Carnegie Mellon

w.

G T e T = A | e 1
15-213 i
it oiian =l s

o o A it it ST ~ay 13-5R :

14-513

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1



Carnegie Mellon
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18-213/18-613: Introduction to Computer Systems
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Carnegie Mellon

Announcements

m Lab 7 (proxylab) due Fri Dec 9 (last turn-in: Sat Dec 10)

m Thurs Dec 8 Lecture: Future of Computing

= Guest lectures by 3 Ph.D. students highlighting the latest breakthroughs
in systems research

m Final Exam Review, Wed Dec 14, time TBD
" Room TBD or over Zoom

m Final Exam, Fri Dec 16, 5:30-8:30 pm ET
= Pittsburgh: TEP 2610, 2611, 2612, 2700, 2701, 2702
= SV:TBD
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Performance Realities

m There’s more to performance than asymptotic complexity
m Constant factors matter too!

= Easily see 10:1 performance range depending on how code is written
= Must optimize at multiple levels:
= algorithm, data representations, procedures, and loops

m Must understand system to optimize performance
" How programs are compiled and executed
" How modern processors + memory systems operate
= How to measure program performance and identify bottlenecks

= How to improve performance without destroying code modularity
and generality
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Optimizing Compilers

m Provide efficient mapping of program to machine
= register allocation
= code selection and ordering (scheduling)
= dead code elimination
= eliminating minor inefficiencies

m Don’t (usually) improve asymptotic efficiency
" up to programmer to select best overall algorithm
= big-O savings are (often) more important than constant factors
= but constant factors also matter

m Have difficulty overcoming “optimization blockers”
= potential procedure side-effects
= potential memory aliasing
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Today

m Generally Useful Optimizations CSAPP 5.1

" Code motion/precomputation
® Strength reduction
" Sharing of common subexpressions

= Example: Bubblesort

m Optimization Blockers CSAPP 5.1

® Procedure calls

" Memory aliasing
m Exploiting Instruction-Level Parallelism CSAPP 5.2-5.10
m Dealing with Conditionals CSAPP 5.11
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m Rear Admiral Grace Hopper
(1906-1992)

= |nvented first compiler in 1951
(technically it was a linker)

= Coined “compiler” (and “bug”)

= Compiled for Harvard Mark |

= Eventually led to COBOL
(which ran the world for years)

= “] decided data processors ought to
be able to write their programs in
English, and the computers would
translate them into machine code”
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Generally Useful Optimizations

m Optimizations that you or the compiler should do regardless
of processor / compiler

m Code Motion
= Reduce frequency with which computation performed

= |f it will always produce same result
= Especially moving code out of loop

void set_row(double *a, double *b,
long i, long n)

long j;
int ni = n*i;

{
long j;
for (j = 0; j < n; J++)

a[n*i+j] = b[]];

for (j = 0; j < n; j++)
a[ni+j] = b[3Jjl]’
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Compiler-Generated Code Motion (-01)

void set row(double *a, double *b,
long i, long n)
{
long j;
for (j = 0; j < n; j++)
a[n*i+j] = b[]j];

set_row:

srcx,

L1

$rcx,

(%$rdi, %$rdx,8), %rdx
$0, %eax

(%rsi, %rax,8), %xmmO
$xmm0, (%rdx,%rax,8)
$1, %rax

$rcx, %rax

.L3
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long j;

long ni =

double *rowp = a+ni;

for (j = 0; j < n; J++)
*rowp++ = b[]];

Test n

If <= 0, goto done
ni = n¥*i

rowp = A + ni*8
j=20

loop:

t = b[j]
M[A+ni*8 + j*8]
J++

j:n

if '=, goto loop
done:

3 HH I HH I H R



Strength Reduction

= Replace costly operation with simpler one
= Shift, add instead of multiply or divide
16*x WP x << 4
= Utility is machine dependent
= Depends on cost of multiply or divide instruction
— Intel Nehalem: integer multiply takes 3 CPU cycles, add is 1 cycle?!

= Recognize sequence of products

for (i = 0; i < n; i++) {
int ni = n¥*ji;
for (J = 0; j < n; j++)

alni + j] = b[jl;

'https:/lwww.agner.org/optimize/instruction_tables.pdf
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Share Common Subexpressions

= Reuse portions of expressions
= GCCwill do this with -01

/* Sum neighbors of i,j */ long inj = i*n + j;

up = val[(i-1)*n + J ]; up = val[inj - n];

down = wval[(i+l)*n + j 1; down = wval[inj + n];

left = wval[i*n + j-11; left = wvall[inj - 1];

right = val[i*n + j+1]; right = val[inj + 1];

sum = up + down + left + right; sum = up + down + left + right;
3 multiplications: i*n, (i-1) *n, (i+1) *n 1 multiplication: i*n

leaq 1(%rsi), %rax # i+l imulqg %$rcx, %rsi # i*n

leag -1(%rsi), %r8 # i-1 addqg $rdx, %$rsi # i*n+j

imulg %rcx, %rsi # i*n movq $rsi, %Srax # i*n+j

imulg %rcx, %$rax # (i+l)*n subg $rcx, %rax # i*n+j-n

imulg %rcx, %r8 # (i-1)*n leaq ($rsi,%rcx), %rcx # i*n+j+n

addgq $rdx, %rsi # i*n+j

addg $rdx, %$rax # (i+1) *n+j

addg $rdx, %r8 # (i-1) *n+j
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Optimization Example: Bubblesort

m Bubblesort program that sorts an array A that is allocated
in static storage:
= an element of A requires four bytes
= elements of A are numbered 1 through n (n is a variable)
= A[3j]isinlocation &A+4* (j-1)

for (i = n-1; i > 1; i--) {
for (j = 1; j <= 1i; j++)
if (A[j] > A[j+1]) {
temp = A[]j];

A[3] = A[j+1];
A[j+1l] = temp;
}
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Translated (Pseudo) Code

i := n-1 t8 := j-1
L5: if i<l goto 1Ll t9 := 4*t8

j =1 temp := A[t9] // temp:=A[j]
L4: if j>i goto L2 tl0 := j+1

tl := j-1 tll:= t10-1

t2 = 4*tl tl2 := 4*tl1l

t3 := A[t2] // A[J] tl3 := A[tl2] // A[j+1]

td := j+1 tld := j-1

t5 = t4-1 tl5 := 4*tl4

t6 := 4*t5 A[tl5] := t13 // A[j]:=A[j+1]

t7 := A[t6] // A[j+1] tl6é := j+1

if t3<=t7 goto L3 tl7 := tle6-1

t1l8 := 4*tl7

for (i = n-1; i >= 1; i--) { A[tl8]:=temp // A[j+1]:=temp
for (j = 1; j <= i; j++) L3: j := j+l
if (A[31 > A[j+1]) goto L4
temp = A[j]; L2: i := i-1 .

A[j] = A[3+1]; goto L5 Instructions

. — . Ll: .
A[j+1] = temp; 29 in outer loop

}
25 in inner loop
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Redundancy in Address Calculation

r N
i := n-1 t8 :=j-1
L5: if i<1 goto 11 t9 := 4*t8
j :=1 temp := A[t_]_< // temp:=A[7j]
L4: if j>i goto L2 t1l0 := j+1
tl = j-1 tll:= t10-1
t2 = 4*tl (t1l2 := 4*t11l )
£3 := A[t2] // Alj] tl3 := A[t12] // A[j+1]
td := j+1 (t14 := j-1
t5 = t4-1 tl5 := 4*tl4
t6 := 4*t5 (A[t15] := €13 // A[j]:=A[J+1]
t7 := A[t6] // A[j+1] (t16 := j+1 )
if t3<=t7 goto L3 tl7 := tle6-1
tl8 := 4*tl7
\A[tl18] :=temp ) // A[j+1]:=temp

L3: j := j+1
goto L4
L2: 1 :=1i-1
goto L5
Ll:
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Redundancy Removed

i := n-1 t8 :=j-1
L5: if i<l goto Ll t9 := 4*t8

j :=1 temp := A[t9] // temp:=A[7j]
L4: if j>i goto L2 (t12 L= 4*3’)

tl := j-1 tl3 := A[tl1l2] // A[j+1]

t2 := 4%tl (A[t9]:= 13 ) // A[j]:=A[j+1]

t3 := A[t2] // A[5] (:A[t12]:=temé) // A[j+1] :=temp

(k6 := 4*3) L3: j := 3+1

t7 := A[t6] // A[j+1] goto L4

if t3<=t7 goto L3 L2: i :=1i-1

goto LS

Ll:

Instructions
20 in outer loop

16 in inner loop
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More Redundancy

i := n-1 /Eé :=j-1 )
L5: if i<l goto L1 t9 := 4*t8

j =1 temp := A[t9]|// temp:=A[7]
L4: if j>i goto L2 t1l2 := 4%*j

tl := j-1 tl3 := A[tl2]|// A[j+1]

t2 := 4*tl A[t9]:= t13 // A[j]:=A[j+1]

t3 := A[t2] // A[j] \é{tlZ]:=temE/‘//.A[j+1]:=temp

t6 := 4%*j L3: j := j+1

t7 := A[t6] // A[j+1] goto L4

if t3<=t7 goto L3 L2: i := 1i-1

goto L5

Ll:
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Redundancy Removed

i := n-1 [A[t2] = 7 ] // A[F] :=A[j+1]

L5: if i<l goto Ll A[t6] := t3 // A[j+1]:=old A[j]
j =1
L4: if j>i goto L2 L3: j := j+1
tl = j-1 goto L4
t2 = 4*tl L2: i := i-1
t3 := A[t2] // old A[j] goto L5
t6 = 4*j Ll:
t7 := A[t6] // A[j+1]

if t3<=t7 goto L3

Instructions
15 in outer loop

11 in inner loop
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Redundancy in Loops

i := n-1
L5: if i<l goto L1
fj =1 )
L4:| if j>i goto L2
tl = j-1
\t2 = 4*tl )
t3 := A[t2] // A[F]
t6 := 4%*j
t7 = A[t6] // A[j+1]
if t3<=t7 goto L3
A[t2] := t7
A[t6] := t3
L3:] J := j+1
goto L4
L2: i := 1i-1
goto LS

Ll1:
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Redundancy Eliminated

i := n-1 i := n-1
L5: if i<l goto L1 L5: if i<l goto L1l
(3 = 1 ™ (t2 := 0 )
L4:] if j>i goto L2 t6 := 4
tl = j-1 t1l9 := 4*i
\t2 = 4*tl ) L4:\}f t6>t1l9 goto sz
t3 := A[t2] // Al[j] t3 := A[t2]
t6 = 4% t7 := A[t6]
t7 := A[t6] // A[j+1] if t3<=t7 goto L3
if t3<=t7 goto L3 A[t2] := t7
A[t2] := t7 A[t6] := t3
A[t6] := t3 L3:[t2 := t2+4
L3:| jJ := j+1 [tG := t6+4 ]
goto L4 goto L4
L2: i := 1i-1 L2: i := i-1
goto L5 goto L5

Ll1: Ll1l:
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Final Pseudo Code (after strength reduction)

i := n-1

L5: if i<l goto Ll Instructions
t2 := 0 Before Optimizations
t6 := 4 29 in outer loop

tl9 =i << 2
L4: if t6>tl9 goto L2

25 in inner loop

t3 := A[t2]
t7 := A[t6 .
_ 6] Instructions
if t3<=t7 goto L3 L. .
A[t2] := t7 After Optimizations
A[t6] := t3 15 in outer loop
L3: t2 := t2+d 9 in inner loop
t6 := t6+4
goto L4
L2: i := i-1 * These were Machine-Independent Optimizations.
goto L5 * Will be followed by Machine-Dependent Optimizations,
Ll: including allocating temporaries to registers,

converting to assembly code
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Today

m Generally Useful Optimizations
= Code motion/precomputation
® Strength reduction
® Sharing of common subexpressions

= Example: Bubblesort

m Optimization Blockers
" Procedure calls

" Memory aliasing
m Exploiting Instruction-Level Parallelism
m Dealing with Conditionals
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m John Backus (1924-2007)

= Led team at IBM invented the
first commercially available
compiler in 1957

= Compiled FORTRAN code for
the IBM 704 computer

= FORTRAN still in use today for
high performance code

= “Much of my work has come
from being lazy. | didn't like
writing programs, and so,
when | was working on the
IBM 701, | started work on a
programming system to make
it easier to write programs”
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Limitations of Optimizing Compilers

m Operate under fundamental constraint
" Must not cause any change in program behavior
=  Often prevents optimizations that affect only “edge case” behavior

m Behavior obvious to the programmer is not obvious to compiler
= e.g., Data range may be more limited than types suggest (short vs. int)

m Most analysis is only within a procedure
=  Whole-program analysis is usually too expensive

= Sometimes compiler does interprocedural analysis within a file (hew GCC)

m Most analysis is based only on static information
=  Compiler has difficulty anticipating run-time inputs

m When in doubt, the compiler must be conservative
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Optimization Blocker #1: Procedure Calls

m Procedure to Convert String to Lower Case

void lowerl (char *s)
{
size t 1i;
for (i = 0; 1 < strlen(s); i++)
if (s[i] >= 'A' && s[i] <= 'Z')
s[i] -= ('A'" - 'a');
}

= Extracted from 213 lab submissions
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Lower Case Conversion Performance

250
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String length

CPU seconds

= Time quadruples when double string length
= (Quadratic performance
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Calling Strlen

/* My version of strlen */

void lowerl (char *s) size t strlen(const char *s)
{ {

size t i; size t length = 0;

for (i = 0; 1 < strlen(s); i++) while (*s !'= '\0') {

if (s[i] >= 'A' && s++;
s[i] <= 'Z'") length++;
s[i] -= ('A' - 'a'); }
} return length;
}

m Strlen performance

Only way to determine length of string is to scan its entire length, looking for
null character.

m Overall performance, string of length N
= N calls to strlen (called every time through the loop)
= Requiretimes N, N-1, N-2, ..., 1
= Qverall O(N?) performance
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Improving Performance

void lower2 (char *s)
{
size t 1i;
size t len = strlen(s);
for (i = 0; i < len; i++)
if (s[i] >= 'A' && s[i] <= 'Z"')
s[i] -= ('A' - 'a');

" Move call to strlen outside of loop
= Legal since result does not change from one iteration to another
"= Form of code motion
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Lower Case Conversion Performance
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= Time doubles when double string length
" Linear performance of lower2
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Optimization Blocker: Procedure Calls

m  Why couldn’t compiler move strlen out of inner loop?
" Procedure may have side effects
= Alters global state each time called

" Function may not return same value for given arguments

= Depends on other parts of global state
» Procedure lowerl could interact with strlen

m Warning:
= Compiler may treat procedure call /* Alternative strlen */
as a black box size t lencnt = 0;
= Weak optimizations near them size_t strlen(const char *s)
{
] size t length = 0;
m Remedies: while (*s !'= '\0') {
= Use of inline functions s++; length++;
= GCC does this with —01 }
— Within single file lencnt += length;
, return length;
"= Do your own code motion )
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Optimization Blocker #2: Memory Aliasing

/* Sum rows of n X n matrix a
and store in vector b */
void sum rowsl (double *a, double *b, long n) {
long i, j;
for (i =0; i
b[i] = 0;
for (J = 0; j < n; j++)
b[i] += a[i*n + j];

< n; i++) {

# sum rowsl inner loop
.L4:

movsd (%$rsi,%rax,8), %$xmmO # FP load
addsd ($rdi) , %$xmmO # FP add
movsd $xmm0, (%rsi,%rax,8) # FP store
addqgq $8, %rdi

cmpq rcx, %rdi

jne .L4

" Code updatesb[i] on every iteration

= Why couldn’t compiler optimize this away?
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Memory Aliasing

/* Sum rows is of n X n matrix a
and store in vector b */
void sum rowsl (double *a, double *b, long n) {
long i, j;
for (i = 0; i < n; i++) {

b[i] = 0;
for (jJ = 0; j < n; j++)
b[i] += a[i*n + j];

Value of B:

double A[9] = double A[9] = init: [4, 8, 16]
{ 0, 1/ 2/ { 0, 1/ 2/
4, 8, 16, 3, 22, 224,

= 0: [3, 8, 16
32, 64, 128}; 32, 64, 128}; [ ]

I

double B[3] = A+3; i=1: [3, 22, 16]

= 2: [3, 22, 224]

sum rowsl(A, B, 3);

I

" Code updatesb[i] on every iteration

= Must consider possibility that these updates will affect program behavior

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31



Carnegie Mellon

Removing Aliasing

/* Sum rows is of n X n matrix a
and store in vector b */
void sum rows2 (double *a, double *b, long n) {
long i, j;
for (i = 0; i < n; i++) {
double val = 0;
for (j = 0; j < n; j++)
val += a[i*n + j];
b[i] = wval;

# sum rows2 inner loop
.L10:

addsd ($rdi) , %$xmmO
addq $8, %rdi

cmpgq $rax, %rdi
jne .L10

# FP load + add

No need to store intermediate results
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Optimization Blocker: Memory Aliasing

m Aliasing
= Two different memory references specify single location
= Easy to have happenin C
= Since allowed to do address arithmetic
= Direct access to storage structures
= Get in habit of introducing local variables
= Accumulating within loops
= Your way of telling compiler not to check for aliasing
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Today

m Generally Useful Optimizations
= Code motion/precomputation
= Strength reduction
® Sharing of common subexpressions
= Example: Bubblesort

m Optimization Blockers
" Procedure calls
" Memory aliasing

m Exploiting Instruction-Level Parallelism
m Dealing with Conditionals
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m Fran Allen (1932-2020)
= Pioneer of many optimizing
compilation techniques

= Wrote a paper simply called
“Program Optimization” in 1966

= “This paper introduced the use
of graph-theoretic structures to
encode program content in order
to automatically and efficiently
derive relationships and identify
opportunities for optimization”

= First woman to win the ACM
Turing Award (the “Nobel Prize
of Computer Science”), in 2006
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Exploiting Instruction-Level Parallelism

m Need general understanding of modern processor design
= Hardware can execute multiple instructions in parallel

m Performance limited by data dependencies

m Simple transformations can cause big speedups
= Compilers often cannot make these transformations
= Lack of associativity and distributivity in floating-point arithmetic
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Benchmark Example: Data Type for Vectors

/* data structure for wvectors */

typedef struct{ len 0 1 len-1
size t len;

data t *data; data iy
} vec;
/* retrieve vector element

m Data Types and store at val */

= Use different declarations int get vec element

fordata_ﬁ. { (*vec v, size t idx, data_t *val)

" int if (idx >= v->len)

" long return O;

= float *val = v->data[idx];

return 1;
" double }
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Benchmark Computation

void combinel (vec_ptr v, data t *dest)
{
long int i; Compute sum or
*dest = IDENT: product of vector
for (i = 0; i < vec length(v); i++) { | elements
data t val;
get vec element(v, i, &val);
*dest = *dest OP wval;
}
}
m Data Types m Operations
® Use different declarations = Use different definitions of
fordata_t OP and IDENT
" int = + /0
" long = % /1]
" float

" double
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Cycles Per Element (CPE)

m Convenient way to express performance of program that operates on
vectors or lists

m Length=n
m In our case: CPE = cycles per OP
m Cycles = CPE*n + Overhead

= CPE is slope of line

2500
2000
psuml
Slope = 9.0
1500
()]
Q
(8]
>
O 1000
/ psum2
Slope = 6.0
500 P
0 T T T
0 50 100 150 200
Elements
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Benchmark Performance

void combinel (vec_ptr v, data t *dest)
{
long int i; Compute sum or
*dest = IDENT: product of vector
for (i = 0; i < vec length(v); i++) { | elements
data t val;
get vec element(v, i, &val);
*dest = *dest OP val;
}
}
Method Integer Double FP
Operation Add Mult Add Mult
Combinel unoptimized 22.68 20.02 19.98 20.18
Combinel -01 10.12 10.12 10.17 11.14
Combinel -03 4.5 4.5 6 7.8

Results in CPE (cycles per element)
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Basic Optimizations

void combined (vec _ptr v, data t *dest)
{

long i;

long length = vec length(v);

data t *d = get vec start(v);

data t t = IDENT;

for (1 = 0; i < length; i++)

t =t OP d[i];
*dest = t;

m Move vec_length out of loop
m Avoid bounds check on each cycle
m Accumulate in temporary
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Effect of Basic Optimizations

void combined (vec _ptr v, data t *dest)
{

long i;

long length = vec length(v);

data t *d = get vec start(v);

data t t = IDENT;

for (1 = 0; i < length; i++)

t =t OP d[i];

*dest = t;
}
Method Integer Double FP
Operation Add Mult Add Mult
Combine1 -0O1 10.12 10.12 10.17 11.14
Combine4 1.27 3.01 3.01 5.01

m Eliminates sources of overhead in loop
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Superscalar Processor

m Definition: A superscalar processor can issue and execute
multiple instructions in one cycle. The instructions are
retrieved from a sequential instruction stream and are
usually scheduled dynamically.

m Benefit: without programming effort, superscalar
processor can take advantage of the instruction level
parallelism that most programs have.

m Most CPUs are superscalar.
" |ntel: since Pentium (1993)
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. . L] e l l
Pipelined Functional Units , ~
Stage 1
long mult eg(long a, long b, long c) { r = w
long pl = a*b; l Stage 2 |
long p2 = a*c; v
long p3 = pl * p2; Stage 3
return p3; \ )
} ;
Stage 1 a*b a*c pl*p2
Stage 2 a*b a*c pl*p2
Stage 3 a*b a*c pl*p2

= Divide computation into stages
= Pass partial computations from stage to stage
= Stage i can start on new computation once values passed to i+1

= E.g., complete 3 multiplications in 7 cycles, even though each
requires 3 cycles
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Quiz Time!

Canvas Quiz: Day 26 — Optimization
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Haswell CPU

m 8 Total Functional Units

m Multiple instructions can execute in parallel
2 load, with address computation
1 store, with address computation

4 integer
2 FP multiply
1 FP add
1 FP divide

m Some instructions take > 1 cycle, but can be pipelined
Instruction Latency Cycles/Issue
Load / Store 4 1
Integer Multiply 3 1
Integer/Long Divide 3-30 3-30
Single/Double FP Multiply 5 1
Single/Double FP Add 3 1
Single/Double FP Divide 3-15 3-15
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x86-64 Compilation of Combine4

m Inner Loop (Case: Integer Multiply)

.L519: # Loop:

imull (%rax,%rdx,4), %ecx # t =t * d[i]

addg $1, %rdx # it++

cmpg %rdx, %rbp # Compare length:i

jg .L519 # If >, goto Loop
Method Integer Double FP
Operation Add Mult Add Mult
Combine4 1.27 3.01 3.01 5.01
Latency Bound 1.00 3.00 3.00 5.00
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Combine4 = Serial Computation (OP = *)

m Computation (length=8)

1d
° (CCCCC((r * d[0]) * 4[1]) * d[2]) * d[3])
d * d[4]) * d[5]) * d[e6]) * d[7])
1
m Sequential dependence
*
d. = Performance: determined by latency of OP
d3
d4
d5
* d6
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Loop Unrolling (2x1)

void unroll2a combine(vec ptr v, data t *dest)
{
long length = vec_length(v);
long limit = length-1;
data_t *d = get _vec_start(v);
data_t x = IDENT;
long 1i;
/* Combine 2 elements at a time */
for (i = 0; i < limit; i+=2) {
x = (x OP d[i]) OP d[i+1];
}
/* Finish any remaining elements */
for (; i < length; i++) {
x = x OP d[1i];
}

*dest = x;

m Perform 2x more useful work per loop iteration
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Effect of Loop Unrolling

Method Integer Double FP

Operation Add Mult Add Mult
Combine4 1.27 3.01 3.01 5.01
Unroll 2x1 1.01 3.01 3.01 5.01
Latency Bound 1.00 3.00 3.00 5.00

m Helps integer add
= Achieves latency bound

X = (x OP d[i]) OP d[i+1];

m Others don’t improve. Why?
= Still sequential dependency
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Loop Unrolling with Separate Accumulators (2x2)

void unroll2a combine(vec ptr v, data t *dest)

{

long length = vec_length(v);
long limit = length-1;
data_t *d = get _vec_start(v);

data_t x0 = IDENT;
data_t x1 = IDENT;
long 1i;

/* Combine 2 elements at a time */
for (i = 0; i < limit; i+=2) {

x0 x0 OP d[i];

x1l = x1 OP d[i+1];
}
/* Finish any remaining elements */
for (; i < length; i++) {

x0 = x0 OP d[i];

}
*dest = x0 OP x1;

}

m Can this change the result of the computation?
m Yes, for FP. Why?
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Effect of Separate Accumulators

Method Integer Double FP
Operation Add Mult Add Mult
Combine4 1.27 3.01 3.01 5.01
Unroll 2x1 1.01 3.01 3.01 5.01
Unroll 2x2
Latency Bound 1.00 3.00 3.00 5.00
Throughput Bound 07.'50 1.00 /1.00 0{0
4 func. units for int +,/ ] - \
2 func. units for load 1 func. unit for FP +
Why Not .25? 3-stage pipelined FP + 2 func. units for FP ¥,

2 func. units for load

* *
m Nearly 2x speedup for Int *, FP +, FP 5-stage pipelined FP *

= Reason: Breaks sequential dependency

x0 = x0 OP d[i];
x1l = x1 OP d[i+1];

= Why is that? (next slide)
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Separate Accumulators

x0 = x0 OP d[i]; m What changed:
x1l = x1 OP d[i+l1l]; "= Two independent “streams” of
operations
1d, 1d,
[JTH éb m Overall Performance
d, d; = N elements, D cycles latency/op

,l * l d _,[_*H d ® Should be (N/2+1)*D cycles:
‘ > CPE = D/2
_,Gi d, _,Gi'] d, = CPE matches prediction!

What Now?
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Unrolling & Accumulating

m ldea: Can choose L Unrolling Factor and K Accumulators

" | must be a multiple of K

m Case: Double *
= Latency bound: 5.00. Throughput bound: 0.50

FP * Unrolling Factor L
K 1 2 3 4 6 8 10 12

. 1 501 501 501 501 501 501 501
S 2 2.51 2.51 2.51
d
S 3 1.67
S
g 4 1.25 1.26
§ 6 0.84 0.88
S 8 0.63

10 0.51

12 0.52
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Achievable Performance

Method Integer Double FP

Operation Add Mult Add Mult
Best 0.54 1.01 1.01 0.52
Latency Bound 1.00 3.00 3.00 5.00
Throughput Bound 0.50 1.00 1.00 0.50

m Limited only by throughput of functional units
m Up to 42X improvement over original, unoptimized code

Can we do even better?
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P rogra m m i ng Wit AVXZ Carnegie Mellon

YMM Registers
B 16 total, each 32 bytes
B 32 single-byte integers

B 16 16-bit integers

B 8 32-bit integers

B 8 single-precision floats

B 4 double-precision floats

B 1 single-precision float

B 1 double-precision float
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SIMD Operations

B SIMD Operations: Single Precision
vaddps Symm0O, Symml, Symml

SymmO
N N N N N N N N
/@\./@\/@\/@\/@\/@\/@\/@\10
Symml
B SIMD Operations: Double Precision
vaddpd SymmO, Symml, 3%ymml
ZymmO

BB B R
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Using Vector Instructions

Method Integer Double FP

Operation Add Mult Add Mult
Scalar Best 0.54 1.01 1.01 0.52
Vector Best 0.06 0.24 0.25 0.16
Latency Bound 0.50 3.00 3.00 5.00
Throughput Bound 0.50 1.00 1.00 0.50
Vec Throughput Bound 0.06 0.12 0.25 0.12

m Make use of AVX Instructions

= Parallel operations on multiple data elements
= See Web Aside OPT:SIMD on CS:APP web page
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Today

m Generally Useful Optimizations
= Code motion/precomputation
® Strength reduction
® Sharing of common subexpressions

= Example: Bubblesort

m Optimization Blockers
" Procedure calls

" Memory aliasing
m Exploiting Instruction-Level Parallelism
m Dealing with Conditionals
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What About Branches?
m Challenge

® |Instruction Control Unit must work well ahead of Execution Unit
to generate enough operations to keep EU busy

404663: mov  $0x0,%eax :}_ :
404668: cmp $rdi) ,%rsi ExeCUtlng
dicpias ggm o AUEES < How to continue?

40466d: mov 0x8 (%$rdi) ,%rax

404685: repz retq

= When encounters conditional branch, cannot reliably determine where to
continue fetching
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Branch Outcomes

= When encounter conditional branch, cannot determine where to continue
fetching

= Branch Taken: Transfer control to branch target
= Branch Not-Taken: Continue with next instruction in sequence
= Cannot resolve until outcome determined by branch/integer unit

404663: mov $0x0, %$eax
404668: cmp $rdi) ,%rsi

Aleblies  3eE e Branch Not-Taken
40466d: mov  0x8(%rdi),%rax ?

Branch Taken

404685: repz retq
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Branch Prediction

m Ildea
= Guess which way branch will go
= Begin executing instructions at predicted position
= But don’t actually modify register or memory data

404663: mov $0x0, $eax
404668: cmp (%$rdi) ,%rsi
40466b: Jjge 404685

40466d: mov  0x8(%rdi),%rax ) Predict Taken

404685: repz retq } Begin
Execution
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Branch Prediction Through Loop

401029: vmulsd (%rdx),%xmmO, $xmmO Assume
40102d: add $0x8, $rdx vector Iength =100
401031: cmp $rax, srdx .
401034: jne 401029 i =98
Predict Taken (OK)
401029: vwvmulsd (%rdx) ,%$xmmO, $xmmO
40102d: add $0x8, $rdx
401031: cmp $rax,srdx .
401034: jne 401029 i =99
E— 7 Predict Taken

401029: vmulsd (%rdx),%xmm0,%xmm0 (Oops) T
40102d: add  $0x8,%rdx T
401031: cmp $rax, srdx Read Executed
401034: Jjne 401029 i=100 invalid

7 location
401029: vmulsd (%rdx) ,%$xmmO, $xmmO
40102d: add  $0x8,%rdx Fetched
401031: cmp $rax,%rdx _L
401034: jne 401029 i=101
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Branch Misprediction Invalidation

401029: vmulsd (%rdx),%xmmO, $xmmO Assume

40102d: add $0x8, $rdx vector length = 100
401031: cmp $rax, srdx .

401034: jne 401029 i =98

Predict Taken (OK)
401029: vmulsd (%rdx) ,%$xmmO, $xmmO

40102d: add $0x8, $rdx

401031: cmp $rax, srdx

401034: djne 401029 i=99
— 7 Predict Taken

401029:  vmulsd (5rdx) . Sxmm0 . Sxmmo \(OOPS)
40102d: add S0x8, $rdx
401031: cmp $rax, srdx
401034: djne 401029 i =100

) r Invalidate

401029 ~vmulsd (&rdx) Sxmm0O SxmmO
—40102d. ___add SO0x8 2rdx
—401031: __cmp Srax Srdx

401034+ 3jne——401029 (=101
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Branch Misprediction Recovery

401029: vmulsd (%rdx) , $xmmO, $xmmO

40102d: add $0x8, $rdx .

401031: cmp  %rax,%rdx I=33 Definitely not taken
401034: Jjne 401029

401036: Jmp 401040 — Reload

401040: vmovsd $xmm0, (%rl2) } Pipeline

m Performance Cost
= Multiple clock cycles on modern processor
= Can be a major performance limiter
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Branch Prediction Numbers

m Default behavior:

= Backwards branches are often loops so predict taken
= Forwards branches are often if so predict not taken

m Predictors average better than 95% accuracy
= Most branches are already predictable.

m Annual branch predictor contests at top Computer
Architecture conferences (2010-2016)

= Metrics: Size of branch predictor tables
Mispredictions per kilo-instruction (MPKI)

= 2016 Winners (https://www.jilp.org/cbp2016/)
= Size 8KB: MPKI=4.1
= Size 64KB: MPKI=3.3
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Summary: Getting High Performance

m Good compiler and flags

m Don’t do anything sub-optimal
= Watch out for hidden algorithmic inefficiencies
= Write compiler-friendly code

= Watch out for optimization blockers:
procedure calls & memory references

= Look carefully at innermost loops (where most work is done)

m Tune code for machine
= Exploit instruction-level parallelism
= Avoid unpredictable branches
= Make code cache friendly
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ADDITIONAL SLIDES
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Loop Unrolling with Reassociation (2x1a)

void unroll2aa combine (vec_ptr v, data_t *dest)
{
long length = vec_length(v);
long limit = length-1;
data_t *d = get _vec_start(v);
data_t x = IDENT;
long 1i;
/* Combine 2 elements at a time */
for (i = 0; i < limit; i+=2) {
X = x OP (d[i] OP d[i+1]);
}
/* Finish any remaining elements */
for (; i < length; i++) {
x = x OP d[i]; Compare to before

x = (x OP d[i]) OP d[i+1];

}

*dest = x;

}

m Can this change the result of the computation?
m Yes, for FP. Why?
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Effect of Reassociation

Method Integer Double FP
Operation Add Mult Add Mult
Combine4 1.27 3.01 3.01 5.01
Unroll 2x1 1.01 3.01 3.01 5.01
Unroll 2x1a 1.01 1.51 1.51 2.51
Latency Bound 1.00 3.00 3.00 5.00
Throughput Bound 07.'50 1.00 /1.00 0{0

4 func. units for int +,/ ] - \

2 func. units for load 1 func. unit for FP +

3-stage pipelined FP + 2 func. units for FP *,

2 func. units for load
5-stage pipelined FP *

Why Not .25?
m Nearly 2x speedup for Int *, FP +, FP *

= Reason: Breaks sequential dependency

x = x OP (d[i] OP d[i+1]);

= Why is that? (next slide)
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Reassociated Computation

X

x OP (d[i] OP d[i+1]); m What changed:

= Ops in the next iteration can be
started early (no dependency)

m Overall Performance

d, d,
E ]d d
1 Ny = N elements, D cycles latency/op
d, d = (N/2+1)*D cycles:
- T CPE = D/2
* d, d,
*

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 73



Carnegie Mellon

Unrolling & Accumulating: Int +

m Case
" |ntel Haswell

" |nteger addition
= Latency bound: 1.00. Throughput bound: 0.50

FP * Unrolling Factor L
K 1 2 3 4 6 8 10 12
1 1.27 1.01 1.01 1.01 1.01 1.01 1.01
g 2 0.81 0.69 0.54
e
= 3 0.74
—
g 4 0.69 1.24
a 6 0.56 0.56
Q
< 8 0.54
10 0.54
12 0.56
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