

From Bits through Integers

18-213/18-613
Introduction to Computer Systems

2nd Lecture, August 31st, 2023

Bits, Bytes, and Integers

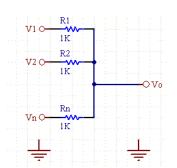
- Representing information as bits
 CSAPP 2.1
- Bit-level manipulations
- Integers CSAPP 2.2
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shiftingCSAPP 2.3
- Byte Ordering CSAPP 2.1.3

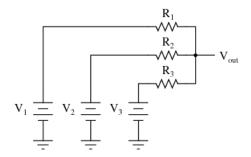
Analog Computers

Before digital computers there were analog computers.

Consider a couple of simple analog computers:

- A simple circuit can allow one to adjust voltages using variable resistors and measure the output using a volt meter:
- A simple network of adjustable parallel resistors can allow one to find the average of the inputs.





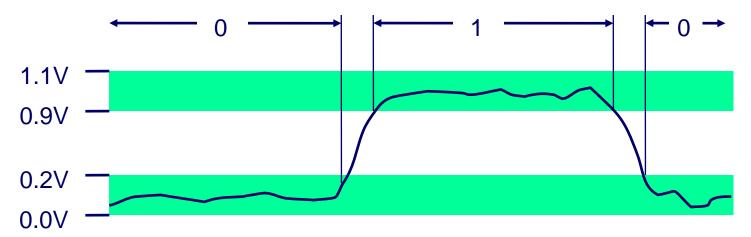
https://www.daycounter.com/Calculators/Voltage-Summer/Voltage-

Summer-Calculator.phtml

https://www.quora.com/What-is-the-most-basic-voltage-adder-circuitwithout-a-transistor-op-amp-and-any-external-supply

Needing Less Accuracy, Precision is Better

- We don't try to measure exactly
 - We just ask, is it high enough to be "On", or
 - Is it low enough to be "Off".
- We have two states, so we have a binary, or 2-ary, system.
 - We represent these states as 0 and 1
- Now we can easily interpret, communicate, and duplicate signals well enough to know what they mean.



Binary Representation

- Binary representation leads to a simple binary, i.e. base-2, numbering system
 - 0 represents 0
 - 1 represents 1
 - Each "place" represents a power of two, exactly as each place in our usual "base 10", 10-ary numbering system represents a power of 10
- By encoding/interpreting sets of bits in various ways, we can represent different things:
 - Operations to be executed by the processor, numbers, enumerable things, such as text characters
- As long as we can assign it to a discrete number, we can represent it in binary

Binary Representation: Simple Numbers

- For example, we can count in binary, a base-2 numbering system
 - **000**, 001, 010, 011, 100, 101, 110, 111, ...
 - $-000 = 0*2^2 + 0*2^{1+} 0*2^0 = 0$ (in decimal)
 - $-001 = 0*2^2 + 0*2^{1+} 1*2^0 = 1$ (in decimal)
 - $010 = 0*2^2 + 1*2^{1+} 0*2^0 = 2$ (in decimal)
 - $-011 = 0*2^2 + 1*2^{1+} 1*2^0 = 3$ (in decimal)
 - Etc.
- **■** For reference, consider some base-10 examples:
 - $-000 = 0*10^2 + 0*10^1 + 0*10^0$
 - $-001 = 0*10^2 + 0*10^1 + 1*10^0$
 - $357 = 3*10^2 + 5*10^1 + 7*10^0$

Hexadecimal and Octal

- Writing out numbers in binary takes too many digits
- We want a way to represent numbers more densely such that fewer digits are required
 - But also such that it is easy to get at the bits that we want
- Any power-of-two base provides this property
 - Octal, e.g. base-8, and hexadecimal, e.g. base-16 are the closest to our familiar base-10.
 - Each has been used by "computer people" over time
 - Hexadecimal is often preferred because it is denser.

Hexadecimal

■ Hexadecimal 00₁₆ to FF₁₆

- Base 16 number representation
- Use characters '0' to '9' and 'A' to 'F'

Consider 1A2B in Hexadecimal:

- $-1*16^3 + A*16^2 + 2*16^1 + B*16^0$
- $-1*16^3 + 10*16^2 + 2*16^1 + 11*16^0 = 6699 (decimal)$
- The C Language prefixes hexadecimal numbers with "0x" so they aren't confused with decimal numbers
- Write FA1D37B₁₆ in C as
 - 0xFA1D37B
 - 0xfa1d37b

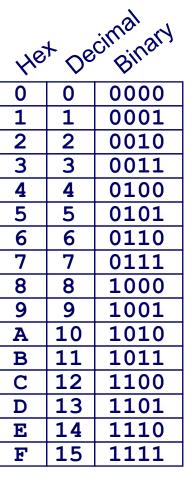
	7	<u>_</u>	•	_
18213:	0100	0111	0010	0101

4

7

2

5



Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Byte Ordering

Boolean Algebra

- Developed by George Boole in 19th Century
 - Algebraic representation of logic
 - Encode "True" as 1 and "False" as 0

And

Or

A&B = 1 when both A=1 and B=1

&	0	1
0	0	0
1	0	1

■ A|B = 1 when either A=1 or B=1

Not

Exclusive-Or (Xor)

■ ~A = 1 when A=0

<i>^</i> `` i	
~	
0	1
1	0

■ A^B = 1 when either A=1 or B=1, but not both

٨	0	1
0	0	1
1	1	0

General Boolean Algebras

- Operate on Bit Vectors
 - Operations applied bitwise

```
01101001 01101001 01101001

& 01010101 | 01010101 ^ 01010101 ~ 01010101

01000001 01111101 00111100 1010101
```

All of the Properties of Boolean Algebra Apply

Example: Representing & Manipulating Sets

Representation

- Width w bit vector represents subsets of {0, ..., w-1}
- $a_i = 1 \text{ if } j \in A$
 - 01101001

{ 0, 3, 5, 6 }

- 76543210
- 01010101

{ 0, 2, 4, 6 }

76543210

Operations

& Intersection

01000001

{0,6}

Union

01111101

{ 0, 2, 3, 4, 5, 6 }

_ ^

Symmetric difference

00111100

{ 2, 3, 4, 5 }

~

Complement

10101010

{ 1, 3, 5, 7 }

Bit-Level Operations in C

■ Operations &, |, ~, ^ Available in C

- Apply to any "integral" data type
 - long, int, short, char, unsigned
- View arguments as bit vectors
- Arguments applied bit-wise

Examples (Char data type)

- ~0x41 →
- ~0x00 →
 - •
- $0x69 \& 0x55 \rightarrow$
 - •
- $0x69 \mid 0x55 \rightarrow$

Hex Deciman

0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
A	10	1010
В	11	1011
U	12	1100
D	13	1101
E	14	1110
F	15	1111

Bit-Level Operations in C

Operations &, |, ~, ^ Available in C

- Apply to any "integral" data type
 - long, int, short, char, unsigned
- View arguments as bit vectors
- Arguments applied bit-wise

Examples (Char data type)

- ~0x41 → 1011 1110
- ~0x00 → 1111 1111

0x69 & 0x55:	0x69 0x55
0110 1001	0110 1001
& 0101 0101	0101 0101

0100 0001 0111 1101

Hex Decimal

0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
A	10	1010
В	11	1011
C	12	1100
D	13	1101
E	14	1110
F	15	1111
_		

Contrast: Logic Operations in C

Contrast to Bit-Level Operators

- Logic Operations: &&, ||,!
 - View 0 as "False"
 - Anything nonzero as "True"
 - Always return 0 or 1
 - Early termination

Examples (char data type)

- $!0x41 \rightarrow 0x00$
- $!0x00 \rightarrow 0x01$
- !!0x41→ 0x01
- $0x69 \&\& 0x55 \rightarrow 0x01$
- $0x69 \mid \mid 0x55 \rightarrow 0x01$
- p && *p (avoids null pointer access)

Shift Operations

- **Left Shift:** $x \ll y$
 - Shift bit-vector x left y positions
 - Throw away extra bits on left
 - Fill with 0's on right
- Right Shift: x >> y
 - Shift bit-vector x right y positions
 - Throw away extra bits on right
 - Logical shift
 - Fill with 0's on left
 - Arithmetic shift
 - Replicate most significant bit on left

•				•
Inc	nitar	PA	Rel	havior
<i>-</i>	4 C I I I I	U		1 1 4 V I V I

Shift amount < 0 or ≥ word size</p>

Argument x	<mark>0</mark> 11 <u>000</u> 10
<< 3	00010 <i>000</i>
Log. >> 2	00011000
Arith. >> 2	<i>00</i> 011000

Argument x	10100010
<< 3	00010 <i>000</i>
Log. >> 2	00101000
Arith. >> 2	11101000

Today: Bits, Bytes, and Integers

- Representing information as bits
- **■** Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting

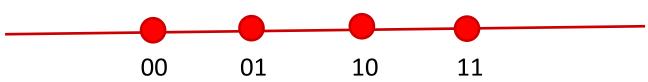
Binary Number Lines

- In binary, the number of bits in the data type size determines the number of points on the number line.
 - We can assign the points any meaning we'd like

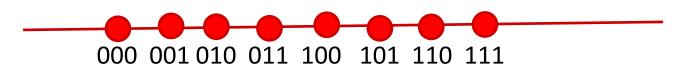
Consider the following examples:

1 bit number line

2 bit number line

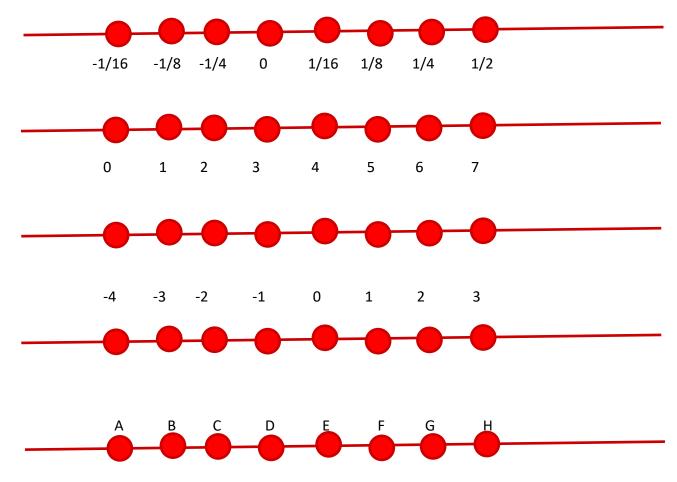


3 bit number line



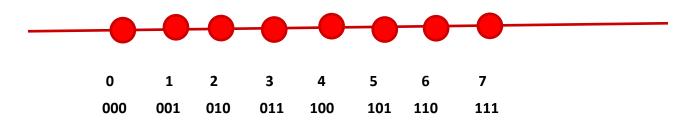
Some Purely Imaginary Examples

3 bit number line



Overflow

■ Let's consider a simple 3 digit number line:



- What happens if we add 1 to 7?
 - In other words, what happens if we add 1 to 111?
- **111+001 = 1 000**
 - But, we only get 3 bits so we lose the leading-1.
 - This is called overflow
- The result is 000

Modulus Arithmetic

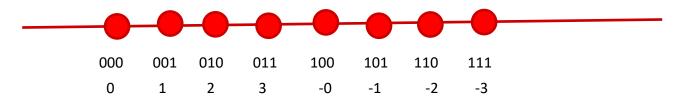
- Let's explore this idea of overflow some more
 - **111 + 001 = 1 000 = 000**
 - **111 + 010 = 1 001 = 001**
 - **111 + 011 = 1 010 = 010**
 - **111 + 100 = 1011 = 011**
 - ...
 - **111 + 110 = 1 101 = 101**
 - **111 + 111 = 1 110 = 110**
- So, arithmetic "wraps around" when it gets "too positive"

Unsigned and Non-Negative Integers

- We'll use the term "ints" to mean the finite set of integer numbers that we can represent on a number line enumerated by some fixed number of bits, i.e. bit width.
- We normally represent unsigned and non-negative int using simple binary as we have already discussed
 - An "unsigned" int is any int on a number line, e.g. of a data type, that doesn't contain any negative numbers
 - A non-negative number is a number greater than or equal to (>=) 0 on a number line, e.g. of a data type, that does contain negative numbers

How represent negative Numbers?

- We could use the leading bit as a *sign bit*:
 - 0 means non-negative
 - 1 means negative



This has some benefits

- It lets us represent negative and non-negative numbers
- 0 represents 0

It also has some drawbacks

- There is a -0, which is the same as 0, except that it is different
- How to add such numbers 1 + -1 should equal 0
 - But, by simple math, 001 + 101 = 110, which is -2?

A Magic Trick!

■ Let's just start with three ideas:

- 1 should be represented as 1
- -1 + 1 = 0
- We want addition to work in the familiar way, with simple rules.
- We want a situation where "-1" + 1 = 0

Consider a 3 bit number:

- 001 + "-1" = 0
- **001 + 111 = 0**
 - Remember 001 + 111 = 1 000, and the leading one is lost to overflow.
- **"-1" = 111**
 - Yep!

Negative Numbers

- Well, if 111 is -1, what is -2?
 - **-**1 1
 - 111 − 001 = 110
- Does that really work?
 - If it does -2 + 2 = 0
 - **110** + 010 = 1 000 = 000
- -2 + 5 should be 3, right?
 - **1**10 + 101 = 1 011 = 011

Finding –x the easy way

- Given a non-negative number in binary, e.g. 5, represented with a fixed bit width, e.g. 4
 - **0101**
- We can find its negative by flipping each bit and adding 1
 - 0101 This is 5
 - 1010 This is the "ones complement of 5", e.g. 5 with bits flipped
 - 1011 This is the "twos complement of 5", e.g. 5 with the bits flipped and 1 added
 - **•** 0101 + 1011 = 1 0000 = 0000
 - $-x = ^x + 1$
- Because of the fixed width, the "two's complement" of a number can be used as its negative.

Why Does This Work?

- Consider any number and its (ones) complement:
 - **0101**
 - **1010**
- They are called complements because complementary bits are set. As a result, if they are added, all bits are necessarily set:
 - **•** 0101 + 1010 = 1111
- Adding 1 to the sum of a number and its complement necessarily results in a 0 due to overflow
 - (0101 + 1010) + 1 = 1111 + 1 = 10000 = 0000
- And if x + y = 0, y must equal -x

Why Does This Work? Cont.

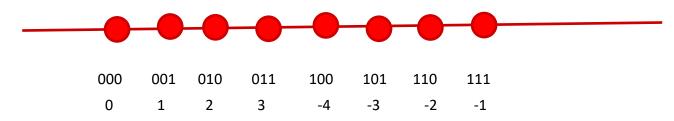
- If x + y = 0
 - y must equal –x
- So if x + (Complement(x) + 1) = 0
 - Complement(x) + 1 must equal -x

Another way of looking at it:

- if x + (Complement(x) + 1) = 0
- x + Complement(x) = -1
- x = -1 Complement(x)
- x = 1 + Complement(x)

Visualizing Two's Complement

Numbers "wrap around" with -1 at the very end



A few things to note:

- All negative numbers start with a "1"
 - E.g. 100 is "-4"
- You can view the leading "1" as introducing a "-4"
 - E.g. 101 = 1*-4+0*2+1*1=-3
 - But 010 = 0*-4+1*2+0*1 = 2
- -4 is missing a positive partner

Complement & Increment Examples

$$x = 0$$

	Decimal	Hex	Binary
0	0	00 00	00000000 00000000
~0	-1	FF FF	11111111 11111111
~0+1	0	00 00	00000000 00000000

x = Tmin (The most negative two's complement number)

	Decimal	Hex	Binary
x	-32768	80 00	10000000 000000000
~x	32767	7F FF	01111111 11111111
~x+1	-32768	80 00	10000000 000000000

Canonical counter example

Encoding Integers: Dense Form

Unsigned
$$B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i$$

Two's Complement

$$B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i$$

short int
$$x = 15213$$
;
short int $y = -15213$;

Sign

- C does not mandate using two's complement
 - But, most machines do, and we will assume so
- C short (2 bytes long)

	Decimal	Hex	Binary	
x	15213	3B 6D	00111011 01101101	
У	-15213	C4 93	11000100 10010011	

- Sign Bit
 - For 2's complement, most significant bit indicates sign
 - 0 for nonnegative, 1 for negative

Numeric Ranges

Unsigned Values

- *UMin* = 0 000...0
- $UMax = 2^w 1$ 111...1

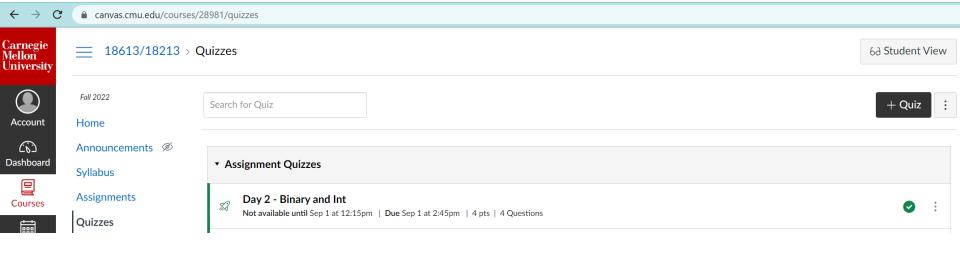
■ Two's Complement Values

- TMin = -2^{w-1} 100...0
- TMax = $2^{w-1} 1$ 011...1
- Minus 1111...1

Values for W = 16

	Decimal	Hex	Binary
UMax	65535	FF FF	11111111 11111111
TMax	32767	7F FF	01111111 11111111
TMin	-32768	80 00	10000000 000000000
-1	-1	FF FF	11111111 11111111
0	0	00 00	00000000 00000000

Quiz Time!



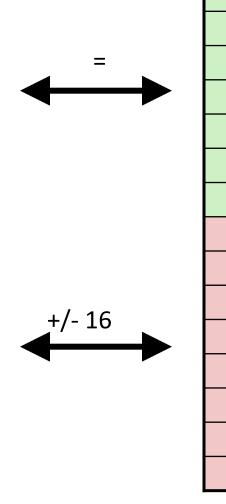
Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Byte Ordering

Mapping Signed ↔ Unsigned

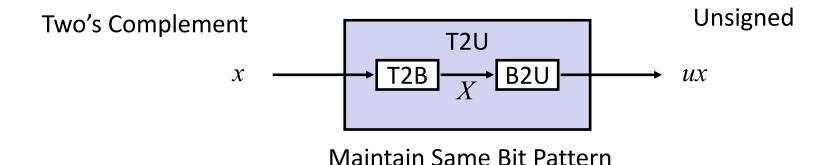
Bits
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

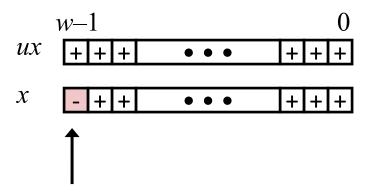
Signed
Signed
0
1
2
3
4
5
6
7
-8
-7
-6
-5
-4
-3
-2
-1



Ur	nsigned
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15

Relation between Signed & Unsigned



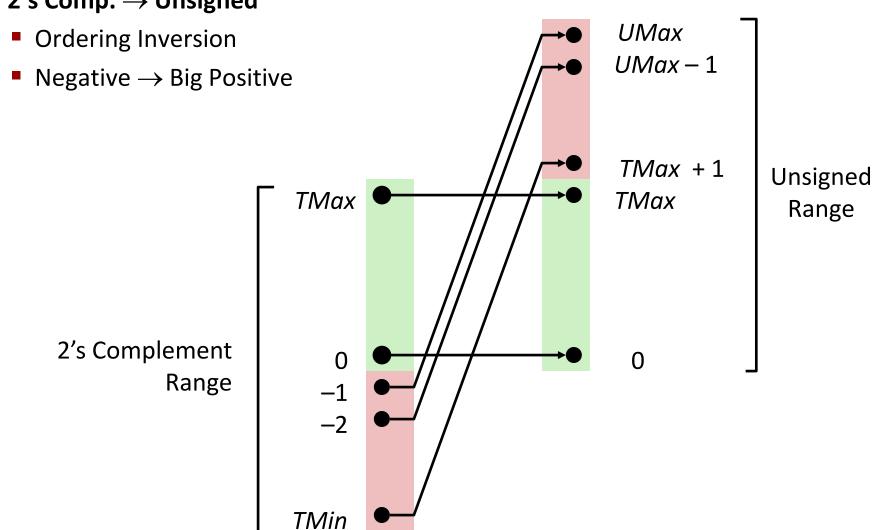


Large negative weight becomes

Large positive weight

Conversion Visualized

■ 2's Comp. → Unsigned



Signed vs. Unsigned in C

Constants

- By default are considered to be signed integers
- Unsigned if have "U" as suffix
 0U, 4294967259U

Casting

Explicit casting between signed & unsigned same as U2T and T2U

```
int tx, ty;
unsigned ux, uy;
tx = (int) ux;
uy = (unsigned) ty;
```

Implicit casting also occurs via assignments and procedure calls

Casting Surprises

Expression Evaluation

- If there is a mix of unsigned and signed in single expression, signed values implicitly cast to unsigned
- Including comparison operations <, >, ==, <=, >=
- **Examples for** W = 32: **TMIN = -2,147,483,648**, **TMAX = 2,147,483,647**

Constant ₁	Constant ₂	Relation	Evaluation
0	OU	==	unsigned
-1	0	<	signed
-1	0U	>	unsigned
2147483647	-2147483647-1	>	signed
2147483647U	-2147483647-1	<	unsigned
-1	-2	>	signed
(unsigned)-1	-2	>	unsigned
2147483647	2147483648U	<	unsigned
2147483647	(int) 2147483648U	>	signed

Summary Casting Signed ↔ Unsigned: Basic Rules

- Bit pattern is maintained
- But reinterpreted
- Can have unexpected effects: adding or subtracting 2^w
- Expression containing signed and unsigned int
 - int is cast to unsigned!!

Today: Bits, Bytes, and Integers

- Representing information as bits
- **■** Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Byte Ordering

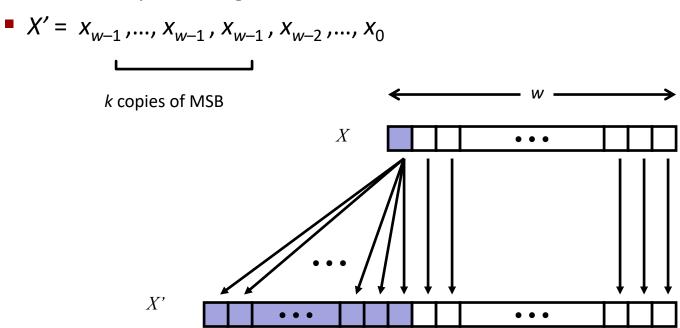
Sign Extension

■ Task:

- Given w-bit signed integer x
- Convert it to w+k-bit integer with same value

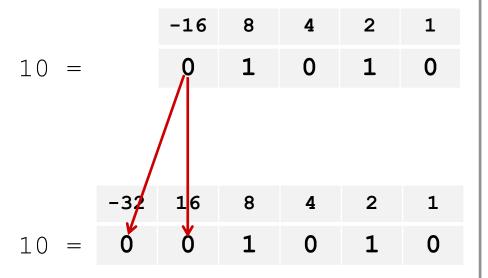
Rule:

■ Make *k* copies of sign bit:

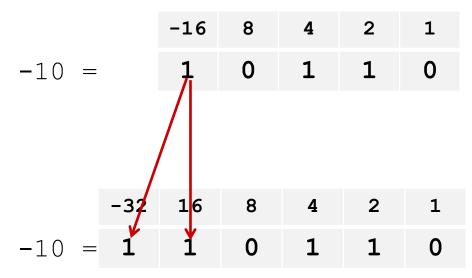


Sign Extension: Simple Example

Positive number



Negative number



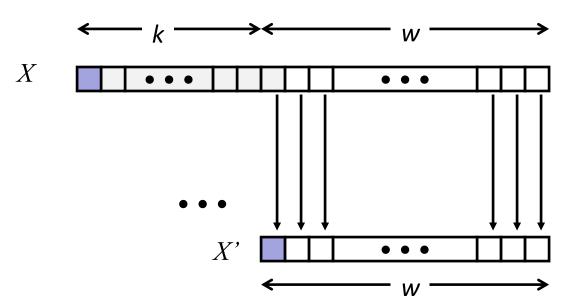
Truncation

■ Task:

- Given k+w-bit signed or unsigned integer X
- Convert it to w-bit integer X' with same value for "small enough" X

■ Rule:

- Drop top k bits:
- $X' = X_{w-1}, X_{w-2}, ..., X_0$



Truncation: Simple Example

No sign change

$$2 = \begin{bmatrix} -8 & 4 & 2 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

 $2 \mod 16 = 2$

$$-16$$
 8 4 2 1 -6 = **1 1 0 1 0**

$$-8$$
 4 2 1 -6 = 1 0 1 0

 $-6 \mod 16 = 26U \mod 16 = 10U = -6$

Sign change

$$-16$$
 8 4 2 1 $10 = 0$ 1 0 1 0

$$-8$$
 4 2 1 -6 = 1 0 1 0

 $10 \mod 16 = 10U \mod 16 = 10U = -6$

$$-16$$
 8 4 2 1 -10 = 1 0 1 1 0

 $-10 \mod 16 = 22U \mod 16 = 6U = 6$

Summary: Expanding, Truncating: Basic Rules

- Expanding (e.g., short int to int)
 - Unsigned: zeros added
 - Signed: sign extension
 - Both yield expected result
- Truncating (e.g., unsigned to unsigned short)
 - Unsigned/signed: bits are truncated
 - Result reinterpreted
 - Unsigned: mod operation
 - Signed: similar to mod
 - For small (in magnitude) numbers yields expected behavior

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Byte Ordering

Unsigned Addition

Operands: w bits

u

True Sum: w+1 bits

u + v

Discard Carry: w bits

$$UAdd_{w}(u, v)$$

Standard Addition Function

- Ignores carry output
- **Implements Modular Arithmetic**

$$s = UAdd_w(u, v) = u + v \mod 2^w$$

unsigned char		1110	1001	E 9	223
	+	1101	0101	+ D5	+ 213
	1	1011	1110	1BE	446
		1011	1110	BE	190

Hex Decimanary

K,	V	•
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
A	10	1010
В	11	1011
С	12	1100
D	13	1101
E	14	1110
F	15	1111

Two's Complement Addition

TAdd and UAdd have Identical Bit-Level Behavior

Signed vs. unsigned addition in C:

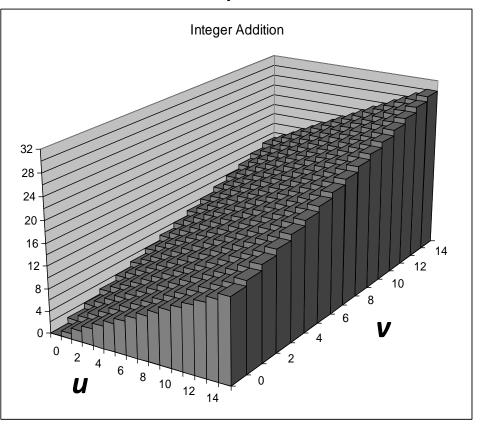
```
int s, t, u, v;
 s = (int) ((unsigned) u + (unsigned) v);
 t = u + v
Will give s == t
                               1110
                                     1001
                                                E9
                                                          -23
                               1101
                                    0101
                                                         -43
                                              + D5
                                                          -66
                                               1BE
                                                          -66
                                                BE
```

Visualizing "True Sum" Integer Addition

Integer Addition

- 4-bit integers u, v
- Compute true sum $Add_4(u, v)$
- Values increase linearly with u and v
- Forms planar surface

$Add_4(u, v)$

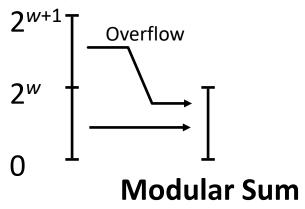


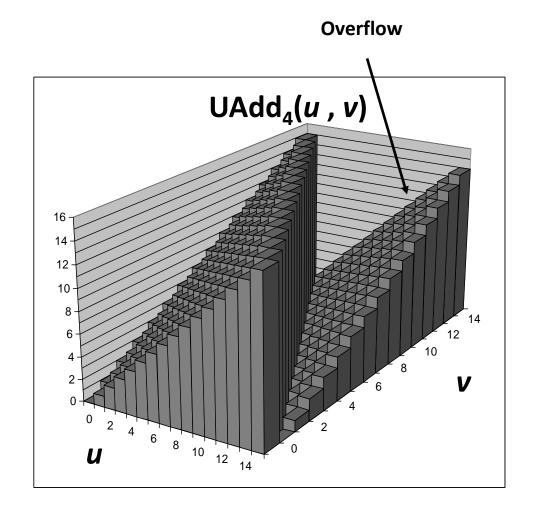
Visualizing Unsigned Addition

Wraps Around

- If true sum $\ge 2^w$
- At most once

True Sum





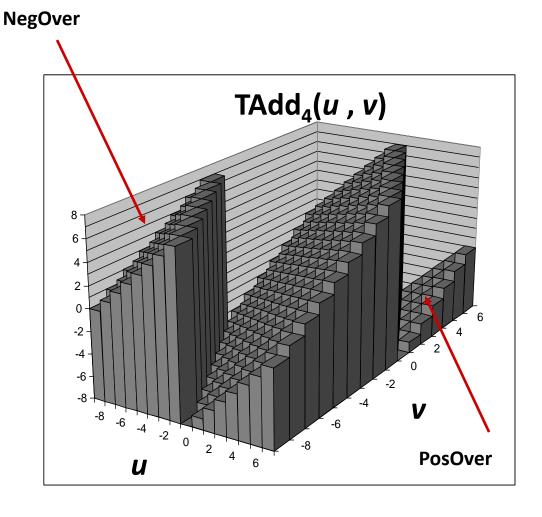
Visualizing 2's Complement Addition

Values

- 4-bit two's comp.
- Range from -8 to +7

Wraps Around

- If sum $\geq 2^{w-1}$
 - Becomes negative
 - At most once
- If sum $< -2^{w-1}$
 - Becomes positive
 - At most once



Multiplication

- Goal: Computing Product of *w*-bit numbers *x*, *y*
 - Either signed or unsigned
- Result: Same as computing ideal, exact result x*y and keeping w lower bits.
- Ideal,exact results can be bigger than w bits
 - Worst case is up to 2w bits
 - Unsigned, because all bits are magnitude
 - Signed, but only for Tmin*Tmin, because anything added to Tmin reduces its magnitude and Tmax is less than Tmin.
- So, maintaining exact results...
 - would need to keep expanding word size with each product computed
 - Impossible in hardware (at least without limits), as all resources are finite
 - In practice, is done in software, if needed
 - e.g., by "arbitrary precision" arithmetic packages

Power-of-2 Multiply with Shift

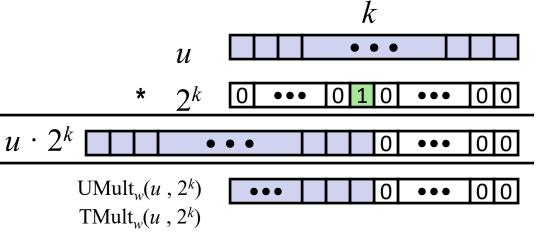
Operation

- **u** << **k** gives **u** * **2**^k
- Both signed and unsigned

True Product: w+k bits

Discard k bits: w bits

Operands: w bits

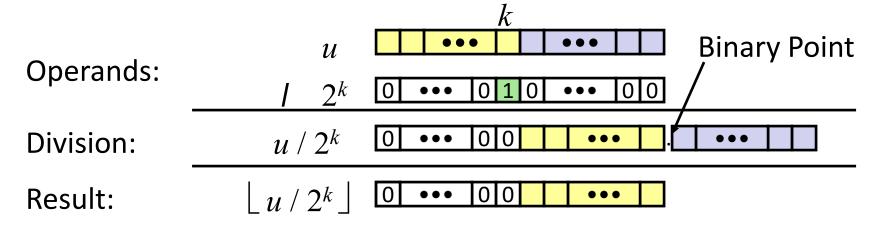


Examples

- u << 3 == u * 8
- u << 5 u << 3 == u * 24
- Most machines shift and add faster than multiply
 - Compiler generates this code automatically

Unsigned Power-of-2 Divide with Shift

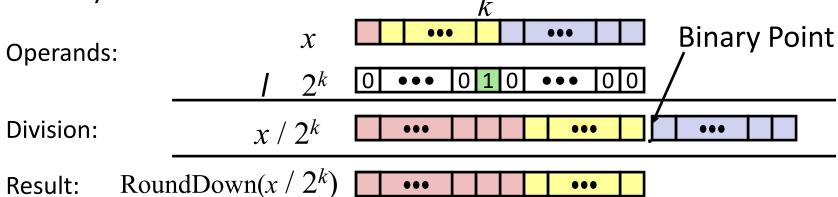
- Quotient of Unsigned by Power of 2
 - $\mathbf{u} \gg \mathbf{k}$ gives $\lfloor \mathbf{u} / 2^k \rfloor$
 - Uses logical shift



	Division	Computed	Hex	Binary		
x	15213	15213	3B 6D	00111011 01101101		
x >> 1	7606.5	7606	1D B6	00011101 10110110		
x >> 4	950.8125	950	03 B6	00000011 10110110		
x >> 8	59.4257813	59	00 3B	00000000 00111011		

Signed Power-of-2 Divide with Shift

- Quotient of Signed by Power of 2
 - $\mathbf{x} \gg \mathbf{k}$ gives $\left[\mathbf{x} / 2^k \right]$
 - Uses arithmetic shift
 - Rounds to the left, not towards zero (Unlikely to be what is expected, introduces a bias).



	Division	Computed	Hex	Binary		
x	-15213	-15213	C4 93	11000100 10010011		
x >> 1	-7606.5	-7607	E2 49	1 1100010 01001001		
x >> 4	-950.8125	-951	FC 49	1111 1100 01001001		
x >> 8	-59.4257813	-60	FF C4	11111111 11000100		

Round-toward-0 Divide

Quotient of Negative Number by Power of 2

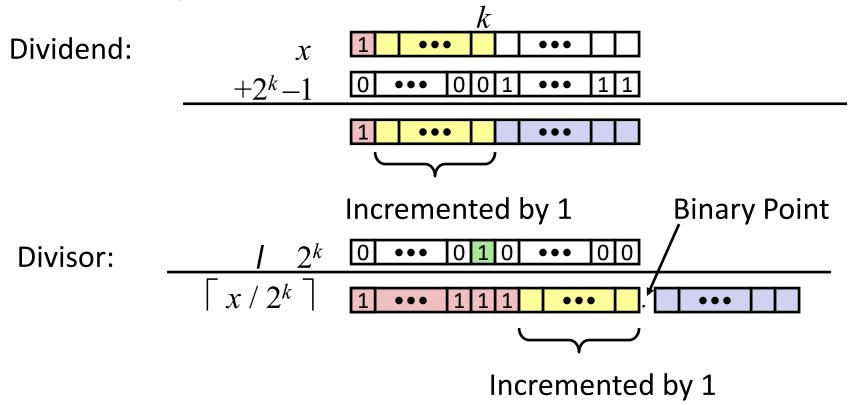
- Want $\lceil x / 2^k \rceil$ (Round Toward 0)
- Compute as $\lfloor (x+(2^k-1))/2^k \rfloor$
 - In C: (x + (1 << k) -1) >> k
 - Biases dividend toward 0

Case 1: No rounding Dividend: $u \\ +2^k-1 \\ \hline$ Divisor: $1 \\ 2^k \\$ Divisor: $1 \\ 2^k \\ 2^$

Biasing has no effect

Correct Power-of-2 Divide (Cont.)

Case 2: Rounding



Biasing adds 1 to final result

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Byte Ordering

Byte Ordering

So, how are the bytes within a multi-byte word ordered in memory?

Conventions

- Big Endian: Sun (Oracle SPARC), PPC Mac, Internet
 - Least significant byte has highest address
- Little Endian: x86, ARM processors running Android, iOS, and Linux
 - Least significant byte has lowest address

Becomes a concern when data is communicated

Over a network, via files, etc.

Important notes

- Bits are not reversed, as the low order bit is the reference point.
- Doesn't affect chars, or strings (arrays of chars), as chars are only one byte

Byte Ordering Example

Example

- Variable x has 4-byte value of 0x01234567
- Address given by &x is 0x100

Big Endia	an	0x100	0 x 101	0 x 102	0 x 103	_	
		01	23	45	67		
Little End	ian	0x100	0x101	0x102	0x103		
		67	45	23	01		

Reading Byte-Reversed Listings

Disassembly

- Text representation of binary machine code
- Generated by program that reads the machine code

Example Fragment

```
Address
                  Instruction Code
                                          Assembly Rendition
         8048365:
                    5b
                                                    %ebx
                                            pop
    8048366:
                81 c3 ab 12 00 00
                                               $0x12ab, %ebx
                                        add
                                              $0x0,0x28(%ebx)
   804836c: 83 bb 28 00 00 00 00
                                      cmpl
Deciphering Numbers
```

- Value:
- Pad to 32 bits:
- Split into bytes:
- Reverse:

0x12ab

 $0 \times 000012ab$

00 00 12 ab

Today: Bits, Bytes, and Integers

- Representing information as bits
 CSAPP 2.1
- Bit-level manipulations
- Integers CSAPP 2.2
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shiftingCSAPP 2.3
- Byte Ordering CSAPP 2.1.3

Questions?