code.

Carnegie Mellon

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Problem with Simple Shell Example
 Shell designed to run indefinitely
 Should not accumulate unneeded resources

 Memory
 Child processes
 File descriptors

 Our example shell correctly waits for and reaps
foreground jobs

 But what about background jobs?
 Will become zombies when they terminate
 Will never be reaped because shell (typically) will not terminate
 Will create a memory leak that could run the kernel out of memory

Carnegie Mellon

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

ECF to the Rescue!
 Solution: Exceptional control flow
 The kernel will interrupt regular processing to alert us when a background

process completes
 In Unix, the alert mechanism is called a signal

Carnegie Mellon

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Quiz Time!

Canvas Quiz: Day 18 – ECF Signals

Carnegie Mellon

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
 Shells
 Signals

Carnegie Mellon

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

(partial) Taxonomy

Asynchronous Synchronous

Interrupts Traps Faults Aborts

ECF

Signals

Handled in user process

Handled in kernel

Carnegie Mellon

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signals
 A signal is a small message that notifies a process that an

event of some type has occurred in the system
 Akin to exceptions and interrupts
 Sent from the kernel (sometimes at the request of another process) to a

process
 Signal type is identified by small integer ID’s (1-30)
 Only information in a signal is its ID and the fact that it arrived

ID Name Default Action Corresponding Event
2 SIGINT Terminate User typed ctrl-c
9 SIGKILL Terminate Kill program (cannot override or ignore)

11 SIGSEGV Terminate Segmentation violation
14 SIGALRM Terminate Timer signal
17 SIGCHLD Ignore Child stopped or terminated

Carnegie Mellon

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signal Concepts: Sending a Signal
 Kernel sends (delivers) a signal to a destination process by

updating some state in the context of the destination process

 Kernel sends a signal for one of the following reasons:
 Kernel has detected a system event such as divide-by-zero (SIGFPE) or

the termination of a child process (SIGCHLD)
 Another process has invoked the kill system call to explicitly request

the kernel to send a signal to the destination process

Carnegie Mellon

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signal Concepts: Sending a Signal

Process A

Process B

Process C

kernel

User level

Pending for A Blocked for A
Pending for B Blocked for B
Pending for C Blocked for C

Carnegie Mellon

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signal Concepts: Sending a Signal

Process A

Process B

Process C

kernel

User level

Pending for A Blocked for A
Pending for B Blocked for B
Pending for C Blocked for C

Carnegie Mellon

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signal Concepts: Sending a Signal

Process A

Process B

Process C

kernel

User level

Pending for A Blocked for A
Pending for B Blocked for B
Pending for C Blocked for C1

Carnegie Mellon

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signal Concepts: Sending a Signal

Process A

Process B

Process C

kernel

User level

Pending for A Blocked for A
Pending for B Blocked for B
Pending for C Blocked for C1

Carnegie Mellon

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signal Concepts: Sending a Signal

Process A

Process B

Process C

kernel

User level

Pending for A Blocked for A
Pending for B Blocked for B
Pending for C Blocked for C0

Carnegie Mellon

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signal Concepts: Receiving a Signal
 A destination process receives a signal when it is forced by

the kernel to react in some way to the delivery of the signal

 Some possible ways to react:
 Ignore the signal (do nothing)
 Terminate the process (with optional core dump)
 Catch the signal by executing a user-level function called signal handler

 Akin to a hardware exception handler being called in response to an
asynchronous interrupt:

(2) Control passes
to signal handler

(3) Signal
handler runs

(4) Signal handler
returns to
next instruction

Icurr
Inext

(1) Signal received
by process

Carnegie Mellon

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signal Concepts: Pending and Blocked Signals

 A signal is pending if sent but not yet received
 There can be at most one pending signal of any particular type
 Important: Signals are not queued

 If a process has a pending signal of type k, then subsequent signals of
type k that are sent to that process are discarded

 A process can block the receipt of certain signals
 Blocked signals can be delivered, but will not be received until the signal

is unblocked

 A pending signal is received at most once

Carnegie Mellon

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signal Concepts: Pending/Blocked Bits

 Kernel maintains pending and blocked bit vectors in the
context of each process
 pending: represents the set of pending signals

 Kernel sets bit k in pending when a signal of type k is delivered
 Kernel clears bit k in pending when a signal of type k is received

 blocked: represents the set of blocked signals
 Can be set and cleared by using the sigprocmask function
 Also referred to as the signal mask.

Carnegie Mellon

45Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signal Concepts: Sending a Signal

Process A

Process B

Process C

kernel

User level

Pending for A Blocked for A
Pending for B Blocked for B
Pending for C Blocked for C1

Carnegie Mellon

46Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sending Signals: Process Groups
 Every process belongs to exactly one process group

Fore-
ground

job

Back-
ground
job #1

Back-
ground
job #2

Shell

Child Child

pid=10
pgid=10

Foreground
process group 20

Background
process group 32

Background
process group 40

pid=20
pgid=20

pid=32
pgid=32

pid=40
pgid=40

pid=21
pgid=20

pid=22
pgid=20

getpgrp()
Return process group of current process

setpgid()
Change process group of a process (see
text for details)

Carnegie Mellon

47Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sending Signals with /bin/kill Program
 /bin/kill program

sends arbitrary signal to a
process or process group

 Examples
 /bin/kill –9 24818

Send SIGKILL to process 24818

 /bin/kill –9 –24817
Send SIGKILL to every process
in process group 24817

linux> ./forks 16
Child1: pid=24818 pgrp=24817
Child2: pid=24819 pgrp=24817

linux> ps
PID TTY TIME CMD

24788 pts/2 00:00:00 tcsh
24818 pts/2 00:00:02 forks
24819 pts/2 00:00:02 forks
24820 pts/2 00:00:00 ps
linux> /bin/kill -9 -24817
linux> ps

PID TTY TIME CMD
24788 pts/2 00:00:00 tcsh
24823 pts/2 00:00:00 ps
linux>

Carnegie Mellon

48Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sending Signals from the Keyboard
 Typing ctrl-c (ctrl-z) causes the kernel to send a SIGINT (SIGTSTP) to every

job in the foreground process group.
 SIGINT – default action is to terminate each process
 SIGTSTP – default action is to stop (suspend) each process

Fore-
ground

job

Back-
ground
job #1

Back-
ground
job #2

Shell

Child Child

pid=10
pgid=10

Foreground
process group 20

Background
process group 32

Background
process group 40

pid=20
pgid=20

pid=32
pgid=32

pid=40
pgid=40

pid=21
pgid=20

pid=22
pgid=20

Carnegie Mellon

49Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example of ctrl-c and ctrl-z
bluefish> ./forks 17
Child: pid=28108 pgrp=28107
Parent: pid=28107 pgrp=28107
<types ctrl-z>
Suspended
bluefish> ps w

PID TTY STAT TIME COMMAND
27699 pts/8 Ss 0:00 -tcsh
28107 pts/8 T 0:01 ./forks 17
28108 pts/8 T 0:01 ./forks 17
28109 pts/8 R+ 0:00 ps w
bluefish> fg
./forks 17
<types ctrl-c>
bluefish> ps w

PID TTY STAT TIME COMMAND
27699 pts/8 Ss 0:00 -tcsh
28110 pts/8 R+ 0:00 ps w

STAT (process state) Legend:

First letter:
S: sleeping
T: stopped
R: running

Second letter:
s: session leader
+: foreground proc group

See “man ps” for more
details

Carnegie Mellon

50Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sending Signals with kill Function
void fork12()
{

pid_t pid[N];
int i;
int child_status;

for (i = 0; i < N; i++)
if ((pid[i] = fork()) == 0) {

/* Child: Infinite Loop */
while(1)

;
}

for (i = 0; i < N; i++) {
printf("Killing process %d\n", pid[i]);
kill(pid[i], SIGINT);

}

for (i = 0; i < N; i++) {
pid_t wpid = wait(&child_status);
if (WIFEXITED(child_status))

printf("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));

else
printf("Child %d terminated abnormally\n", wpid);

}
} forks.c

Carnegie Mellon

51Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Receiving Signals
 Suppose kernel is returning from an exception handler

and is ready to pass control to process p

Process q Process p

user code

kernel code

user code

kernel code

user code

context switch

context switch

Time

Carnegie Mellon

52Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Receiving Signals
 Suppose kernel is returning from an exception handler

and is ready to pass control to process p

 Kernel computes pnb = pending & ~blocked
 The set of pending nonblocked signals for process p

 If (pnb == 0)
 Pass control to next instruction in the logical flow for p

 Else
 Choose least nonzero bit k in pnb and force process p to receive

signal k
 The receipt of the signal triggers some action by p
 Repeat for all nonzero k in pnb
 Pass control to next instruction in logical flow for p

Carnegie Mellon

53Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Default Actions
 Each signal type has a predefined default action, which is

one of:
 The process terminates
 The process stops until restarted by a SIGCONT signal
 The process ignores the signal

Carnegie Mellon

54Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Installing Signal Handlers
 The signal function modifies the default action associated

with the receipt of signal signum:
 handler_t *signal(int signum, handler_t *handler)

 Different values for handler:
 SIG_IGN: ignore signals of type signum
 SIG_DFL: revert to the default action on receipt of signals of type signum
 Otherwise, handler is the address of a user-level signal handler

 Called when process receives signal of type signum
 Referred to as “installing” the handler
 Executing handler is called “catching” or “handling” the signal
 When the handler executes its return statement, control passes back

to instruction in the control flow of the process that was interrupted
by receipt of the signal

Carnegie Mellon

55Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signal Handling Example
void sigint_handler(int sig) /* SIGINT handler */
{

printf("So you think you can stop the bomb with ctrl-c, do you?\n");
sleep(2);
printf("Well...");
fflush(stdout);
sleep(1);
printf("OK. :-)\n");
exit(0);

}

int main(int argc, char** argv)
{

/* Install the SIGINT handler */
if (signal(SIGINT, sigint_handler) == SIG_ERR)

unix_error("signal error");

/* Wait for the receipt of a signal */
pause();

return 0;
} sigint.c

Carnegie Mellon

56Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signals Handlers as Concurrent Flows

 A signal handler is a separate logical flow (not process) that
runs concurrently with the main program

 But, this flow exists only until returns to main program

Process A

while (1)
;

Process A

handler(){
…

}

Process B

Time

Carnegie Mellon

57Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Another View of Signal Handlers as
Concurrent Flows

Signal delivered
to process A

Signal received
by process A

Process A Process B

user code (main)

kernel code

user code (main)

kernel code

user code (handler)

context switch

context switch

kernel code

user code (main)

Icurr

Inext

Carnegie Mellon

58Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Nested Signal Handlers
 Handlers can be interrupted by other handlers

(2) Control passes
to handler S

Main program

(5) Handler T
returns to
handler S

Icurr

Inext

(1) Program
catches signal s

Handler S Handler T

(3) Program
catches signal t

(4) Control passes
to handler T

(6) Handler S
returns to
main
program

(7) Main program
resumes

Carnegie Mellon

59Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Blocking and Unblocking Signals
 Implicit blocking mechanism
 Kernel blocks any pending signals of type currently being handled.
 E.g., A SIGINT handler can’t be interrupted by another SIGINT

 Explicit blocking and unblocking mechanism
 sigprocmask function

 Supporting functions
 sigemptyset – Create empty set
 sigfillset – Add every signal number to set
 sigaddset – Add signal number to set
 sigdelset – Delete signal number from set

Carnegie Mellon

60Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Temporarily Blocking Signals

sigset_t mask, prev_mask;

Sigemptyset(&mask);
Sigaddset(&mask, SIGINT);

/* Block SIGINT and save previous blocked set */
Sigprocmask(SIG_BLOCK, &mask, &prev_mask);

/* Code region that will not be interrupted by SIGINT */

/* Restore previous blocked set, unblocking SIGINT */
Sigprocmask(SIG_SETMASK, &prev_mask, NULL);

…

Carnegie Mellon

61Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Safe Signal Handling
 Handlers are tricky because they are concurrent with

main program and share the same global data structures.
 Shared data structures can become corrupted.

 We’ll explore concurrency issues later in the term.

 For now here are some guidelines to help you avoid
trouble.

Carnegie Mellon

62Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Guidelines for Writing Safe Handlers
 G0: Keep your handlers as simple as possible
 e.g., Set a global flag and return

 G1: Call only async-signal-safe functions in your handlers
 printf, sprintf, malloc, and exit are not safe!

 G2: Save and restore errno on entry and exit
 So that other handlers don’t overwrite your value of errno

 G3: Protect accesses to shared data structures by temporarily
blocking all signals.
 To prevent possible corruption

 G4: Declare global variables as volatile
 To prevent compiler from storing them in a register

 G5: Declare global flags as volatile sig_atomic_t
 flag: variable that is only read or written (e.g. flag = 1, not flag++)
 Flag declared this way does not need to be protected like other globals

Carnegie Mellon

63Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Async-Signal-Safety
 Function is async-signal-safe if either reentrant (e.g., all

variables stored on stack frame, CS:APP3e 12.7.2) or non-
interruptible by signals.

 Posix guarantees 117 functions to be async-signal-safe
 Source: “man 7 signal-safety”
 Popular functions on the list:

 _exit, write, wait, waitpid, sleep, kill

 Popular functions that are not on the list:
 printf, sprintf, malloc, exit

 Unfortunate fact: write is the only async-signal-safe output function

Carnegie Mellon

64Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Safe Formatted Output: Option #1
 Use the reentrant SIO (Safe I/O library) from csapp.c in

your handlers.
 ssize_t sio_puts(char s[]) /* Put string */

 ssize_t sio_putl(long v) /* Put long */

 void sio_error(char s[]) /* Put msg & exit */

void sigint_handler(int sig) /* Safe SIGINT handler */
{

Sio_puts("So you think you can stop the bomb"
" with ctrl-c, do you?\n");

sleep(2);
Sio_puts("Well...");
sleep(1);
Sio_puts("OK. :-)\n");
_exit(0);

} sigintsafe.c

Carnegie Mellon

65Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Safe Formatted Output: Option #2
 Use the new & improved reentrant sio_printf !
 Handles restricted class of printf format strings

 Recognizes: %c %s %d %u %x %%
 Size designators ‘l’ and ‘z’

void sigint_handler(int sig) /* Safe SIGINT handler */
{

Sio_printf("So you think you can stop the bomb"
" (process %d) with ctrl-%c, do you?\n",
(int) getpid(), 'c');

sleep(2);
Sio_puts("Well...");
sleep(1);
Sio_puts("OK. :-)\n");
_exit(0);

}

sigintsafe.c

Carnegie Mellon

66Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

 Pending signals are
not queued
 For each signal type, one

bit indicates whether or
not signal is pending…
 …thus at most one

pending signal of any
particular type.

 You can’t use signals
to count events, such as
children terminating.

volatile int ccount = 0;
void child_handler(int sig) {

int olderrno = errno;
pid_t pid;
if ((pid = wait(NULL)) < 0)

Sio_error("wait error");
ccount--;
Sio_puts("Handler reaped child ");
Sio_putl((long)pid);
Sio_puts(" \n");
sleep(1);
errno = olderrno;

}

void fork14() {
pid_t pid[N];
int i;
ccount = N;
Signal(SIGCHLD, child_handler);

for (i = 0; i < N; i++) {
if ((pid[i] = Fork()) == 0) {

Sleep(1);
exit(0); /* Child exits */

}
}
while (ccount > 0) /* Parent spins */

;
} forks.c

whaleshark> ./forks 14
Handler reaped child 23240
Handler reaped child 23241
. . .(hangs)

Correct Signal Handling

This code is incorrect!

Carnegie Mellon

67Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Correct Signal Handling

 Must wait for all terminated child processes
 Put wait in a loop to reap all terminated children

void child_handler2(int sig)
{

int olderrno = errno;
pid_t pid;
while ((pid = wait(NULL)) > 0) {

ccount--;
Sio_puts("Handler reaped child ");
Sio_putl((long)pid);
Sio_puts(" \n");

}
if (errno != ECHILD)

Sio_error("wait error");
errno = olderrno;

} whaleshark> ./forks 15
Handler reaped child 23246
Handler reaped child 23247
Handler reaped child 23248
Handler reaped child 23249
Handler reaped child 23250
whaleshark>

(Here N = 5)

Carnegie Mellon

68Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Synchronizing Flows to Avoid Races

void handler(int sig)
{

int olderrno = errno;
sigset_t mask_all, prev_all;
pid_t pid;

Sigfillset(&mask_all);
while ((pid = waitpid(-1, NULL, 0)) > 0) { /* Reap child */

Sigprocmask(SIG_BLOCK, &mask_all, &prev_all);
deletejob(pid); /* Delete the child from the job list */
Sigprocmask(SIG_SETMASK, &prev_all, NULL);

}
if (errno != ECHILD)

Sio_error("waitpid error");
errno = olderrno;

}

 SIGCHLD handler for a simple shell
 Blocks all signals while running critical code

procmask1.c

Carnegie Mellon

69Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Synchronizing Flows to Avoid Races

int main(int argc, char **argv)
{

int pid;
sigset_t mask_all, prev_all;
int n = N; /* N = 5 */
Sigfillset(&mask_all);
Signal(SIGCHLD, handler);
initjobs(); /* Initialize the job list */

while (n--) {
if ((pid = Fork()) == 0) { /* Child */

Execve("/bin/date", argv, NULL);
}
Sigprocmask(SIG_BLOCK, &mask_all, &prev_all); /* Parent */
addjob(pid); /* Add the child to the job list */
Sigprocmask(SIG_SETMASK, &prev_all, NULL);

}
exit(0);

}

 Simple shell with a subtle synchronization error because it
assumes parent runs before child.

procmask1.c

Carnegie Mellon

70Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Corrected Shell Program without Race
int main(int argc, char **argv)
{

int pid;
sigset_t mask_all, mask_one, prev_one;
int n = N; /* N = 5 */
Sigfillset(&mask_all);
Sigemptyset(&mask_one);
Sigaddset(&mask_one, SIGCHLD);
Signal(SIGCHLD, handler);
initjobs(); /* Initialize the job list */

while (n--) {
Sigprocmask(SIG_BLOCK, &mask_one, &prev_one); /* Block SIGCHLD */
if ((pid = Fork()) == 0) { /* Child process */

Sigprocmask(SIG_SETMASK, &prev_one, NULL); /* Unblock SIGCHLD */
Execve("/bin/date", argv, NULL);

}
Sigprocmask(SIG_BLOCK, &mask_all, NULL); /* Parent process */
addjob(pid); /* Add the child to the job list */
Sigprocmask(SIG_SETMASK, &prev_one, NULL); /* Unblock SIGCHLD */

}
exit(0);

} procmask2.c

Carnegie Mellon

71Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Explicitly Waiting for Signals

volatile sig_atomic_t pid;

void sigchld_handler(int s)
{

int olderrno = errno;
pid = Waitpid(-1, NULL, 0); /* Main is waiting for nonzero pid */
errno = olderrno;

}

void sigint_handler(int s)
{
}

 Handlers for program explicitly waiting for SIGCHLD to arrive.

waitforsignal.c

Carnegie Mellon

72Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Explicitly Waiting for Signals
int main(int argc, char **argv) {

sigset_t mask, prev;
int n = N; /* N = 10 */
Signal(SIGCHLD, sigchld_handler);
Signal(SIGINT, sigint_handler);
Sigemptyset(&mask);
Sigaddset(&mask, SIGCHLD);

while (n--) {
Sigprocmask(SIG_BLOCK, &mask, &prev); /* Block SIGCHLD */
if (Fork() == 0) /* Child */

exit(0);
/* Parent */
pid = 0;
Sigprocmask(SIG_SETMASK, &prev, NULL); /* Unblock SIGCHLD */

/* Wait for SIGCHLD to be received (wasteful!) */
while (!pid)

;
/* Do some work after receiving SIGCHLD */
printf(".");

}
printf("\n");
exit(0);

} waitforsignal.c

Similar to a shell waiting
for a foreground job to
terminate.

Carnegie Mellon

73Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

 Program is correct, but very wasteful
 Program in busy-wait loop

 Possible race condition
 Between checking pid and starting pause, might receive signal

 Safe, but slow
 Will take up to one second to respond

Explicitly Waiting for Signals

while (!pid) /* Race! */
pause();

while (!pid) /* Too slow! */
sleep(1);

while (!pid)
;

Carnegie Mellon

74Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Waiting for Signals with sigsuspend

sigprocmask(SIG_SETMASK, &mask, &prev);
pause();
sigprocmask(SIG_SETMASK, &prev, NULL);

 int sigsuspend(const sigset_t *mask)

 Equivalent to atomic (uninterruptable) version of:

Carnegie Mellon

75Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Waiting for Signals with sigsuspend
int main(int argc, char **argv) {

sigset_t mask, prev;
int n = N; /* N = 10 */
Signal(SIGCHLD, sigchld_handler);
Signal(SIGINT, sigint_handler);
Sigemptyset(&mask);
Sigaddset(&mask, SIGCHLD);
while (n--) {

Sigprocmask(SIG_BLOCK, &mask, &prev); /* Block SIGCHLD */
if (Fork() == 0) /* Child */

exit(0);

/* Wait for SIGCHLD to be received */
pid = 0;
while (!pid)

Sigsuspend(&prev);
/* Optionally unblock SIGCHLD */
Sigprocmask(SIG_SETMASK, &prev, NULL);
/* Do some work after receiving SIGCHLD */
printf(".");

}
printf("\n");
exit(0);

} sigsuspend.c

Carnegie Mellon

76Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary
 Signals provide process-level exception handling
 Can generate from user programs
 Can define effect by declaring signal handler
 Be very careful when writing signal handlers

Carnegie Mellon

77Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Additional slides

Carnegie Mellon

78Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Nonlocal Jumps: setjmp/longjmp

 Powerful (but dangerous) user-level mechanism for
transferring control to an arbitrary location
 Controlled to way to break the procedure call / return discipline
 Useful for error recovery and signal handling

 int setjmp(jmp_buf j)
 Must be called before longjmp
 Identifies a return site for a subsequent longjmp
 Called once, returns one or more times

 Implementation:
 Remember where you are by storing the current register context,

stack pointer, and PC value in jmp_buf
 Return 0

Carnegie Mellon

79Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

setjmp/longjmp (cont)

 void longjmp(jmp_buf j, int i)
 Meaning:

 return from the setjmp remembered by jump buffer j again ...
 … this time returning i instead of 0

 Called after setjmp
 Called once, but never returns

 longjmp Implementation:
 Restore register context (stack pointer, base pointer, PC value) from

jump buffer j
 Set %eax (the return value) to i
 Jump to the location indicated by the PC stored in jump buf j

Carnegie Mellon

80Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

setjmp/longjmp Example

 Goal: return directly to original caller from a deeply-
nested function

/* Deeply nested function foo */
void foo(void)
{

if (error1)
longjmp(buf, 1);

bar();
}

void bar(void)
{

if (error2)
longjmp(buf, 2);

}

Carnegie Mellon

81Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

jmp_buf buf;

int error1 = 0;
int error2 = 1;

void foo(void), bar(void);

int main()
{

switch(setjmp(buf)) {
case 0:

foo();
break;

case 1:
printf("Detected an error1 condition in foo\n");
break;

case 2:
printf("Detected an error2 condition in foo\n");
break;

default:
printf("Unknown error condition in foo\n");

}
exit(0);

}

setjmp/longjmp
Example (cont)

Carnegie Mellon

82Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Limitations of Nonlocal Jumps
 Works within stack discipline
 Can only long jump to environment of function that has been called

but not yet completed
jmp_buf env;

P1()
{

if (setjmp(env)) {
/* Long Jump to here */

} else {
P2();

}
}

P2()
{ . . . P2(); . . . P3(); }

P3()
{

longjmp(env, 1);
}

P1

P2

P2

P2

P3

env
P1

Before longjmp After longjmp

Carnegie Mellon

83Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Limitations of Long Jumps (cont.)
 Works within stack discipline
 Can only long jump to environment of function that has been called

but not yet completed

jmp_buf env;

P1()
{

P2(); P3();
}

P2()
{

if (setjmp(env)) {
/* Long Jump to here */

}
}

P3()
{

longjmp(env, 1);
}

env

P1

P2

At setjmp

P1

P3
env

At longjmp

X

P1

P2

P2 returns

env
X

Carnegie Mellon

84Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Putting It All Together: A Program
That Restarts Itself When ctrl-c’d
#include "csapp.h"

sigjmp_buf buf;

void handler(int sig)
{

siglongjmp(buf, 1);
}

int main()
{

if (!sigsetjmp(buf, 1)) {
Signal(SIGINT, handler);
Sio_puts("starting\n");

}
else

Sio_puts("restarting\n");

while(1) {
Sleep(1);
Sio_puts("processing...\n");

}
exit(0); /* Control never reaches here */

} restart.c

greatwhite> ./restart
starting
processing...
processing...
processing...
restarting
processing...
processing...
restarting
processing...
processing...
processing...

Ctrl-c

Ctrl-c

	Slide Number 1
	Exceptional Control Flow: Signals��18-213/18-613: Introduction to Computer Systems�18th Lecture, November 3, 2022
	Announcements
	Reaping Child Processes
	Zombie�Example
	wait: Synchronizing with Children
	wait: Synchronizing with Children
	wait: Synchronizing with Children
	Another wait Example
	waitpid: Waiting for a Specific Process
	execve: Loading and Running Programs
	execve Example
	Structure of �the stack when a new program starts
	The execve Function Revisited
	Exceptions & Processes - Summary
	Today
	Linux Process Hierarchy
	Shell Programs
	Simple Shell Example
	Simple Shell Implementation
	Simple Shell eval Function
	Simple Shell eval Function
	Simple Shell eval Function
	Simple Shell eval Function
	Simple Shell eval Function
	Simple Shell eval Function
	Simple Shell eval Function
	Simple Shell eval Function
	Problem with Simple Shell Example
	ECF to the Rescue!
	Quiz Time!
	Today
	 (partial) Taxonomy
	Signals
	Signal Concepts: Sending a Signal
	Signal Concepts: Sending a Signal
	Signal Concepts: Sending a Signal
	Signal Concepts: Sending a Signal
	Signal Concepts: Sending a Signal
	Signal Concepts: Sending a Signal
	Signal Concepts: Receiving a Signal
	Signal Concepts: Pending and Blocked Signals
	Signal Concepts: Pending/Blocked Bits	
	Signal Concepts: Sending a Signal
	Sending Signals: Process Groups
	Sending Signals with /bin/kill Program
	Sending Signals from the Keyboard
	Example of ctrl-c and ctrl-z
	Sending Signals with kill Function
	Receiving Signals
	Receiving Signals
	Default Actions
	Installing Signal Handlers
	Signal Handling Example
	Signals Handlers as Concurrent Flows
	Another View of Signal Handlers as Concurrent Flows
	Nested Signal Handlers	
	Blocking and Unblocking Signals	
	Temporarily Blocking Signals
	Safe Signal Handling
	Guidelines for Writing Safe Handlers	
	Async-Signal-Safety	
	Safe Formatted Output: Option #1
	Safe Formatted Output: Option #2
	Correct Signal Handling
	Correct Signal Handling
	Synchronizing Flows to Avoid Races
	Synchronizing Flows to Avoid Races
	Corrected Shell Program without Race
	Explicitly Waiting for Signals
	Explicitly Waiting for Signals
	Explicitly Waiting for Signals
	Waiting for Signals with sigsuspend
	Waiting for Signals with sigsuspend
	Summary
	Additional slides
	Nonlocal Jumps: setjmp/longjmp
	setjmp/longjmp (cont)
	setjmp/longjmp Example
	setjmp/longjmp Example (cont)
	Limitations of Nonlocal Jumps
	Limitations of Long Jumps (cont.)
	Putting It All Together: A Program �That Restarts Itself When ctrl-c’d

