Carnegie Mellon

w.

G T e T = A | e 1
15-213 i
it oiian =l s

o o A it it ST ~ay 13-5R :

14-513

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1

Carnegie Mellon

Code Optimization

18-213/18-613: Introduction to Computer Systems
26t Lecture, December 6, 2022

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2

Carnegie Mellon

Announcements

m Lab 7 (proxylab) due Fri Dec 9 (last turn-in: Sat Dec 10)

m Thurs Dec 8 Lecture: Future of Computing

= Guest lectures by 3 Ph.D. students highlighting the latest breakthroughs
in systems research

m Final Exam Review, Wed Dec 14, time TBD
" Room TBD or over Zoom

m Final Exam, Fri Dec 16, 5:30-8:30 pm ET
= Pittsburgh: TEP 2610, 2611, 2612, 2700, 2701, 2702
= SV:TBD

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

Performance Realities

m There’s more to performance than asymptotic complexity
m Constant factors matter too!

= Easily see 10:1 performance range depending on how code is written
= Must optimize at multiple levels:
= algorithm, data representations, procedures, and loops

m Must understand system to optimize performance
" How programs are compiled and executed
" How modern processors + memory systems operate
= How to measure program performance and identify bottlenecks

= How to improve performance without destroying code modularity
and generality

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Optimizing Compilers

m Provide efficient mapping of program to machine
= register allocation
= code selection and ordering (scheduling)
= dead code elimination
= eliminating minor inefficiencies

m Don’t (usually) improve asymptotic efficiency
" up to programmer to select best overall algorithm
= big-O savings are (often) more important than constant factors
= but constant factors also matter

m Have difficulty overcoming “optimization blockers”
= potential procedure side-effects
= potential memory aliasing

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5

Carnegie Mellon

Today

m Generally Useful Optimizations CSAPP 5.1

" Code motion/precomputation
® Strength reduction
" Sharing of common subexpressions

= Example: Bubblesort

m Optimization Blockers CSAPP 5.1

® Procedure calls

" Memory aliasing
m Exploiting Instruction-Level Parallelism CSAPP 5.2-5.10
m Dealing with Conditionals CSAPP 5.11

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 6

Carnegie Mellon

m Rear Admiral Grace Hopper
(1906-1992)

= |nvented first compiler in 1951
(technically it was a linker)

= Coined “compiler” (and “bug”)

= Compiled for Harvard Mark |

= Eventually led to COBOL
(which ran the world for years)

= “] decided data processors ought to
be able to write their programs in
English, and the computers would
translate them into machine code”

1S4y i._, i3 Ralﬂ*‘?a "r:[_‘{.,m._p F
I".""."""': 'u.,_ﬂ"lu'”-.}-| o 'L._;.n.JH '
Fiest actual caze bug bein SrEal
rhg e s 's"ta:iiJ.Ld J‘f bl : | {uﬂ

30s claad § g

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7

Carnegie Mellon

Generally Useful Optimizations

m Optimizations that you or the compiler should do regardless
of processor / compiler

m Code Motion
= Reduce frequency with which computation performed

= |f it will always produce same result
= Especially moving code out of loop

void set_row(double *a, double *b,
long i, long n)

long j;
int ni = n*i;

{
long j;
for (j = 0; j < n; J++)

a[n*i+j] = b[]];

for (j = 0; j < n; j++)
a[ni+j] = b[3Jjl]’

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Compiler-Generated Code Motion (-01)

void set row(double *a, double *b,
long i, long n)
{
long j;
for (j = 0; j < n; j++)
a[n*i+j] = b[]j];

set_row:

srcx,

L1

$rcx,

(%$rdi, %$rdx,8), %rdx
$0, %eax

(%rsi, %rax,8), %xmmO
$xmm0, (%rdx,%rax,8)
$1, %rax

$rcx, %rax

.L3

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

long j;

long ni =

double *rowp = a+ni;

for (j = 0; j < n; J++)
*rowp++ = b[]];

Test n

If <= 0, goto done
ni = n¥*i

rowp = A + ni*8
j=20

loop:

t = b[j]
M[A+ni*8 + j*8]
J++

j:n

if '=, goto loop
done:

3 HH I HH I H R

Strength Reduction

= Replace costly operation with simpler one
= Shift, add instead of multiply or divide
16*x WP x << 4
= Utility is machine dependent
= Depends on cost of multiply or divide instruction
— Intel Nehalem: integer multiply takes 3 CPU cycles, add is 1 cycle?!

= Recognize sequence of products

for (i = 0; i < n; i++) {
int ni = n¥*ji;
for (J = 0; j < n; j++)

alni + j] = b[jl;

'https:/lwww.agner.org/optimize/instruction_tables.pdf

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

Share Common Subexpressions

= Reuse portions of expressions
= GCCwill do this with -01

/* Sum neighbors of i,j */ long inj = i*n + j;

up = val[(i-1)*n + J]; up = val[inj - n];

down = wval[(i+l)*n + j 1; down = wval[inj + n];

left = wval[i*n + j-11; left = wvall[inj - 1];

right = val[i*n + j+1]; right = val[inj + 1];

sum = up + down + left + right; sum = up + down + left + right;
3 multiplications: i*n, (i-1) *n, (i+1) *n 1 multiplication: i*n

leaq 1(%rsi), %rax # i+l imulqg %$rcx, %rsi # i*n

leag -1(%rsi), %r8 # i-1 addqg $rdx, %$rsi # i*n+j

imulg %rcx, %rsi # i*n movq $rsi, %Srax # i*n+j

imulg %rcx, %$rax # (i+l)*n subg $rcx, %rax # i*n+j-n

imulg %rcx, %r8 # (i-1)*n leaq ($rsi,%rcx), %rcx # i*n+j+n

addgq $rdx, %rsi # i*n+j

addg $rdx, %$rax # (i+1) *n+j

addg $rdx, %r8 # (i-1) *n+j

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 11

Carnegie Mellon

Optimization Example: Bubblesort

m Bubblesort program that sorts an array A that is allocated
in static storage:
= an element of A requires four bytes
= elements of A are numbered 1 through n (n is a variable)
= A[3j]isinlocation &A+4* (j-1)

for (i = n-1; i > 1; i--) {
for (j = 1; j <= 1i; j++)
if (A[j] > A[j+1]) {
temp = A[]j];

A[3] = A[j+1];
A[j+1l] = temp;
}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

Carnegie Mellon

Translated (Pseudo) Code

i := n-1 t8 := j-1
L5: if i<l goto 1Ll t9 := 4*t8

j =1 temp := A[t9] // temp:=A[j]
L4: if j>i goto L2 tl0 := j+1

tl := j-1 tll:= t10-1

t2 = 4*tl tl2 := 4*tl1l

t3 := A[t2] // A[J] tl3 := A[tl2] // A[j+1]

td := j+1 tld := j-1

t5 = t4-1 tl5 := 4*tl4

t6 := 4*t5 A[tl5] := t13 // A[j]:=A[j+1]

t7 := A[t6] // A[j+1] tl6é := j+1

if t3<=t7 goto L3 tl7 := tle6-1

t1l8 := 4*tl7

for (i = n-1; i >= 1; i--) { A[tl8]:=temp // A[j+1]:=temp
for (j = 1; j <= i; j++) L3: j := j+l
if (A[31 > A[j+1]) goto L4
temp = A[j]; L2: i := i-1 .

A[j] = A[3+1]; goto L5 Instructions

. — . Ll: .
A[j+1] = temp; 29 in outer loop

}
25 in inner loop

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Redundancy in Address Calculation

r N
i := n-1 t8 :=j-1
L5: if i<1 goto 11 t9 := 4*t8
j :=1 temp := A[t_]_< // temp:=A[7j]
L4: if j>i goto L2 t1l0 := j+1
tl = j-1 tll:= t10-1
t2 = 4*tl (t1l2 := 4*t11l)
£3 := A[t2] // Alj] tl3 := A[t12] // A[j+1]
td := j+1 (t14 := j-1
t5 = t4-1 tl5 := 4*tl4
t6 := 4*t5 (A[t15] := €13 // A[j]:=A[J+1]
t7 := A[t6] // A[j+1] (t16 := j+1)
if t3<=t7 goto L3 tl7 := tle6-1
tl8 := 4*tl7
\A[tl18] :=temp) // A[j+1]:=temp

L3: j := j+1
goto L4
L2: 1 :=1i-1
goto L5
Ll:

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14

Carnegie Mellon

Redundancy Removed

i := n-1 t8 :=j-1
L5: if i<l goto Ll t9 := 4*t8

j :=1 temp := A[t9] // temp:=A[7j]
L4: if j>i goto L2 (t12 L= 4*3’)

tl := j-1 tl3 := A[tl1l2] // A[j+1]

t2 := 4%tl (A[t9]:= 13) // A[j]:=A[j+1]

t3 := A[t2] // A[5] (:A[t12]:=temé) // A[j+1] :=temp

(k6 := 4*3) L3: j := 3+1

t7 := A[t6] // A[j+1] goto L4

if t3<=t7 goto L3 L2: i :=1i-1

goto LS

Ll:

Instructions
20 in outer loop

16 in inner loop

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

More Redundancy

i := n-1 /Eé :=j-1)
L5: if i<l goto L1 t9 := 4*t8

j =1 temp := A[t9]|// temp:=A[7]
L4: if j>i goto L2 t1l2 := 4%*j

tl := j-1 tl3 := A[tl2]|// A[j+1]

t2 := 4*tl A[t9]:= t13 // A[j]:=A[j+1]

t3 := A[t2] // A[j] \é{tlZ]:=temE/‘//.A[j+1]:=temp

t6 := 4%*j L3: j := j+1

t7 := A[t6] // A[j+1] goto L4

if t3<=t7 goto L3 L2: i := 1i-1

goto L5

Ll:

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16

Carnegie Mellon

Redundancy Removed

i := n-1 [A[t2] = 7] // A[F] :=A[j+1]

L5: if i<l goto Ll A[t6] := t3 // A[j+1]:=old A[j]
j =1
L4: if j>i goto L2 L3: j := j+1
tl = j-1 goto L4
t2 = 4*tl L2: i := i-1
t3 := A[t2] // old A[j] goto L5
t6 = 4*j Ll:
t7 := A[t6] // A[j+1]

if t3<=t7 goto L3

Instructions
15 in outer loop

11 in inner loop

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Redundancy in Loops

i := n-1
L5: if i<l goto L1
fj =1)
L4:| if j>i goto L2
tl = j-1
\t2 = 4*tl)
t3 := A[t2] // A[F]
t6 := 4%*j
t7 = A[t6] // A[j+1]
if t3<=t7 goto L3
A[t2] := t7
A[t6] := t3
L3:] J := j+1
goto L4
L2: i := 1i-1
goto LS

Ll1:

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

Carnegie Mellon

Redundancy Eliminated

i := n-1 i := n-1
L5: if i<l goto L1 L5: if i<l goto L1l
(3 = 1 ™ (t2 := 0)
L4:] if j>i goto L2 t6 := 4
tl = j-1 t1l9 := 4*i
\t2 = 4*tl) L4:\}f t6>t1l9 goto sz
t3 := A[t2] // Al[j] t3 := A[t2]
t6 = 4% t7 := A[t6]
t7 := A[t6] // A[j+1] if t3<=t7 goto L3
if t3<=t7 goto L3 A[t2] := t7
A[t2] := t7 A[t6] := t3
A[t6] := t3 L3:[t2 := t2+4
L3:| jJ := j+1 [tG := t6+4]
goto L4 goto L4
L2: i := 1i-1 L2: i := i-1
goto L5 goto L5

Ll1: Ll1l:

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19

Carnegie Mellon

Final Pseudo Code (after strength reduction)

i := n-1

L5: if i<l goto Ll Instructions
t2 := 0 Before Optimizations
t6 := 4 29 in outer loop

tl9 =i << 2
L4: if t6>tl9 goto L2

25 in inner loop

t3 := A[t2]
t7 := A[t6 .
_ 6] Instructions
if t3<=t7 goto L3 L. .
A[t2] := t7 After Optimizations
A[t6] := t3 15 in outer loop
L3: t2 := t2+d 9 in inner loop
t6 := t6+4
goto L4
L2: i := i-1 * These were Machine-Independent Optimizations.
goto L5 * Will be followed by Machine-Dependent Optimizations,
Ll: including allocating temporaries to registers,

converting to assembly code

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

Carnegie Mellon

Today

m Generally Useful Optimizations
= Code motion/precomputation
® Strength reduction
® Sharing of common subexpressions

= Example: Bubblesort

m Optimization Blockers
" Procedure calls

" Memory aliasing
m Exploiting Instruction-Level Parallelism
m Dealing with Conditionals

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

Carnegie Mellon

m John Backus (1924-2007)

= Led team at IBM invented the
first commercially available
compiler in 1957

= Compiled FORTRAN code for
the IBM 704 computer

= FORTRAN still in use today for
high performance code

= “Much of my work has come
from being lazy. | didn't like
writing programs, and so,
when | was working on the
IBM 701, | started work on a
programming system to make
it easier to write programs”

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22

Limitations of Optimizing Compilers

m Operate under fundamental constraint
" Must not cause any change in program behavior
= Often prevents optimizations that affect only “edge case” behavior

m Behavior obvious to the programmer is not obvious to compiler
= e.g., Data range may be more limited than types suggest (short vs. int)

m Most analysis is only within a procedure
= Whole-program analysis is usually too expensive

= Sometimes compiler does interprocedural analysis within a file (hew GCC)

m Most analysis is based only on static information
= Compiler has difficulty anticipating run-time inputs

m When in doubt, the compiler must be conservative

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23

Optimization Blocker #1: Procedure Calls

m Procedure to Convert String to Lower Case

void lowerl (char *s)
{
size t 1i;
for (i = 0; 1 < strlen(s); i++)
if (s[i] >= 'A' && s[i] <= 'Z')
s[i] -= ('A'" - 'a');
}

= Extracted from 213 lab submissions

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 24

Lower Case Conversion Performance

250

200

150

100

50
O ’_M ‘ lnwarl

0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000
String length

CPU seconds

= Time quadruples when double string length
= (Quadratic performance

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25

Carnegie Mellon

Calling Strlen

/* My version of strlen */

void lowerl (char *s) size t strlen(const char *s)
{ {

size t i; size t length = 0;

for (i = 0; 1 < strlen(s); i++) while (*s !'= '\0') {

if (s[i] >= 'A' && s++;
s[i] <= 'Z'") length++;
s[i] -= ('A' - 'a'); }
} return length;
}

m Strlen performance

Only way to determine length of string is to scan its entire length, looking for
null character.

m Overall performance, string of length N
= N calls to strlen (called every time through the loop)
= Requiretimes N, N-1, N-2, ..., 1
= Qverall O(N?) performance

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26

Improving Performance

void lower2 (char *s)
{
size t 1i;
size t len = strlen(s);
for (i = 0; i < len; i++)
if (s[i] >= 'A' && s[i] <= 'Z"')
s[i] -= ('A' - 'a');

" Move call to strlen outside of loop
= Legal since result does not change from one iteration to another
"= Form of code motion

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27

Lower Case Conversion Performance

250
200
3
c 150
8 lowerl
O
n
o> 100
[a
(&)
50
lower?2
Ol—l—.-F-’——.:;Iﬁl—v—l—l—l—l—l—v—l—l—l—l—l—v—l—H

0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000
String length

= Time doubles when double string length
" Linear performance of lower2

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28

Optimization Blocker: Procedure Calls

m Why couldn’t compiler move strlen out of inner loop?
" Procedure may have side effects
= Alters global state each time called

" Function may not return same value for given arguments

= Depends on other parts of global state
» Procedure lowerl could interact with strlen

m Warning:
= Compiler may treat procedure call /* Alternative strlen */
as a black box size t lencnt = 0;
= Weak optimizations near them size_t strlen(const char *s)
{
] size t length = 0;
m Remedies: while (*s !'= '\0') {
= Use of inline functions s++; length++;
= GCC does this with —01 }
— Within single file lencnt += length;
, return length;
"= Do your own code motion)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29

Carnegie Mellon

Optimization Blocker #2: Memory Aliasing

/* Sum rows of n X n matrix a
and store in vector b */
void sum rowsl (double *a, double *b, long n) {
long i, j;
for (i =0; i
b[i] = 0;
for (J = 0; j < n; j++)
b[i] += a[i*n + j];

< n; i++) {

sum rowsl inner loop
.L4:

movsd (%$rsi,%rax,8), %$xmmO # FP load
addsd ($rdi) , %$xmmO # FP add
movsd $xmm0, (%rsi,%rax,8) # FP store
addqgq $8, %rdi

cmpq rcx, %rdi

jne .L4

" Code updatesb[i] on every iteration

= Why couldn’t compiler optimize this away?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30

Carnegie Mellon

Memory Aliasing

/* Sum rows is of n X n matrix a
and store in vector b */
void sum rowsl (double *a, double *b, long n) {
long i, j;
for (i = 0; i < n; i++) {

b[i] = 0;
for (jJ = 0; j < n; j++)
b[i] += a[i*n + j];

Value of B:

double A[9] = double A[9] = init: [4, 8, 16]
{ 0, 1/ 2/ { 0, 1/ 2/
4, 8, 16, 3, 22, 224,

= 0: [3, 8, 16
32, 64, 128}; 32, 64, 128}; []

I

double B[3] = A+3; i=1: [3, 22, 16]

= 2: [3, 22, 224]

sum rowsl(A, B, 3);

I

" Code updatesb[i] on every iteration

= Must consider possibility that these updates will affect program behavior

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31

Carnegie Mellon

Removing Aliasing

/* Sum rows is of n X n matrix a
and store in vector b */
void sum rows2 (double *a, double *b, long n) {
long i, j;
for (i = 0; i < n; i++) {
double val = 0;
for (j = 0; j < n; j++)
val += a[i*n + j];
b[i] = wval;

sum rows2 inner loop
.L10:

addsd ($rdi) , %$xmmO
addq $8, %rdi

cmpgq $rax, %rdi
jne .L10

FP load + add

No need to store intermediate results

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32

Optimization Blocker: Memory Aliasing

m Aliasing
= Two different memory references specify single location
= Easy to have happenin C
= Since allowed to do address arithmetic
= Direct access to storage structures
= Get in habit of introducing local variables
= Accumulating within loops
= Your way of telling compiler not to check for aliasing

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33

Carnegie Mellon

Today

m Generally Useful Optimizations
= Code motion/precomputation
= Strength reduction
® Sharing of common subexpressions
= Example: Bubblesort

m Optimization Blockers
" Procedure calls
" Memory aliasing

m Exploiting Instruction-Level Parallelism
m Dealing with Conditionals

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34

Carnegie Mellon

m Fran Allen (1932-2020)
= Pioneer of many optimizing
compilation techniques

= Wrote a paper simply called
“Program Optimization” in 1966

= “This paper introduced the use
of graph-theoretic structures to
encode program content in order
to automatically and efficiently
derive relationships and identify
opportunities for optimization”

= First woman to win the ACM
Turing Award (the “Nobel Prize
of Computer Science”), in 2006

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 35

Carnegie Mellon

Exploiting Instruction-Level Parallelism

m Need general understanding of modern processor design
= Hardware can execute multiple instructions in parallel

m Performance limited by data dependencies

m Simple transformations can cause big speedups
= Compilers often cannot make these transformations
= Lack of associativity and distributivity in floating-point arithmetic

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 36

Carnegie Mellon

Benchmark Example: Data Type for Vectors

/* data structure for wvectors */

typedef struct{ len 0 1 len-1
size t len;

data t *data; data iy
} vec;
/* retrieve vector element

m Data Types and store at val */

= Use different declarations int get vec element

fordata_ﬁ. { (*vec v, size t idx, data_t *val)

" int if (idx >= v->len)

" long return O;

= float *val = v->data[idx];

return 1;
" double }

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 37

Benchmark Computation

void combinel (vec_ptr v, data t *dest)
{
long int i; Compute sum or
*dest = IDENT: product of vector
for (i = 0; i < vec length(v); i++) { | elements
data t val;
get vec element(v, i, &val);
*dest = *dest OP wval;
}
}
m Data Types m Operations
® Use different declarations = Use different definitions of
fordata_t OP and IDENT
" int = + /0
" long = % /1]
" float

" double

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 38

Carnegie Mellon

Cycles Per Element (CPE)

m Convenient way to express performance of program that operates on
vectors or lists

m Length=n
m In our case: CPE = cycles per OP
m Cycles = CPE*n + Overhead

= CPE is slope of line

2500
2000
psuml
Slope = 9.0
1500
()]
Q
(8]
>
O 1000
/ psum2
Slope = 6.0
500 P
0 T T T
0 50 100 150 200
Elements

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 39

Carnegie Mellon

Benchmark Performance

void combinel (vec_ptr v, data t *dest)
{
long int i; Compute sum or
*dest = IDENT: product of vector
for (i = 0; i < vec length(v); i++) { | elements
data t val;
get vec element(v, i, &val);
*dest = *dest OP val;
}
}
Method Integer Double FP
Operation Add Mult Add Mult
Combinel unoptimized 22.68 20.02 19.98 20.18
Combinel -01 10.12 10.12 10.17 11.14
Combinel -03 4.5 4.5 6 7.8

Results in CPE (cycles per element)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 40

Carnegie Mellon

Basic Optimizations

void combined (vec _ptr v, data t *dest)
{

long i;

long length = vec length(v);

data t *d = get vec start(v);

data t t = IDENT;

for (1 = 0; i < length; i++)

t =t OP d[i];
*dest = t;

m Move vec_length out of loop
m Avoid bounds check on each cycle
m Accumulate in temporary

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 41

Carnegie Mellon

Effect of Basic Optimizations

void combined (vec _ptr v, data t *dest)
{

long i;

long length = vec length(v);

data t *d = get vec start(v);

data t t = IDENT;

for (1 = 0; i < length; i++)

t =t OP d[i];

*dest = t;
}
Method Integer Double FP
Operation Add Mult Add Mult
Combine1 -0O1 10.12 10.12 10.17 11.14
Combine4 1.27 3.01 3.01 5.01

m Eliminates sources of overhead in loop

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 42

Modern CPU Design

Carnegie Mellon

Instruction Control

Retirement

Unit
Register
File

Instruction

Fetch Address
Control

_Instructions

Decode

Instruction

Cache

Operations
Register Updates : Prediction OK?
\ 4

Functional

Units

\ 4 \ 4 \ 4 \ 4 \ 4
Operation Results
Addr. Addr.
Data Data
Execution

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

43

Carnegie Mellon

Superscalar Processor

m Definition: A superscalar processor can issue and execute
multiple instructions in one cycle. The instructions are
retrieved from a sequential instruction stream and are
usually scheduled dynamically.

m Benefit: without programming effort, superscalar
processor can take advantage of the instruction level
parallelism that most programs have.

m Most CPUs are superscalar.
" |ntel: since Pentium (1993)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 44

Carnegie Mellon

. . L] e l l
Pipelined Functional Units , ~
Stage 1
long mult eg(long a, long b, long c) { r = w
long pl = a*b; l Stage 2 |
long p2 = a*c; v
long p3 = pl * p2; Stage 3
return p3; \)
} ;
Stage 1 a*b a*c pl*p2
Stage 2 a*b a*c pl*p2
Stage 3 a*b a*c pl*p2

= Divide computation into stages
= Pass partial computations from stage to stage
= Stage i can start on new computation once values passed to i+1

= E.g., complete 3 multiplications in 7 cycles, even though each
requires 3 cycles

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 45

Carnegie Mellon

Quiz Time!

Canvas Quiz: Day 26 — Optimization

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 46

Haswell CPU

m 8 Total Functional Units

m Multiple instructions can execute in parallel
2 load, with address computation
1 store, with address computation

4 integer
2 FP multiply
1 FP add
1 FP divide

m Some instructions take > 1 cycle, but can be pipelined
Instruction Latency Cycles/Issue
Load / Store 4 1
Integer Multiply 3 1
Integer/Long Divide 3-30 3-30
Single/Double FP Multiply 5 1
Single/Double FP Add 3 1
Single/Double FP Divide 3-15 3-15

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 47

x86-64 Compilation of Combine4

m Inner Loop (Case: Integer Multiply)

.L519: # Loop:

imull (%rax,%rdx,4), %ecx # t =t * d[i]

addg $1, %rdx # it++

cmpg %rdx, %rbp # Compare length:i

jg .L519 # If >, goto Loop
Method Integer Double FP
Operation Add Mult Add Mult
Combine4 1.27 3.01 3.01 5.01
Latency Bound 1.00 3.00 3.00 5.00

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 48

Carnegie Mellon

Combine4 = Serial Computation (OP = *)

m Computation (length=8)

1d
° (CCCCC((r * d[0]) * 4[1]) * d[2]) * d[3])
d * d[4]) * d[5]) * d[e6]) * d[7])
1
m Sequential dependence
*
d. = Performance: determined by latency of OP
d3
d4
d5
* d6

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 49

Carnegie Mellon

Loop Unrolling (2x1)

void unroll2a combine(vec ptr v, data t *dest)
{
long length = vec_length(v);
long limit = length-1;
data_t *d = get _vec_start(v);
data_t x = IDENT;
long 1i;
/* Combine 2 elements at a time */
for (i = 0; i < limit; i+=2) {
x = (x OP d[i]) OP d[i+1];
}
/* Finish any remaining elements */
for (; i < length; i++) {
x = x OP d[1i];
}

*dest = x;

m Perform 2x more useful work per loop iteration

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 50

Carnegie Mellon

Effect of Loop Unrolling

Method Integer Double FP

Operation Add Mult Add Mult
Combine4 1.27 3.01 3.01 5.01
Unroll 2x1 1.01 3.01 3.01 5.01
Latency Bound 1.00 3.00 3.00 5.00

m Helps integer add
= Achieves latency bound

X = (x OP d[i]) OP d[i+1];

m Others don’t improve. Why?
= Still sequential dependency

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 51

Loop Unrolling with Separate Accumulators (2x2)

void unroll2a combine(vec ptr v, data t *dest)

{

long length = vec_length(v);
long limit = length-1;
data_t *d = get _vec_start(v);

data_t x0 = IDENT;
data_t x1 = IDENT;
long 1i;

/* Combine 2 elements at a time */
for (i = 0; i < limit; i+=2) {

x0 x0 OP d[i];

x1l = x1 OP d[i+1];
}
/* Finish any remaining elements */
for (; i < length; i++) {

x0 = x0 OP d[i];

}
*dest = x0 OP x1;

}

m Can this change the result of the computation?
m Yes, for FP. Why?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 52

Carnegie Mellon

Effect of Separate Accumulators

Method Integer Double FP
Operation Add Mult Add Mult
Combine4 1.27 3.01 3.01 5.01
Unroll 2x1 1.01 3.01 3.01 5.01
Unroll 2x2
Latency Bound 1.00 3.00 3.00 5.00
Throughput Bound 07.'50 1.00 /1.00 0{0
4 func. units for int +,/] - \
2 func. units for load 1 func. unit for FP +
Why Not .25? 3-stage pipelined FP + 2 func. units for FP ¥,

2 func. units for load

* *
m Nearly 2x speedup for Int *, FP +, FP 5-stage pipelined FP *

= Reason: Breaks sequential dependency

x0 = x0 OP d[i];
x1l = x1 OP d[i+1];

= Why is that? (next slide)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 53

Carnegie Mellon

Separate Accumulators

x0 = x0 OP d[i]; m What changed:
x1l = x1 OP d[i+l1l]; "= Two independent “streams” of
operations
1d, 1d,
[JTH éb m Overall Performance
d, d; = N elements, D cycles latency/op

,l * l d _,[_*H d ® Should be (N/2+1)*D cycles:
‘ > CPE = D/2
_,Gi d, _,Gi'] d, = CPE matches prediction!

What Now?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 54

Carnegie Mellon

Unrolling & Accumulating

m ldea: Can choose L Unrolling Factor and K Accumulators

" | must be a multiple of K

m Case: Double *
= Latency bound: 5.00. Throughput bound: 0.50

FP * Unrolling Factor L
K 1 2 3 4 6 8 10 12

. 1 501 501 501 501 501 501 501
S 2 2.51 2.51 2.51
d
S 3 1.67
S
g 4 1.25 1.26
§ 6 0.84 0.88
S 8 0.63

10 0.51

12 0.52

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 55

Carnegie Mellon

Achievable Performance

Method Integer Double FP

Operation Add Mult Add Mult
Best 0.54 1.01 1.01 0.52
Latency Bound 1.00 3.00 3.00 5.00
Throughput Bound 0.50 1.00 1.00 0.50

m Limited only by throughput of functional units
m Up to 42X improvement over original, unoptimized code

Can we do even better?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 56

P rogra m m i ng Wit AVXZ Carnegie Mellon

YMM Registers
B 16 total, each 32 bytes
B 32 single-byte integers

B 16 16-bit integers

B 8 32-bit integers

B 8 single-precision floats

B 4 double-precision floats

B 1 single-precision float

B 1 double-precision float

Bryant and O Hallaron, Computer Systems: A Programmer s Perspective, 1hird cdition 57

Carnegie Mellon

SIMD Operations

B SIMD Operations: Single Precision
vaddps Symm0O, Symml, Symml

SymmO
N N N N N N N N
/@\./@\/@\/@\/@\/@\/@\/@\10
Symml
B SIMD Operations: Double Precision
vaddpd SymmO, Symml, 3%ymml
ZymmO

BB B R

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 58

Symml

Carnegie Mellon

Using Vector Instructions

Method Integer Double FP

Operation Add Mult Add Mult
Scalar Best 0.54 1.01 1.01 0.52
Vector Best 0.06 0.24 0.25 0.16
Latency Bound 0.50 3.00 3.00 5.00
Throughput Bound 0.50 1.00 1.00 0.50
Vec Throughput Bound 0.06 0.12 0.25 0.12

m Make use of AVX Instructions

= Parallel operations on multiple data elements
= See Web Aside OPT:SIMD on CS:APP web page

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 59

Carnegie Mellon

Today

m Generally Useful Optimizations
= Code motion/precomputation
® Strength reduction
® Sharing of common subexpressions

= Example: Bubblesort

m Optimization Blockers
" Procedure calls

" Memory aliasing
m Exploiting Instruction-Level Parallelism
m Dealing with Conditionals

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 60

Carnegie Mellon

What About Branches?
m Challenge

® |Instruction Control Unit must work well ahead of Execution Unit
to generate enough operations to keep EU busy

404663: mov $0x0,%eax :}_ :
404668: cmp $rdi) ,%rsi ExeCUtlng
dicpias ggm o AUEES < How to continue?

40466d: mov 0x8 (%$rdi) ,%rax

404685: repz retq

= When encounters conditional branch, cannot reliably determine where to
continue fetching

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 61

Modern CPU Design

Carnegie Mellon

Instruction Control

Retirement

Unit
Register
File

Instruction

Fetch Address
Control

_Instructions

Decode

Instruction

Cache

Operations
Register Updates : Prediction OK?
\ 4

Functional

Units

\ 4 \ 4 \ 4 \ 4 \ 4
Operation Results
Addr. Addr.
Data Data
Execution

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

62

Carnegie Mellon

Branch Outcomes

= When encounter conditional branch, cannot determine where to continue
fetching

= Branch Taken: Transfer control to branch target
= Branch Not-Taken: Continue with next instruction in sequence
= Cannot resolve until outcome determined by branch/integer unit

404663: mov $0x0, %$eax
404668: cmp $rdi) ,%rsi

Aleblies 3eE e Branch Not-Taken
40466d: mov 0x8(%rdi),%rax ?

Branch Taken

404685: repz retq

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 63

Carnegie Mellon

Branch Prediction

m Ildea
= Guess which way branch will go
= Begin executing instructions at predicted position
= But don’t actually modify register or memory data

404663: mov $0x0, $eax
404668: cmp (%$rdi) ,%rsi
40466b: Jjge 404685

40466d: mov 0x8(%rdi),%rax) Predict Taken

404685: repz retq } Begin
Execution

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 64

Carnegie Mellon

Branch Prediction Through Loop

401029: vmulsd (%rdx),%xmmO, $xmmO Assume
40102d: add $0x8, $rdx vector Iength =100
401031: cmp $rax, srdx .
401034: jne 401029 i =98
Predict Taken (OK)
401029: vwvmulsd (%rdx) ,%$xmmO, $xmmO
40102d: add $0x8, $rdx
401031: cmp $rax,srdx .
401034: jne 401029 i =99
E— 7 Predict Taken

401029: vmulsd (%rdx),%xmm0,%xmm0 (Oops) T
40102d: add $0x8,%rdx T
401031: cmp $rax, srdx Read Executed
401034: Jjne 401029 i=100 invalid

7 location
401029: vmulsd (%rdx) ,%$xmmO, $xmmO
40102d: add $0x8,%rdx Fetched
401031: cmp $rax,%rdx _L
401034: jne 401029 i=101

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

65

Branch Misprediction Invalidation

401029: vmulsd (%rdx),%xmmO, $xmmO Assume

40102d: add $0x8, $rdx vector length = 100
401031: cmp $rax, srdx .

401034: jne 401029 i =98

Predict Taken (OK)
401029: vmulsd (%rdx) ,%$xmmO, $xmmO

40102d: add $0x8, $rdx

401031: cmp $rax, srdx

401034: djne 401029 i=99
— 7 Predict Taken

401029: vmulsd (5rdx) . Sxmm0 . Sxmmo \(OOPS)
40102d: add S0x8, $rdx
401031: cmp $rax, srdx
401034: djne 401029 i =100

) r Invalidate

401029 ~vmulsd (&rdx) Sxmm0O SxmmO
—40102d. ___add SO0x8 2rdx
—401031: __cmp Srax Srdx

401034+ 3jne——401029 (=101

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 66

Carnegie Mellon

Branch Misprediction Recovery

401029: vmulsd (%rdx) , $xmmO, $xmmO

40102d: add $0x8, $rdx .

401031: cmp %rax,%rdx I=33 Definitely not taken
401034: Jjne 401029

401036: Jmp 401040 — Reload

401040: vmovsd $xmm0, (%rl2) } Pipeline

m Performance Cost
= Multiple clock cycles on modern processor
= Can be a major performance limiter

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 67

Carnegie Mellon

Branch Prediction Numbers

m Default behavior:

= Backwards branches are often loops so predict taken
= Forwards branches are often if so predict not taken

m Predictors average better than 95% accuracy
= Most branches are already predictable.

m Annual branch predictor contests at top Computer
Architecture conferences (2010-2016)

= Metrics: Size of branch predictor tables
Mispredictions per kilo-instruction (MPKI)

= 2016 Winners (https://www.jilp.org/cbp2016/)
= Size 8KB: MPKI=4.1
= Size 64KB: MPKI=3.3

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 68

https://www.jilp.org/cbp2016/

Carnegie Mellon

Summary: Getting High Performance

m Good compiler and flags

m Don’t do anything sub-optimal
= Watch out for hidden algorithmic inefficiencies
= Write compiler-friendly code

= Watch out for optimization blockers:
procedure calls & memory references

= Look carefully at innermost loops (where most work is done)

m Tune code for machine
= Exploit instruction-level parallelism
= Avoid unpredictable branches
= Make code cache friendly

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 69

Carnegie Mellon

ADDITIONAL SLIDES

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 70

Carnegie Mellon

Loop Unrolling with Reassociation (2x1a)

void unroll2aa combine (vec_ptr v, data_t *dest)
{
long length = vec_length(v);
long limit = length-1;
data_t *d = get _vec_start(v);
data_t x = IDENT;
long 1i;
/* Combine 2 elements at a time */
for (i = 0; i < limit; i+=2) {
X = x OP (d[i] OP d[i+1]);
}
/* Finish any remaining elements */
for (; i < length; i++) {
x = x OP d[i]; Compare to before

x = (x OP d[i]) OP d[i+1];

}

*dest = x;

}

m Can this change the result of the computation?
m Yes, for FP. Why?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 71

Carnegie Mellon

Effect of Reassociation

Method Integer Double FP
Operation Add Mult Add Mult
Combine4 1.27 3.01 3.01 5.01
Unroll 2x1 1.01 3.01 3.01 5.01
Unroll 2x1a 1.01 1.51 1.51 2.51
Latency Bound 1.00 3.00 3.00 5.00
Throughput Bound 07.'50 1.00 /1.00 0{0

4 func. units for int +,/] - \

2 func. units for load 1 func. unit for FP +

3-stage pipelined FP + 2 func. units for FP *,

2 func. units for load
5-stage pipelined FP *

Why Not .25?
m Nearly 2x speedup for Int *, FP +, FP *

= Reason: Breaks sequential dependency

x = x OP (d[i] OP d[i+1]);

= Why is that? (next slide)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 72

Carnegie Mellon

Reassociated Computation

X

x OP (d[i] OP d[i+1]); m What changed:

= Ops in the next iteration can be
started early (no dependency)

m Overall Performance

d, d,
E]d d
1 Ny = N elements, D cycles latency/op
d, d = (N/2+1)*D cycles:
- T CPE = D/2
* d, d,
*

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 73

Carnegie Mellon

Unrolling & Accumulating: Int +

m Case
" |ntel Haswell

" |nteger addition
= Latency bound: 1.00. Throughput bound: 0.50

FP * Unrolling Factor L
K 1 2 3 4 6 8 10 12
1 1.27 1.01 1.01 1.01 1.01 1.01 1.01
g 2 0.81 0.69 0.54
e
= 3 0.74
—
g 4 0.69 1.24
a 6 0.56 0.56
Q
< 8 0.54
10 0.54
12 0.56

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 74

	Slide Number 1
	Code Optimization��18-213/18-613: Introduction to Computer Systems�26th Lecture, December 6, 2022
	Announcements
	Performance Realities
	Optimizing Compilers
	Today
	Slide Number 7
	 Generally Useful Optimizations
	Compiler-Generated Code Motion (-O1)
	Strength Reduction
	Share Common Subexpressions
	Optimization Example: Bubblesort
	Translated (Pseudo) Code
	Redundancy in Address Calculation
	Redundancy Removed
	More Redundancy
	Redundancy Removed
	Redundancy in Loops
	Redundancy Eliminated
	Final Pseudo Code (after strength reduction)
	Today
	Slide Number 22
	Limitations of Optimizing Compilers
	Optimization Blocker #1: Procedure Calls
	Lower Case Conversion Performance
	Calling Strlen
	Improving Performance
	Lower Case Conversion Performance
	Optimization Blocker: Procedure Calls
	Optimization Blocker #2: Memory Aliasing
	Memory Aliasing
	Removing Aliasing
	Optimization Blocker: Memory Aliasing
	Today
	Slide Number 35
	Exploiting Instruction-Level Parallelism
	Benchmark Example: Data Type for Vectors
	Benchmark Computation
	Cycles Per Element (CPE)
	Benchmark Performance
	Basic Optimizations
	Effect of Basic Optimizations
	Modern CPU Design
	Superscalar Processor
	Pipelined Functional Units
	Quiz Time!
	Haswell CPU
	x86-64 Compilation of Combine4
	Combine4 = Serial Computation (OP = *)
	Loop Unrolling (2x1)
	Effect of Loop Unrolling
	Loop Unrolling with Separate Accumulators (2x2)
	Effect of Separate Accumulators
	Separate Accumulators
	Unrolling & Accumulating
	Achievable Performance
	Programming with AVX2
	SIMD Operations
	Using Vector Instructions
	Today
	What About Branches?
	Modern CPU Design
	Branch Outcomes
	Branch Prediction
	Branch Prediction Through Loop
	Branch Misprediction Invalidation
	Branch Misprediction Recovery
	Branch Prediction Numbers
	Summary: Getting High Performance
	Additional Slides
	Loop Unrolling with Reassociation (2x1a)
	Effect of Reassociation
	Reassociated Computation
	Unrolling & Accumulating: Int +

