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Concurrency

 We’ve played a bit with “Fork bombs”

 They were “hard” to sort out, right?

 Why?

 The reason is a phenomenon known as concurrency

 Today, we are going to explore this phenomenon and 
look at another model for implementing it

 For a quick one-liner, concurrency is the overlapping of 
activities in time, whether through parallelism or 
interleaving (turn taking)
▪ It is to be distinguished from sequentiality, i.e. in series or one-after-the-

other
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Sequential thinking in a concurrent world

 Think about the world around you

▪ Consider all of the different events occurring at exactly the 
same time.

▪ Consider all of the different events that interleave over time, 
e.g. many classes meet in the same room at regular intervals, 
but other classes use this space at the other times

 Now, think about how you describe complex 
situations

▪ Break them down into individual activities

▪ Preview the activities

▪ Describe each one, one at a time. 

▪ Describe the interactions among the activities
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A concurrent world described sequentially

 To bake a cake, one needs to gather ingredients, 
preheat the oven, mix the solids, mix the liquids, mix 
the solids and the liquids together, crumble the 
cookies for the topping, pour the cake into the pan, 
bake the cake, frost the cake, decorate with the 
crumbled cookies, and then clean up.

▪ Does it matter if the solids are mixed together before the 
liquids are mixed together [Nope]

▪ Does it matter when the cookies are crumbled to long as it is 
before they are used [Nope]

▪ Can the frosting be applied before the cake is baked? [Nope]

▪ Can cleanup be done before the cake is baked [Some of it]
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How many cooks can we use (and when)?
 Gather: Gather ingredients (Don’t start unless we have all)

 Preheat: Preheat the oven

 Solids: Mix the solids

 Liquids: Mix the liquids

 S+L: Mix the solids and the liquids together

 Crumble: Crumble the cookies for the topping

 Pour: Pour the cake into the pan

 Bake: Bake the cake 

 Frost: Frost the cake

 Decorate: Decorate with the crumbled cookies

 Clean: Clean up



Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

How many cooks can we use (and when)?
Gather

Preheat Solids Liquids

S+L

Crumble

Pour

Bake

Frost

Decorate

Clean: Crumble

How many ingredients?
One person can get each?

4

1

2

2

1? More? How many knives?
“Knife wars” in the container?

2

1

Clean: S

Clean: L

Clean: F

Is this obvious
from 
description?

Can this 
accessibly be 
described in 
words?
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What happens if some things get out of order?
Gather

Preheat Solids Liquids

S+L

Crumble

Pour

Bake

Frost

Decorate

Clean: Crumble

How many ingredients?
One person can get each?

4

1

2

2

1? More? How many knives?
“Knife wars” in the container?

2

1

Clean: S

Clean: L

Clean: F

• Pouring into the 
pan before 
mixing?

• Baking before 
pouring?

• Frosting  before 
baking?

• Etc?
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Concurrent Programming is Hard!

 The human mind tends to be sequential

 The notion of time is often misleading

 Thinking about all possible sequences of events in a 
computer system is at least error prone and 
frequently impossible
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What can go wrong? Deadlock

Key characteristic: Circular wait
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Deadlock

 Example from signal handlers.

 Why don’t we use printf in handlers?

 Printf code:
▪ Acquire lock

▪ Do something

▪ Release lock

 What if signal handler interrupts call to printf?

void catch_child(int signo) {

   printf("Child exited!\n"); // this call may reenter printf/puts! BAD!  DEADLOCK!
   while (waitpid(-1, NULL, WNOHANG) > 0) continue; // reap all children
}

Icurr
Inext

Acquire
lock

(Try to)
acquire
lock

Receive
signal
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Testing Printf Deadlock
void catch_child(int signo) {

   printf("Child exited!\n"); // this call may reenter printf/puts! BAD!  DEADLOCK!
   while (waitpid(-1, NULL, WNOHANG) > 0) continue; // reap all children
}

int main(int argc, char** argv) {

  char buf[MAXLINE];

  int i;

  if (signal(SIGCHLD, catch_child) == SIG_ERR)

    unix_error(“signal error”);

  for (i = 0; i < 1000000; i++) {

    if (fork() == 0) {

      exit(0); // in child, exit immediately

    }

    // in parent

    sprintf(buf, "Child #%d started\n", i);

    printf("%s", buf);

  }

  return 0;

}

Child #0 started

Child #1 started

Child #2 started

Child #3 started

Child exited!

Child #4 started

Child exited!

Child #5 started

  .

  .

  .

Child #5888 started

Child #5889 started



Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Why Does Printf require Locks?

 Printf (and fprintf, sprintf) implement buffered I/O

 Require locks to access to shared buffers

unreadalready readno longer in buffer unseen

Current File Position

Buffered Portion
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Starvation

 Yellow must yield to 
green

 Continuous stream 
of green cars

 Overall system 
makes progress, but 
some individuals 
wait indefinitely

Sometimes starvation is okay: If the fire trucks get to the fire in time to put it out, it 
is okay if the gawkers go home without “getting to see” it. Priority can cause 
starvation and that may be okay, sometimes, and not other times. 
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Data Race

If a collision occurs, and if not, which car gets the space, depends purely on  
timing. This isn’t something the programmer specifies. It is arbitrary in the 
sense that it is impacted by many details that escape consideration and can vary 
from run to run. 
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Concurrent Programming is Hard!

 Classical problem classes of concurrent programs:

▪ Deadlock: improper resource allocation prevents forward progress

▪ Example: traffic gridlock

▪ Starvation / Fairness: external events and/or system scheduling 
decisions can prevent sub-task progress

▪ Example: people always jump in front of you in line

▪ Races: outcome depends on arbitrary scheduling decisions 
elsewhere in the system

▪ Example: who gets the last seat on the airplane?

 Many aspects of concurrent programming are beyond the 
scope of our course…

▪ but, not all ☺

▪ We’ll cover some of these aspects in the next few lectures. 
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Concurrent Programming is Hard!

It may be hard, but …

 it can be useful and sometimes necessary!
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Models for concurrency
 We’ve already seen that processes can run concurrently

▪ Fork bombs and process graphs!

▪ And, we’ve already seen that, when concurrent processes interact, the resulting 
executions can have constraints and degrees of freedom

▪ The freedom can make results non-deterministic, unless we are careful

 Each process in our model contained a full set of resources, a.k.a. 
contexts:
▪ Register context (general purpose registers)

▪ Execution context (%rip)

▪ Function call context (stack space and %esp register)

▪ VM context (page table and area struct)

▪ File context (file descriptor array)

▪ Signal context (pending set, blocked set, handlers)

 Painful interactions occur at resources outside of these contexts
▪ Files, keyboard, screen, network, etc. 

▪ Think about the confusion of what the various fork bombs would do
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The Familiar: A Traditional Process

 Process = process context + code, data, and stack

Program context:
    Data registers
    Condition codes
    Stack pointer (SP)
    Program counter (PC)

Code, data, and stack

Stack
SP

Shared libraries

Run-time heap

0

Read/write data

Read-only code/dataPC

brk

Process context

Kernel context:
    VM structures
    Descriptor table
    brk pointer
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Alternate View of a Process:
Separate the activity from the resources
 Process = thread + code, data, and kernel context

▪ A thread represents an activity that uses resources in the 
broader whole process and whole world contexts. 

Shared libraries

Run-time heap

0

Read/write dataThread context:

    Data registers
    Condition codes
    Stack pointer (SP)
    Program counter (PC)

Code, data, and kernel context

Read-only code/data

Stack
SP

PC

brk

Thread (main thread)

Kernel context:
    VM structures
    Descriptor table
    brk pointer
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A Process With Multiple Threads
 Multiple threads can be associated with a process

▪ Each thread has its own logical control flow 
▪ Each thread shares the same code, data, and kernel context
▪ Each thread has its own stack for local variables 

▪ but not protected from other threads
▪ Each thread has its own thread id (TID)

Thread 1 context:

    Data registers
    Condition codes
    SP1

    PC1

stack 1

Thread 1 (main thread)

shared libraries

run-time heap

0

read/write data

Shared code and data

read-only code/data

Kernel context:

   VM structures
   Descriptor table
   brk pointer

Thread 2 context:

    Data registers
    Condition codes
    SP2

    PC2

stack 2

Thread 2 (peer thread)
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Logical View of Threads

 Threads associated with process form a pool of peers

▪ Unlike processes which form a tree hierarchy

P0

P1

sh sh sh

foo

bar

T1

Process hierarchyThreads associated with process foo

T2
T4

T5 T3

shared code, data
and kernel context
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Concurrent Threads

 Two threads are concurrent if their flows overlap in time

 Otherwise, they are sequential

 Examples:

▪ Concurrent: A & B, A&C

▪ Sequential: B & C

Time

Thread A Thread B Thread C
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Concurrent Thread Execution

 Single Core Processor

▪ Simulate parallelism by 
time slicing

 Multi-Core Processor

▪ Can have true 
parallelism

Time

Thread A Thread B Thread C Thread A Thread B Thread C

Run 3 threads on 2 cores
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Threads vs. Processes

 How threads and processes are similar

▪ Each has its own logical control flow

▪ Each can run concurrently with others (possibly on different cores)

▪ Each is context switched

 How threads and processes are different

▪ Threads share all code and data (except local stacks)

▪ Processes (typically) do not

▪ Threads are somewhat less expensive than processes

▪ Process control (creating and reaping) twice as expensive as thread 
control

▪ Linux numbers:

– ~20K cycles to create and reap a process

– ~10K cycles (or less) to create and reap a thread
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Threads vs. Signals

 Signal handler shares state with regular program

▪ Including stack

 Signal handler interrupts normal program execution
▪ Unexpected procedure call

▪ Returns to regular execution stream

▪ Not a peer

 Limited forms of synchronization
▪ Main program can block / unblock signals

▪ Main program can pause for signal

Icurr
Inext

Handler

Receive
signal
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Posix Threads (Pthreads) Interface
 Pthreads: Standard interface for ~60 functions that 

manipulate threads from C programs
▪ Creating and reaping threads

▪ pthread_create()

▪ pthread_join()

▪ Determining your thread ID

▪ pthread_self()

▪ Terminating threads

▪ pthread_cancel()

▪ pthread_exit()

▪ exit() [terminates all threads] 

▪ return [terminates current thread]

▪ Synchronizing access to shared variables

▪ pthread_mutex_init

▪ pthread_mutex_[un]lock
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void *thread(void *vargp) /* thread routine */

{

    printf("Hello, world!\n");

return NULL;                 

} 

The Pthreads "hello, world" Program

/*                                                                                                               

 * hello.c - Pthreads "hello, world" program                                                                     

 */

#include "csapp.h"

void *thread(void *vargp);                    

int main(int argc, char** argv)

{

    pthread_t tid;                            

    Pthread_create(&tid, NULL, thread, NULL); 

    Pthread_join(tid, NULL);                  

return 0;                                  

}

Thread attributes 
(usually NULL)

Thread arguments
(void *p) 

Return value
(void **p)

hello.c

Thread ID

Thread routine

hello.c
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Execution of Threaded “hello, world”

Main thread

Peer thread

return NULL;Main thread waits for 
peer  thread to terminate

exit() 

Terminates 
main thread and 
any peer threads

call Pthread_create()

call Pthread_join()

Pthread_join()returns

printf()

Peer thread
terminates

Pthread_create()returns
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Pros and Cons of Thread-Based Designs

+ Easy to share data structures between threads

▪ e.g., logging information, file cache

+ Threads are more efficient than processes

– Unintentional sharing can introduce subtle and 
   hard-to-reproduce errors!

▪ The ease with which data can be shared is both the greatest 
strength and the greatest weakness of threads

▪ Hard to know which data shared & which private

▪ Hard to detect by testing

▪ Probability of bad race outcome very low

▪ But nonzero!

▪ Future lectures
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Summary: Approaches to Concurrency

 Process-based
▪ Hard to share resources: Easy to avoid unintended sharing

▪ High overhead in adding/removing clients

 Thread-based
▪ Easy to share resources: Perhaps too easy

▪ Medium overhead

▪ Not much control over scheduling policies

▪ Difficult to debug: Event orderings not repeatable
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What happens here?

int i;

for (i = 0; i < 100; i++) {

  Pthread_create(&tid, NULL,

                 thread, &i);

}

 Race Test
▪ If no race, then each thread would get different value of i

▪ Set of saved values would consist of one copy each of 0 through 99

Main

void *thread(void *vargp) 

{  

  int i = *((int *)vargp);

  Pthread_detach(pthread_self());

  save_value(i);

  return NULL;

}

Thread
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Ut-Oh: Experimental Results
No Race

Multicore server

0

1

2

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98

Single core laptop

0

1

2

3

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98

For each “0” there is some later “2” here

And here, values are all over the place:

Some bins get 0, some get 2 or more
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Sharing: A More Involved Example

char **ptr;  /* global var */

int main(int argc, char *argv[])

{

    long i;

    pthread_t tid;

char *msgs[2] = {

        "Hello from foo",

        "Hello from bar"

    };

ptr = msgs;

for (i = 0; i < 2; i++)

Pthread_create(&tid, 

NULL, 

thread, 

(void *)i);

Pthread_exit(NULL);

}

void *thread(void *vargp)

{

    long myid = (long)vargp;

    static int cnt = 0;

    printf("[%ld]:  %s (cnt=%d)\n", 

         myid, ptr[myid], ++cnt);

    return NULL;

}

Peer threads reference main thread’s stack
indirectly through global ptr variable

sharing.c

A common, but inelegant way to 
pass a single argument to a 
thread routine
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Mapping Variable Instances to Memory

 Global variables
▪ Def:  Variable declared outside of a function

▪ Virtual memory contains exactly one instance of any global variable

 Local variables
▪ Def: Variable declared inside function without  static attribute

▪ Each thread stack contains one instance of each local variable

 Local static variables
▪ Def: Variable declared inside  function with the static attribute

▪ Virtual memory contains exactly one instance of any local static 
variable. 
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char **ptr;  /* global var */

int main(int main, char *argv[])

{

    long i;

    pthread_t tid;

char *msgs[2] = {

        "Hello from foo",

        "Hello from bar"

    };

ptr = msgs;

for (i = 0; i < 2; i++)

Pthread_create(&tid, 

NULL, 

thread, 

(void *)i);

Pthread_exit(NULL);

}

void *thread(void *vargp)

{

    long myid = (long)vargp;

    static int cnt = 0;

    printf("[%ld]:  %s (cnt=%d)\n", 

         myid, ptr[myid], ++cnt);

    return NULL;

}

Mapping Variable Instances to Memory
Global var: 1 instance (ptr [data])

Local static var: 1 instance (cnt [data])

Local vars: 1 instance (i.m, msgs.m)

Local var:  2 instances (
     myid.p0 [peer thread 0’s stack], 
  myid.p1 [peer thread 1’s stack]
)

sharing.c

Notation:
instance of

msgs in main
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Shared Variable Analysis
 Which variables are shared?

 Answer: A variable x is shared iff multiple threads 
reference at least one instance of x. Thus:

◼ ptr,  cnt, and msgs are shared

◼ i and myid are not shared

Variable   Referenced by Referenced by Referenced by
instance    main thread? peer thread 0? peer thread 1?

ptr  

cnt  

i.m  

msgs.m   

myid.p0  

myid.p1

yes yes yes

no yes yes
yes no no

yes yes yes
no yes no
no no yes

char **ptr;  /* global var */

int main(int main, char *argv[]) {

  long i; pthread_t tid;

char *msgs[2] = {"Hello from foo",

                   "Hello from bar" };

ptr = msgs;

for (i = 0; i < 2; i++)

Pthread_create(&tid, 

NULL, thread,(void *)i);

Pthread_exit(NULL);}

void *thread(void *vargp)

{

  long myid = (long)vargp;

  static int cnt = 0;

  printf("[%ld]:  %s (cnt=%d)\n", 

         myid, ptr[myid], ++cnt);

  return NULL;

}
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Shared Variable Analysis

 Which variables are shared?

 Answer: A variable x is shared iff multiple threads 
reference at least one instance of x. Thus:

◼ ptr,  cnt, and msgs are shared

◼ i and myid are not shared

Variable   Referenced by Referenced by Referenced by
instance    main thread? peer thread 0? peer thread 1?

ptr  

cnt  

i.m  

msgs.m   

myid.p0  

myid.p1

yes yes yes

no yes yes
yes no no

yes yes yes
no yes no
no no yes
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Synchronizing Threads  

 Shared variables are handy...

 …but introduce the possibility of nasty synchronization 
errors.
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badcnt.c: Improper Synchronization

/* Global shared variable */

volatile long cnt = 0; /* Counter */

int main(int argc, char **argv)

{

    long niters;

    pthread_t tid1, tid2;

niters = atoi(argv[1]);

Pthread_create(&tid1, NULL,

thread, &niters);

Pthread_create(&tid2, NULL,

thread, &niters);

Pthread_join(tid1, NULL);

Pthread_join(tid2, NULL);

/* Check result */

    if (cnt != (2 * niters))

printf("BOOM! cnt=%ld\n", cnt);

else

printf("OK cnt=%ld\n", cnt);

exit(0);

}

/* Thread routine */

void *thread(void *vargp)

{

    long j, niters = 

               *((long *)vargp);

 

    for (j = 0; j < niters; j++)

cnt++;                   

return NULL;

} 

linux> ./badcnt 10000

OK cnt=20000

linux> ./badcnt 10000

BOOM! cnt=13051

linux>

cnt should equal 20,000.

What went wrong?
badcnt.c
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Assembly Code for Counter Loop

for (j = 0; j < niters; j++)

cnt++; 

C code for counter loop in thread i

movq  (%rdi), %rcx

    testq %rcx,%rcx

    jle   .L2

movl $0, %eax

.L3:

    movq  cnt(%rip),%rdx

    addq  $1, %rdx

    movq  %rdx, cnt(%rip)

    addq  $1, %rax

    cmpq  %rcx, %rax

jne .L3

.L2:

Hi : Head

Ti : Tail

Li  : Load cnt
Ui : Update cnt
Si : Store cnt

Asm code for thread i
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Concurrent Execution
 Key idea: In general, any sequentially consistent* 

interleaving is possible, but some give an unexpected result!
▪ Ii denotes that thread i executes instruction I

▪ %rdxi is the content of %rdx in thread i’s context

H1

L1

U1

S1

H2

L2

U2

S2

T2

T1

1
1
1
1
2
2
2
2
2
1

-
0
1
1
-
-
-
-
-
1

0
0
0
1
1
1
1
2
2
2

i (thread) instri cnt%rdx1

OK

-
-
-
-
-
1
2
2
2
-

%rdx2

*For now.  In reality, on x86 even non-sequentially consistent interleavings are possible 

Note: One of many
possible interleavings
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Concurrent Execution
 Key idea: In general, any sequentially consistent interleaving 

is possible, but some give an unexpected result!
▪ Ii denotes that thread i executes instruction I

▪ %rdxi is the content of %rdx in thread i’s context

H1

L1

U1

S1

H2

L2

U2

S2

T2

T1

1
1
1
1
2
2
2
2
2
1

-
0
1
1
-
-
-
-
-
1

0
0
0
1
1
1
1
2
2
2

i (thread) instri cnt%rdx1

OK

-
-
-
-
-
1
2
2
2
-

%rdx2

Thread 1 
critical section

Thread 2 
critical section
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Concurrent Execution (cont)

 Incorrect ordering: two threads increment the counter, 
but the result is 1 instead of 2

H1

L1

U1

H2

L2

S1

T1

U2

S2

T2

1
1
1
2
2
1
1
2
2
2

-
0
1
-
-
1
1
-
-
-

0
0
0
0
0
1
1
1
1
1

i (thread) instri cnt%rdx1

-
-
-
-
0
-
-
1
1
1

%rdx2

Oops!
(badcnt will print “BOOM!”)
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Concurrent Execution (cont)

 How about this ordering?

 We can analyze the behavior using a progress graph

H1

L1

H2

L2

U2

S2

U1

S1

T1

T2

1
1
2
2
2
2
1
1
1
2

i (thread) instri cnt%rdx1 %rdx2

0
0

0

1
1 1

1
1 1

1 Oops again!
1



Carnegie Mellon

52Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Progress Graphs

A progress graph depicts
the discrete execution 
state space of concurrent
 threads.

Each axis corresponds to
the sequential order of
instructions in a thread.

Each point corresponds to
a possible execution state
(Inst1, Inst2).

E.g., (L1, S2)  denotes state
where  thread 1 has
completed L1 and thread
2 has completed S2.H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2

(L1, S2) 
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Trajectories in Progress Graphs

A trajectory is a sequence of legal 
state transitions that describes one 
possible concurrent execution of the 
threads.

Example:

H1, L1, U1, H2, L2, S1, T1, U2, S2, T2

H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2
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Trajectories in Progress Graphs

A trajectory is a sequence of legal 
state transitions that describes one 
possible concurrent execution of the 
threads.

Example:

H1, L1, U1, H2, L2,  S1, T1, U2, S2, T2

H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2



Carnegie Mellon

55Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Critical Sections and Unsafe Regions

L, U, and S form a critical 
section with respect to the 
shared variable cnt

Instructions in critical 
sections (wrt some shared 
variable) should not be 
interleaved

Sets of states where such 
interleaving occurs form 
unsafe regions

H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2

critical section wrt cnt

critical 
section 

wrt 
cnt

Unsafe region
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Critical Sections and Unsafe Regions

H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2

critical section wrt cnt

critical 
section 

wrt 
cnt

Unsafe region

Def: A trajectory is safe  iff it does 
not enter any unsafe region

Claim: A trajectory is  correct (wrt 
cnt)  iff it is safe

unsafe

safe
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badcnt.c: Improper Synchronization

/* Global shared variable */

volatile long cnt = 0; /* Counter */

int main(int argc, char **argv)

{

    long niters;

    pthread_t tid1, tid2;

niters = atoi(argv[1]);

Pthread_create(&tid1, NULL,

thread, &niters);

Pthread_create(&tid2, NULL,

thread, &niters);

Pthread_join(tid1, NULL);

Pthread_join(tid2, NULL);

/* Check result */

    if (cnt != (2 * niters))

printf("BOOM! cnt=%ld\n", cnt);

else

printf("OK cnt=%ld\n", cnt);

exit(0);

}

/* Thread routine */                                                                                             

void *thread(void *vargp)                                                                                        

{                                                                                                                

    long j, niters = 

               *((long *)vargp);                                                                           

                                                                                                                 

    for (j = 0; j < niters; j++)

cnt++;                   

return NULL;                                                                                                 

} 

badcnt.c

Variable main thread1 thread2

cnt yes* yes yes

niters.m yes yes yes

tid1.m yes no no

j.1 no yes no

j.2 no no yes

niters.1 no yes no

niters.2 no no yes
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Outline

 Concurrency

 Concurrency Hazards

 Processes Reminder

 Threads

 Sharing

 Reasoning about Sharing

 Disciplining Access and Mutual Exclusion
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Enforcing Mutual Exclusion

 Question: How can we guarantee a safe trajectory?

 Answer: We must synchronize the execution of the threads so 
that they can never have an unsafe trajectory. 
▪ i.e., need to guarantee mutually exclusive access for each critical 

section.

 Classic solution: 
▪ Mutex (pthreads) 

▪ Semaphores (Edsger Dijkstra)

 Other approaches (out of our scope)
▪ Condition variables (pthreads)

▪ Monitors (Java)
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MUTual EXclusion (mutex)

 Mutex: boolean synchronization variable

 enum {locked = 0, unlocked = 1}

 lock(m)

▪ If the mutex is currently not locked, lock it and return

▪ Otherwise, wait (spinning, yielding, etc) and retry

 unlock(m)
▪ Update the mutex state to unlocked
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MUTual EXclusion (mutex)

 Mutex: boolean synchronization variable *

 Swap(*a, b)
[t = *a; *a = b; return t;]

// Notation: what’s inside the brackets [ ]  is indivisible (a.k.a. atomic) 

//                   by the magic of hardware / OS

 Lock(m):

while (swap(&m->state, locked) == locked) ;

 Unlock(m):

m->state = unlocked;

*For now.  In reality, many other implementations and design choices (c.f., 15-410, 418, etc).
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badcnt.c: Improper Synchronization

/* Global shared variable */

volatile long cnt = 0; /* Counter */

int main(int argc, char **argv)

{

    long niters;

    pthread_t tid1, tid2;

niters = atoi(argv[1]);

Pthread_create(&tid1, NULL,

thread, &niters);

Pthread_create(&tid2, NULL,

thread, &niters);

Pthread_join(tid1, NULL);

Pthread_join(tid2, NULL);

/* Check result */

    if (cnt != (2 * niters))

printf("BOOM! cnt=%ld\n", cnt);

else

printf("OK cnt=%ld\n", cnt);

exit(0);

}

/* Thread routine */

void *thread(void *vargp)

{

    long j, niters = 

               *((long *)vargp);

    for (j = 0; j < niters; j++)

cnt++; 

return NULL;

} 

How can we fix this using 
synchronization?

badcnt.c
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goodmcnt.c: Mutex Synchronization

 Define and initialize a mutex for the shared variable cnt:

volatile long cnt = 0;  /* Counter */

  pthread_mutex_t mutex; 

pthread_mutex_init(&mutex, NULL); // No special attributes

 Surround critical section with lock and unlock:

for (i = 0; i < niters; i++) {

pthread_mutex_lock(&mutex);

cnt++;

pthread_mutex_unlock(&mutex);

}

linux> ./goodmcnt 10000

OK cnt=20000

linux> ./goodmcnt 10000

OK cnt=20000

linux>
goodcnt.cFunction badcnt goodmcnt

Time (ms)
niters = 106

12.0 214.0

Slowdown 1.0 17.8



Carnegie Mellon

64Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Why Mutexes Work

Provide mutually exclusive 
access to shared variable by 
surrounding critical section 
with lock and unlock 
operations

H1 lo(m) un(m) T1

Thread 1

Thread 2

L1 U1 S1

H2

lo(m)

un(m)

T2

L2

U2

S2

Initially
m = 1

1 0 0 0

0

-1

Unsafe region
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Why Mutexes Work

Provide mutually exclusive 
access to shared variable by 
surrounding critical section 
with lock and unlock 
operations

Mutex invariant creates a 
forbidden region that encloses 
unsafe region and that cannot 
be entered by any trajectory.

H1 lo(m) un(m) T1

Thread 1

Thread 2

L1 U1 S1

H2

lo(m)

un(m)

T2

L2

U2

S2

Initially: m = 1

1 0 0 0

0

Unsafe region
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Why Mutexes Work

Provide mutually exclusive 
access to shared variable by 
surrounding critical section 
with lock and unlock 
operations

Mutex invariant creates a 
forbidden region that encloses 
unsafe region and that cannot 
be entered by any trajectory.

H1 lo(m) un(m) T1

Thread 1

Thread 2

L1 U1 S1

H2

lo(m)

un(m)

T2

L2

U2

S2

1 0 0 0

0

Unsafe region

0 1

0

Initially: m = 1
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Unsafe region

Why Mutexes Work

Provide mutually exclusive 
access to shared variable by 
surrounding critical section 
with lock and unlock 
operations

Mutex invariant creates a 
forbidden region that encloses 
unsafe region and that cannot 
be entered by any trajectory.

H1 lo(m) un(m) T1

Thread 1

Thread 2

L1 U1 S1

H2

lo(m)

un(m)

T2

L2

U2

S2

1 1 0 0 0 0 1 1

1 1 0 0 0 0 1 1

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1 1 0 0 0 0 1 1

1 1 0 0 0 0 1 1

Initially
m = 1

Forbidden region
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Summary: Managing Races

 Identify the resources

 Identify the shared resources

 Identify the critical resources, i.e. the resources that 
are shared in a way that is not naturally safe

 Discipline the use of the critical resources to ensure 
that they are used safely

▪ Augment the critical sections of code i.e. the code that 
makes otherwise unsafe use of the critical resources to 
enforce the safe discipline.

▪ Mutual exclusion, a.k.a. “At most one (concurrent user)” is a 
very common discipline that is straight-forward to enforce
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Aside/Extra: Multiplexed Event Processing
 Concurrency can also be managed by taking explicit control over 

the scheduling and avoiding bad schedules
▪ This approach does not require a new abstraction for work, i.e. it doesn’t 

require threads, etc. 

▪ It is “old school”, but still used in microcontrollers and other austere 
environments without threads. 

 Server maintains set of active fd connections
▪ Array of connfd’s

 Loop:
▪ Determine which descriptors (connfd’s or listenfd) have pending inputs

▪ e.g., using select function

▪ arrival of pending input is an event

▪ If  listenfd has input, then accept connection and add new connfd to array

▪ Service all connfd’s with pending inputs

 Details for select-based server in book
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I/O Multiplexed Event Processing

10

connfd’s

7

4

-1

-1

12

5

-1

-1

-1

0

1

2

3

4

5

6

7

8

9

Active

Inactive

Active

Never Used

listenfd = 3 

Active Descriptors

10

connfd’s

7

4

-1

-1

12

5

-1

-1

-1

listenfd = 3 

Pending Inputs

Read and service

Anything
happened?

Read and
service
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