
Midterm Exam

18-213/613 Midterm Exam (Fall 2021)

Important notes:

This exam contains 6 questions.
You are not required to answer all of them. Please choose to answer questions within the constraints
described below.
There is no extra credit for answering additional questions.
Should additional questions be answered, we will count the LOWER of the options. It is to your advantage
to make choices.
This exam is an individual effort.
You are not permitted to help others, in any way, with this exam.
You are not permitted to release or to discuss this exam with anyone, except the course staff, until given
permission to do so by the instructors (which will not occur until all students have completed the exam.
There may be exceptional cases that take it late).
You are permitted to use only the official course textbook, the official course slides, and your own personal
notes.
A simple calculator is permitted, but won’t prove to be helpful (we don’t think).
You have 90 minutes, from first exposure through submission to take this exam. Do not attempt to
“peek”, “check”, or “test” the exam. This will start your clock.

Answer EXACTLY ONE of these:

Question 1: Integers
Question 2: Floats

Properties
Special Values

Answer EXACTLY ONE of these:

Question 3: Assembly
Basic control
Switch

 Question 4: Calling Convention, Stack Discipline

Answer ***BOTH*** of these:

Question 5: Data
Structs
Arrays

Question 6: Caching and Memory Access

2.5 points

Blank (A):

2.5 points

Blank (B):

2.5 points

Blank (C):

2.5 points

Blank (D):

2.5 points

Blank (E):

2.5 points

Blank (F):

Question 1: Integers

This question is based upon the following
declaration on a machine using 5-bit two’s
complement arithmetic for signed integers.

int x = -13;

unsigned uy = x;

Fill in the empty boxes in the table below.

Show all digits for the "Binary" column,
including any leading 0s.
You need not fill in entries marked with “–”.
TMax denotes the largest positive two’s
complement number
TMin denotes the smallest negative two’s
complement number.
Hint: Be careful with the promotion rules
that C uses for signed and unsigned ints,
i.e. how the C Language handles implicit
casts between the types.

Expression Decimal
Representation

Binary
Representation

– −3 (A)

– (B) 00

x - (C)

uy (D) -

x − uy - (E)

TMax + 1 (F) -

TMin - 1 - (G)

TMin + 1 (H) -

TMin + TMin - (I)

Fully Associative Trace
2-Way Set Associative Trace
Comparative Performance
Memory Access Time

1

2

3

4

5

6

2.5 points

Blank (G):

2.5 points

Blank (H):

2.5 points

Blank (I):

2.5 points

Blank (J):

Question 2: Floats

Part 1: Properties

Consider the following 7-bit floating point
representation based on the IEEE floating
point format:
The most significant bit is the sign bit
The next k=3 bits are the exponent.
The last n=3 bits are the significand.
The bias is to balance the exponents in a
way consistent with IEEE single and double
precision floating point numbers, i.e.
according to the formula and with the
intuition we discussed in class.

Please answer the questions to the right.

Part 2: Special values

2 points

2.1(A): What is the bias? (Decimal number)

2 points

2.1(B): What is the actual exponent, e.g. what we
called “E” in class, for denormalized numbers?
(Give answer in decimal).

TMax +
TMin

(J) -

7

8

9

10

11

12

This question is based upon the same number
format as Part I.

Fill in the blank entries in the following table.
Include nothing but 0s and 1s. Include no
spaces.

Description
Sign

Binary
Encoding

Zero
+ 0000000

Smallest
Positive
(nonzero)

+ (A)

Largest
denormalized

- (B)

Smallest
positive
normalized

+ (C)

2 points

2.1(C): Consider any two adjacent denormalized
floating point numbers.

What is the absolute value of their difference in
base-2 binary? Fill in the blank, without any
unnecessary trailing 0s.:

0.

2 points

2.1(D): Consider any two adjacent normalized
numbers with a biased exponent field of exp=010.

Determine the absolute value of the difference in
their base-2 binary values and write it out in
binary as x.y without any unnecessary trailing
0s and without any unnecessary leading 0s
(include a single leading or trailing zero per field,
as necessary, to avoid leaving either field entirely
blank.):
________(x)__________ .
________(y)__________

What is (x)?

2 points

2.1(E): Consider the scenario in question (D)
above.
________(x)__________ .
________(y)__________

What is (y)?

13

14

15

2 points

2.1(F) Consider any two adjacent normalized
numbers with a biased exponent field of
exp=011.

Determine the absolute value of their difference
in base-2 binary and write it out as x.y without
any unnecessary trailing 0s and without any
unnecessary leading 0s (include a single 0 per
field as necessary to avoid leaving either field
blank):
_______(x)_______ . ______(y)________

1 point

2.1(E): Consider the scenario in question (D)
above, what is y?
________(x)__________ .
________(y)__________

What is (y)?

16

17

2 points

2.1(H) Which of the following explains the
difference between your answers to (d), (e), and
(f). Check all that apply:

3 points

Part 2, Blank (A):

3 points

Part 2, Blank (C):

3 points

Part 2, Blank (B):

Question 3: Control and Switch
3 points

When the points on the number line are
assigned to be closer in value, rounding
error is reduced

When the points on the number line are
assigned to be farther apart in value, a
number line can cover a larger range

IEEE wanted the number line to span a
large range but to keep the rounding error
approximately proportional to the
magnitude of the number

Denormalized numbers are relatively very
small in magnitude and represent only a
very small portion of the range, so it
makes sense for them to be equidistant.

18

19

20

21

22

Part 1: Control

Please consider the following assembly code and
then answer the questions about it that follow:

Hint: We strongly suggest that, before answering
the questions, you translate the code below into
the C Language and simplify it in writing.

.LC0:

 .string "count: %d\n"

 .text

 .globl main

 .type main, @function

main:

.LFB0:

 pushq %rbp

 movq %rsp, %rbp

 pushq %r13

 pushq %r12

 pushq %rbx

 subq $8, %rsp

 movl $0, %r12d

 movl $10, %ebx

 jmp .L2

.L5:

 movl %ebx, %r13d

 jmp .L3

.L4:

 addl $1, %r12d

 addl $1, %r13d

.L3:

 cmpl $10, %r13d

 jle .L4

 subl $1, %ebx

.L2:

 testl %ebx, %ebx

 jg .L5

 movl %r12d, %esi

 leaq .LC0(%rip), %rdi

 movl $0, %eax

 call printf@PLT

 nop

 addq $8, %rsp

 popq %rbx

 popq %r12

 popq %r13

 popq %rbp

 ret

Part 2: Switch
Please consider the following assembly and
memory dump:

Hint: Recall that the gdb command x/g
SOME_ADDRESS_EXPRESSION will examine
an 8-byte word starting at the given address.

3.1(A): How many loops are there?

3 points

3.1(B)How would you describe the relationship
among the loop(s). Choose one:

2 points

3.1(C): If you had to choose one C Language
loop construct to represent the loop(s) above,
which of the following would you choose?

3 points

3.1(D): How many loop control variables
are there,in total?

(Hint: A “loop control variable” is a
variable that is evaluated as part of a
loops test /and/ which is,or can be,
changed within the loop’s body or by its
update (if a for loop).

One loop

Nested

Sequential

Two or more of the above

None of the above

While

Do-While

For

22

23

24

25

(gdb) disassemble foo

Dump of assembler code for function foo:

 0x0000000000400550 <+0>: cmp

$0x5,%esi

 0x0000000000400553 <+3>: ja

0x40058b <foo+59>

 0x0000000000400555 <+5>: mov

%esi,%eax

 0x0000000000400557 <+7>: jmpq

*0x400630(,%rax,8)

 0x000000000040055e <+14>: xchg

%ax,%ax

 0x0000000000400560 <+16>: add

$0x2,%edi

 0x0000000000400563 <+19>: mov

%edi,%eax

 0x0000000000400565 <+21>: mov

$0x55555556,%edx

 0x000000000040056a <+26>: sar

$0x1f,%edi

 0x000000000040056d <+29>: imul

%edx

 0x000000000040056f <+31>: sub

%edi,%edx

 0x0000000000400571 <+33>: mov

%edx,%eax

 0x0000000000400573 <+35>: retq

 0x0000000000400574 <+36>: nopl

0x0(%rax)

 0x0000000000400578 <+40>: add

$0xa,%edi

 0x000000000040057b <+43>: lea

0x0(,%rdi,4),%edx

 0x0000000000400582 <+50>: mov

%edx,%eax

 0x0000000000400584 <+52>: retq

 0x0000000000400585 <+53>: nopl

(%rax)

 0x0000000000400588 <+56>: and

$0x1,%edi

 0x000000000040058b <+59>: lea

(%rdi,%rsi,1),%edx

 0x000000000040058e <+62>: mov

%edx,%eax

 0x0000000000400590 <+64>: retq

2 points

What is the output of the code shown?

count:

2 points

3.2(A): Blank (A): 0x

2 points

3.2(B): Blank (B): 0x

2 points

3.2(C): Blank (C): 0x

2 points

3.2(D): Blank (D): 0x

2 points

3.2(E): Blank (E): 0x

26

27

28

29

30

31

End of assembler dump.

(gdb) disassemble 0x400550 Dump of
assembler code for function foo:
0x0000000000400550 <+0>: cmp
$0x5,%esi 0x0000000000400553 <+3>:
ja 0x40058b <foo+59>
0x0000000000400555 <+5>: mov
%esi,%eax 0x0000000000400557 <+7>:
jmpq *0x400630(,%rax,8)
0x000000000040055e <+14>: xchg
%ax,%ax 0x0000000000400560 <+16>:
add $0x2,%edi 0x0000000000400563
<+19>: mov %edi,%eax
0x0000000000400565 <+21>: mov
$0x55555556,%edx 0x000000000040056a
<+26>: sar $0x1f,%edi
0x000000000040056d <+29>: imul %edx
0x000000000040056f <+31>: sub
%edi,%edx 0x0000000000400571 <+33>:
mov %edx,%eax 0x0000000000400573
<+35>: retq 0x0000000000400574
<+36>: nopl 0x0(%rax)
0x0000000000400578 <+40>: add
$0xa,%edi 0x000000000040057b <+43>:
lea 0x0(,%rdi,4),%edx
0x0000000000400582 <+50>: mov
%edx,%eax 0x0000000000400584 <+52>:
retq 0x0000000000400585 <+53>: nopl
(%rax) 0x0000000000400588 <+56>: and
$0x1,%edi 0x000000000040058b <+59>:
lea (%rdi,%rsi,1),%edx
0x000000000040058e <+62>: mov
%edx,%eax 0x0000000000400590 <+64>:
retq End of assembler dump.

Please fill in the switch jump table corresponding
to the gdb dump above. Do not include any
leading zeros and note that the answer should
be in hexadecimal without the leading 0x, as it
is given.

(gdb) x/6g 0x400630

0x400630: 0x____(A)_____

0x___(B)_____

0x400640: 0x____(C)_____

0x___(D)_____
0x400650: 0x____(E)_____
0x___(F)_____

2 points

3.2(F): Blank (F): 0x

Question 4: Stack Use and Calling
4 points

32

33

Convention

Calling Convention and Stack Discipline

The following stack and register dump is from a
Linux x86-64 machine like the shark hosts. It is
taken immediately AFTER a function has been
called, right before the first instruction within that
function has been executed. The original function
was written in the C Language.

(gdb) info registers

rax 0x6 6

rbx 0x0 0

rcx 0x4 4

rdx 0x9 9

rsi 0x8 8

rdi 0x6 6

rbp

0x7fffffffe0b0

rsp

0x7fffffffe0b0

r8

0x7ffff7dd5060

r9

0x7fffffffe528

r10 0x4 4

r11 0x0 0

r12 0x400440 4195392

r13

0x7fffffffe1d0

r14 0x0 0

r15 0x0 0

rip 0x40053d

0x40053d <add+16>

(gdb) x/10xg 0x7fffffffe0a8

0x7fffffffe0a8:

0x00007ffff7a44900

0x00007fffffffe0f0

0x7fffffffe0b8:

0x00000000004005e9

0x00007fffffffe1d8

0x7fffffffe0c8:

0x0000000700000000

0x0000000000400600

4 points

4.1(A) 1st argument:

4 points

4.1(B) 2nd argument:

4 points

4.1(C) 3rd argument:

4 points

4.1(D): Return address: 0x

4 points

Number of arguments:

5 points

4.1(E) C Language data type for 3rd argument:

int

float

long

double

Unknowable

None of the above

33

34

35

36

37

38

0x7fffffffe0d8:

0x0000000000400440

0x0000000900000004

0x7fffffffe0e8:

0x0000000600000008

0x0000000000000000

Please fill in the following, or indicate that the
value is not knowable from the provided trace:

Question 5: Data

Part 1: Structs
Consider the following struct as compiled on a
system using “natural alignment”, i.e. the size of a
data type is also its alignment requirement, and
where chars are 1 byte, shorts are 2 bytes, ints
are 4 bytes, and longs are 8 bytes, and then
answer the questions that follow:

struct {

 char c;

 short s;

 long l;

 int i;

} initial;

Please answer the questions to the right.

Part 2: Arrays
Consider the following code as compiled and
executed in an environment with 4-byte integers
and 8-byte pointers:
 int array1[4][5];

 int **array2;

 array2 = malloc (4*sizeof(int *));

 for (int row=0; row<4; row++) {

 array2[row] = malloc

(5*sizeof(int));

 }

Please answer the questions to the right.

2 points

5.1(A): How many bytes of alignment does the
struct as a whole require?

2 points

5.1(B): How many bytes of padding does the
compiler add before the first (char c) field?

2 points

5.1(C): How many bytes of padding does the
compiler add after the last (int i) field?

2 points

5.1(D): How many bytes of alignment does the
compiler add between fields, e.g. neither at the
beginning nor at the end?

39

40

41

42

2 points

5.1(E): How many bytes can be saved in a single
instance of the struct by reorganizing the fields?

1 point

5.1(F): Given the reorganized struct you
contemplated for (E) above, how many bytes
would be saved across an array of four (4) such
structs as compared to an array of four (4) of the
original structs?

2 points

5.2(A): In total, how many bytes are allocated,
directly and/or indirectly, to array1? If you don’t
have enough information to answer or if the
answer isn’t knowable, write “-1”.

2 points

5.2(B): What is the minimum number of bytes
allocated directly to array2?

2 points

5.2(C): In total, how many bytes are allocated,
directly and/or indirectly, to array2? If you don’t
have enough information to answer or if the
answer isn’t knowable, write “-1”.

43

44

45

46

47

2 points

5.2(D): Consider the addresses of array1[1][1]
and array1[3][2]. What is the absolute difference
as measured in bytes? If you don’t have enough
information to answer or if the answer isn’t
knowable, write “-1”.

2 points

5.2(E): Consider the addresses of array2[1][1]
and array2[3][2]. What is the absolute difference
as measured in bytes? If you don’t have enough
information to answer or if the answer isn’t
knowable, write “-1”.

2 points

5.2(F): If the entirety of array1 is initialized, is the
value of array1[1][6], knowable? Yes or No

2 points

5.2(G): If the entirety of array2, including the
indirect components, is initialized, is the value of
array2[1][6], knowable? Yes or No

1 point

Blank (A)

Question 6: Caching and Memory Access

This question tests your understanding of cache
behavior, asks you to simulate and describe the
behavior of the same memory access trace on
two different cache configurations, asks you
some questions about the performance, and then
asks you about the impact of caching upon
memory access time.

Yes

No

Yes

No

48

49

50

51

52

1 point

Blank (B):

1 point

Blank (C)

1 point

Blank (D)

1 point

Blank (E)

1 point

Blank (F)

1 point

Blank (G):

Part 1: 2-Way Set-Associative Cache

Given the following information, please fill in the
table below. If no set bits are decoded, fill in 0
for the set number.

The cache configuration for Part-1 is described as
follows:

2-way set-associative (E=2)

Address with = 6 bits

Block size = 8 bytes

32byte total cache size

Time Mem
Addr
(Hex)

Set
(Decimal)

Tag
(Binary)

Hit/Miss
(H/M)

Typ
Mis
(Co
Co
Ca
N/A

0 0x1A (A) (B) (C) (D)

2 0X2A (E)

3 0X05

4 0X0A (F) (G) (H) (I)

5 0X23

6 0X16 (J)

6 0X00 (K)

Part 2: Fully-Associative Cache
Given the following information, please fill in the
table below. If no set bits are decoded, fill in 0
for the set #.

Fully associative (All cache lines in same
set)
Address with = 6 bits
3 tag bits
32byte total cache size

Time Mem
Addr
(Hex)

Set
(Decimal)

Tag
(Binary)

Hit/Miss
(H/M)

Typ
Mis
(Co
Co

(H)it

(M)iss

Cold

Conflict

Capacity

N/A

Cold

Conflict

Capacity

N/A

53

54

55

56

57

58

1 point

Blank (H)

1 point

Blank (I)

1 point

Blank (J)

1 point

Blank (K)

1 point

Blank (A)

Ca
N/A

0 0x1A (A) (B) (C) (D)

2 0X2A

3 0X05 (E)

4 0X0A (F) (G) (H) (I)

5 0X23 (J)

6 0X16

6 0X00 (K)

Part 3: Comparison
Please answer the question to the right.

Part 4: Memory Access

Consider a memory system with the following
properties:

Level 1 cache: SRAM, 10nS access tie

Main memory: DRAM, 100nS access time.

Cache hit rate: 95%

Please answer the questions to the right.

(H)it

(M)iss

Cold

Conflict

Capacity

N/A

Cold

Conflict

Capacity

N/A

Cold

Conflict

Capacity

N/A

59

60

61

62

63

1 point

Blank (B):

1 point

Blank (C)

1 point

Blank (D)

1 point

Blank (E)

1 point

Blank (F)

1 point

Blank (G):

(H)it

(M)iss

Cold

Conflict

Capacity

N/A

Cold

Conflict

Capacity

N/A

64

65

66

67

68

69

1 point

Blank (H)

1 point

Blank (I)

1 point

Blank (J)

1 point

Blank (K)

(H)it

(M)iss

Cold

Conflict

Capacity

N/A

Cold

Conflict

Capacity

N/A

Cold

Conflict

Capacity

N/A

70

71

72

73

1 point

6.3: Did either cache configuration perform better
for the given traces than the other? If so, how do
you know

1 point

6.4(A): What is the cache miss rate?
Fill in the blank: __________%.

1 point

6.4(B): What is the cache miss penalty (in nS)?
Fill in the blank: _______nS.

1 point

6.4(C): What is the average access time to the
nearest 0.01 nS?
Fill in the blank: __________ nS.

They performed equally well for the given
trace

It isn’t possible to know, given the traces
provided

The cache configuration in Part 1 had
fewer hits than the cache configuration
Part 2, so the cache configuration in Part
2 performed better.

The cache configuration in Part 1 had
fewer misses than the cache configuration
in Part 2, so the cache configuration in
Part 1 performed better.

None of the above

74

75

76

77

0 points

Feel free to provide us any feedback, comments, or notes here. For example, if you made any
assumptions, etc. If you do, after the dust has settled (grades are back), please ping one of us and let us
know that we should take a look. Remember -- grades can be adjusted at any time. And, we are humans,
just like you. We're happy to discuss anything with you. Thanks!



78

