
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

14-513 18-613

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concurrent Programming

18-213/18-613: Introduction to Computer Systems
21st Lecture, August 20, 2023

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Outline

 Concurrency

 Concurrency Hazards

 Processes Reminder

 Threads

 Sharing

 Reasoning about Sharing

 Mutual Exclusion

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concurrency

 We’ve played a bit with “Fork bombs”

 They were “hard” to sort out, right?

 Why?

 The reason is a phenomenon known as concurrency

 Today, we are going to explore this phenomenon and
look at another model for implementing it

 For a quick one-liner, concurrency is the overlapping of
activities in time, whether through parallelism or
interleaving (turn taking)
▪ It is to be distinguished from sequentiality, i.e. in series or one-after-the-

other

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sequential thinking in a concurrent world

 Think about the world around you

▪ Consider all of the different events occurring at exactly the
same time.

▪ Consider all of the different events that interleave over time,
e.g. many classes meet in the same room at regular intervals,
but other classes use this space at the other times

 Now, think about how you describe complex
situations

▪ Break them down into individual activities

▪ Preview the activities

▪ Describe each one, one at a time.

▪ Describe the interactions among the activities

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

A concurrent world described sequentially

 To bake a cake, one needs to gather ingredients,
preheat the oven, mix the solids, mix the liquids, mix
the solids and the liquids together, crumble the
cookies for the topping, pour the cake into the pan,
bake the cake, frost the cake, decorate with the
crumbled cookies, and then clean up.

▪ Does it matter if the solids are mixed together before the
liquids are mixed together [Nope]

▪ Does it matter when the cookies are crumbled to long as it is
before they are used [Nope]

▪ Can the frosting be applied before the cake is baked? [Nope]

▪ Can cleanup be done before the cake is baked [Some of it]

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

How many cooks can we use (and when)?
 Gather: Gather ingredients (Don’t start unless we have all)

 Preheat: Preheat the oven

 Solids: Mix the solids

 Liquids: Mix the liquids

 S+L: Mix the solids and the liquids together

 Crumble: Crumble the cookies for the topping

 Pour: Pour the cake into the pan

 Bake: Bake the cake

 Frost: Frost the cake

 Decorate: Decorate with the crumbled cookies

 Clean: Clean up

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

How many cooks can we use (and when)?
Gather

Preheat Solids Liquids

S+L

Crumble

Pour

Bake

Frost

Decorate

Clean: Crumble

How many ingredients?
One person can get each?

4

1

2

2

1? More? How many knives?
“Knife wars” in the container?

2

1

Clean: S

Clean: L

Clean: F

Is this obvious
from
description?

Can this
accessibly be
described in
words?

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

What happens if some things get out of order?
Gather

Preheat Solids Liquids

S+L

Crumble

Pour

Bake

Frost

Decorate

Clean: Crumble

How many ingredients?
One person can get each?

4

1

2

2

1? More? How many knives?
“Knife wars” in the container?

2

1

Clean: S

Clean: L

Clean: F

• Pouring into the
pan before
mixing?

• Baking before
pouring?

• Frosting before
baking?

• Etc?

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concurrent Programming is Hard!

 The human mind tends to be sequential

 The notion of time is often misleading

 Thinking about all possible sequences of events in a
computer system is at least error prone and
frequently impossible

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Outline

 Concurrency

 Concurrency Hazards

 Processes Reminder

 Threads

 Sharing

 Reasoning about Sharing

 Mutual Exclusion

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

What can go wrong? Deadlock

Key characteristic: Circular wait

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Deadlock

 Example from signal handlers.

 Why don’t we use printf in handlers?

 Printf code:
▪ Acquire lock

▪ Do something

▪ Release lock

 What if signal handler interrupts call to printf?

void catch_child(int signo) {

 printf("Child exited!\n"); // this call may reenter printf/puts! BAD! DEADLOCK!
 while (waitpid(-1, NULL, WNOHANG) > 0) continue; // reap all children
}

Icurr
Inext

Acquire
lock

(Try to)
acquire
lock

Receive
signal

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Testing Printf Deadlock
void catch_child(int signo) {

 printf("Child exited!\n"); // this call may reenter printf/puts! BAD! DEADLOCK!
 while (waitpid(-1, NULL, WNOHANG) > 0) continue; // reap all children
}

int main(int argc, char** argv) {

 char buf[MAXLINE];

 int i;

 if (signal(SIGCHLD, catch_child) == SIG_ERR)

 unix_error(“signal error”);

 for (i = 0; i < 1000000; i++) {

 if (fork() == 0) {

 exit(0); // in child, exit immediately

 }

 // in parent

 sprintf(buf, "Child #%d started\n", i);

 printf("%s", buf);

 }

 return 0;

}

Child #0 started

Child #1 started

Child #2 started

Child #3 started

Child exited!

Child #4 started

Child exited!

Child #5 started

 .

 .

 .

Child #5888 started

Child #5889 started

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Why Does Printf require Locks?

 Printf (and fprintf, sprintf) implement buffered I/O

 Require locks to access to shared buffers

unreadalready readno longer in buffer unseen

Current File Position

Buffered Portion

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Starvation

 Yellow must yield to
green

 Continuous stream
of green cars

 Overall system
makes progress, but
some individuals
wait indefinitely

Sometimes starvation is okay: If the fire trucks get to the fire in time to put it out, it
is okay if the gawkers go home without “getting to see” it. Priority can cause
starvation and that may be okay, sometimes, and not other times.

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Data Race

If a collision occurs, and if not, which car gets the space, depends purely on
timing. This isn’t something the programmer specifies. It is arbitrary in the
sense that it is impacted by many details that escape consideration and can vary
from run to run.

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concurrent Programming is Hard!

 Classical problem classes of concurrent programs:

▪ Deadlock: improper resource allocation prevents forward progress

▪ Example: traffic gridlock

▪ Starvation / Fairness: external events and/or system scheduling
decisions can prevent sub-task progress

▪ Example: people always jump in front of you in line

▪ Races: outcome depends on arbitrary scheduling decisions
elsewhere in the system

▪ Example: who gets the last seat on the airplane?

 Many aspects of concurrent programming are beyond the
scope of our course…

▪ but, not all ☺

▪ We’ll cover some of these aspects in the next few lectures.

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concurrent Programming is Hard!

It may be hard, but …

 it can be useful and sometimes necessary!

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Outline

 Concurrency

 Concurrency Hazards

 Processes Reminder

 Threads

 Sharing

 Reasoning about Sharing

 Mutual Exclusion

Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Models for concurrency
 We’ve already seen that processes can run concurrently

▪ Fork bombs and process graphs!

▪ And, we’ve already seen that, when concurrent processes interact, the resulting
executions can have constraints and degrees of freedom

▪ The freedom can make results non-deterministic, unless we are careful

 Each process in our model contained a full set of resources, a.k.a.
contexts:
▪ Register context (general purpose registers)

▪ Execution context (%rip)

▪ Function call context (stack space and %esp register)

▪ VM context (page table and area struct)

▪ File context (file descriptor array)

▪ Signal context (pending set, blocked set, handlers)

 Painful interactions occur at resources outside of these contexts
▪ Files, keyboard, screen, network, etc.

▪ Think about the confusion of what the various fork bombs would do

Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The Familiar: A Traditional Process

 Process = process context + code, data, and stack

Program context:
 Data registers
 Condition codes
 Stack pointer (SP)
 Program counter (PC)

Code, data, and stack

Stack
SP

Shared libraries

Run-time heap

0

Read/write data

Read-only code/dataPC

brk

Process context

Kernel context:
 VM structures
 Descriptor table
 brk pointer

Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Outline

 Concurrency

 Concurrency Hazards

 Processes Reminder

 Threads

 Sharing

 Reasoning about Sharing

 Mutual Exclusion

Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Alternate View of a Process:
Separate the activity from the resources
 Process = thread + code, data, and kernel context

▪ A thread represents an activity that uses resources in the
broader whole process and whole world contexts.

Shared libraries

Run-time heap

0

Read/write dataThread context:

 Data registers
 Condition codes
 Stack pointer (SP)
 Program counter (PC)

Code, data, and kernel context

Read-only code/data

Stack
SP

PC

brk

Thread (main thread)

Kernel context:
 VM structures
 Descriptor table
 brk pointer

Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

A Process With Multiple Threads
 Multiple threads can be associated with a process

▪ Each thread has its own logical control flow
▪ Each thread shares the same code, data, and kernel context
▪ Each thread has its own stack for local variables

▪ but not protected from other threads
▪ Each thread has its own thread id (TID)

Thread 1 context:

 Data registers
 Condition codes
 SP1

 PC1

stack 1

Thread 1 (main thread)

shared libraries

run-time heap

0

read/write data

Shared code and data

read-only code/data

Kernel context:

 VM structures
 Descriptor table
 brk pointer

Thread 2 context:

 Data registers
 Condition codes
 SP2

 PC2

stack 2

Thread 2 (peer thread)

Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Logical View of Threads

 Threads associated with process form a pool of peers

▪ Unlike processes which form a tree hierarchy

P0

P1

sh sh sh

foo

bar

T1

Process hierarchyThreads associated with process foo

T2
T4

T5 T3

shared code, data
and kernel context

Carnegie Mellon

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concurrent Threads

 Two threads are concurrent if their flows overlap in time

 Otherwise, they are sequential

 Examples:

▪ Concurrent: A & B, A&C

▪ Sequential: B & C

Time

Thread A Thread B Thread C

Carnegie Mellon

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concurrent Thread Execution

 Single Core Processor

▪ Simulate parallelism by
time slicing

 Multi-Core Processor

▪ Can have true
parallelism

Time

Thread A Thread B Thread C Thread A Thread B Thread C

Run 3 threads on 2 cores

Carnegie Mellon

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Threads vs. Processes

 How threads and processes are similar

▪ Each has its own logical control flow

▪ Each can run concurrently with others (possibly on different cores)

▪ Each is context switched

 How threads and processes are different

▪ Threads share all code and data (except local stacks)

▪ Processes (typically) do not

▪ Threads are somewhat less expensive than processes

▪ Process control (creating and reaping) twice as expensive as thread
control

▪ Linux numbers:

– ~20K cycles to create and reap a process

– ~10K cycles (or less) to create and reap a thread

Carnegie Mellon

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Threads vs. Signals

 Signal handler shares state with regular program

▪ Including stack

 Signal handler interrupts normal program execution
▪ Unexpected procedure call

▪ Returns to regular execution stream

▪ Not a peer

 Limited forms of synchronization
▪ Main program can block / unblock signals

▪ Main program can pause for signal

Icurr
Inext

Handler

Receive
signal

Carnegie Mellon

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Posix Threads (Pthreads) Interface
 Pthreads: Standard interface for ~60 functions that

manipulate threads from C programs
▪ Creating and reaping threads

▪ pthread_create()

▪ pthread_join()

▪ Determining your thread ID

▪ pthread_self()

▪ Terminating threads

▪ pthread_cancel()

▪ pthread_exit()

▪ exit() [terminates all threads]

▪ return [terminates current thread]

▪ Synchronizing access to shared variables

▪ pthread_mutex_init

▪ pthread_mutex_[un]lock

Carnegie Mellon

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

void *thread(void *vargp) /* thread routine */

{

 printf("Hello, world!\n");

return NULL;

}

The Pthreads "hello, world" Program

/*

 * hello.c - Pthreads "hello, world" program

 */

#include "csapp.h"

void *thread(void *vargp);

int main(int argc, char** argv)

{

 pthread_t tid;

 Pthread_create(&tid, NULL, thread, NULL);

 Pthread_join(tid, NULL);

return 0;

}

Thread attributes
(usually NULL)

Thread arguments
(void *p)

Return value
(void **p)

hello.c

Thread ID

Thread routine

hello.c

Carnegie Mellon

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Execution of Threaded “hello, world”

Main thread

Peer thread

return NULL;Main thread waits for
peer thread to terminate

exit()

Terminates
main thread and
any peer threads

call Pthread_create()

call Pthread_join()

Pthread_join()returns

printf()

Peer thread
terminates

Pthread_create()returns

Carnegie Mellon

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Pros and Cons of Thread-Based Designs

+ Easy to share data structures between threads

▪ e.g., logging information, file cache

+ Threads are more efficient than processes

– Unintentional sharing can introduce subtle and
 hard-to-reproduce errors!

▪ The ease with which data can be shared is both the greatest
strength and the greatest weakness of threads

▪ Hard to know which data shared & which private

▪ Hard to detect by testing

▪ Probability of bad race outcome very low

▪ But nonzero!

▪ Future lectures

Carnegie Mellon

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary: Approaches to Concurrency

 Process-based
▪ Hard to share resources: Easy to avoid unintended sharing

▪ High overhead in adding/removing clients

 Thread-based
▪ Easy to share resources: Perhaps too easy

▪ Medium overhead

▪ Not much control over scheduling policies

▪ Difficult to debug: Event orderings not repeatable

Carnegie Mellon

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Outline

 Concurrency

 Concurrency Hazards

 Processes Reminder

 Threads

 Sharing

 Reasoning about Sharing

 Mutual Exclusion

Carnegie Mellon

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

What happens here?

int i;

for (i = 0; i < 100; i++) {

 Pthread_create(&tid, NULL,

 thread, &i);

}

 Race Test
▪ If no race, then each thread would get different value of i

▪ Set of saved values would consist of one copy each of 0 through 99

Main

void *thread(void *vargp)

{

 int i = *((int *)vargp);

 Pthread_detach(pthread_self());

 save_value(i);

 return NULL;

}

Thread

Carnegie Mellon

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Ut-Oh: Experimental Results
No Race

Multicore server

0

1

2

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98

Single core laptop

0

1

2

3

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98

For each “0” there is some later “2” here

And here, values are all over the place:

Some bins get 0, some get 2 or more

Carnegie Mellon

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Outline

 Concurrency

 Concurrency Hazards

 Processes Reminder

 Threads

 Sharing

 Reasoning about Sharing

 Mutual Exclusion

Carnegie Mellon

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sharing: A More Involved Example

char **ptr; /* global var */

int main(int argc, char *argv[])

{

 long i;

 pthread_t tid;

char *msgs[2] = {

 "Hello from foo",

 "Hello from bar"

 };

ptr = msgs;

for (i = 0; i < 2; i++)

Pthread_create(&tid,

NULL,

thread,

(void *)i);

Pthread_exit(NULL);

}

void *thread(void *vargp)

{

 long myid = (long)vargp;

 static int cnt = 0;

 printf("[%ld]: %s (cnt=%d)\n",

 myid, ptr[myid], ++cnt);

 return NULL;

}

Peer threads reference main thread’s stack
indirectly through global ptr variable

sharing.c

A common, but inelegant way to
pass a single argument to a
thread routine

Carnegie Mellon

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Mapping Variable Instances to Memory

 Global variables
▪ Def: Variable declared outside of a function

▪ Virtual memory contains exactly one instance of any global variable

 Local variables
▪ Def: Variable declared inside function without static attribute

▪ Each thread stack contains one instance of each local variable

 Local static variables
▪ Def: Variable declared inside function with the static attribute

▪ Virtual memory contains exactly one instance of any local static
variable.

Carnegie Mellon

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

char **ptr; /* global var */

int main(int main, char *argv[])

{

 long i;

 pthread_t tid;

char *msgs[2] = {

 "Hello from foo",

 "Hello from bar"

 };

ptr = msgs;

for (i = 0; i < 2; i++)

Pthread_create(&tid,

NULL,

thread,

(void *)i);

Pthread_exit(NULL);

}

void *thread(void *vargp)

{

 long myid = (long)vargp;

 static int cnt = 0;

 printf("[%ld]: %s (cnt=%d)\n",

 myid, ptr[myid], ++cnt);

 return NULL;

}

Mapping Variable Instances to Memory
Global var: 1 instance (ptr [data])

Local static var: 1 instance (cnt [data])

Local vars: 1 instance (i.m, msgs.m)

Local var: 2 instances (
 myid.p0 [peer thread 0’s stack],
 myid.p1 [peer thread 1’s stack]
)

sharing.c

Notation:
instance of

msgs in main

Carnegie Mellon

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Shared Variable Analysis
 Which variables are shared?

 Answer: A variable x is shared iff multiple threads
reference at least one instance of x. Thus:

◼ ptr, cnt, and msgs are shared

◼ i and myid are not shared

Variable Referenced by Referenced by Referenced by
instance main thread? peer thread 0? peer thread 1?

ptr

cnt

i.m

msgs.m

myid.p0

myid.p1

yes yes yes

no yes yes
yes no no

yes yes yes
no yes no
no no yes

char **ptr; /* global var */

int main(int main, char *argv[]) {

 long i; pthread_t tid;

char *msgs[2] = {"Hello from foo",

 "Hello from bar" };

ptr = msgs;

for (i = 0; i < 2; i++)

Pthread_create(&tid,

NULL, thread,(void *)i);

Pthread_exit(NULL);}

void *thread(void *vargp)

{

 long myid = (long)vargp;

 static int cnt = 0;

 printf("[%ld]: %s (cnt=%d)\n",

 myid, ptr[myid], ++cnt);

 return NULL;

}

Carnegie Mellon

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Shared Variable Analysis

 Which variables are shared?

 Answer: A variable x is shared iff multiple threads
reference at least one instance of x. Thus:

◼ ptr, cnt, and msgs are shared

◼ i and myid are not shared

Variable Referenced by Referenced by Referenced by
instance main thread? peer thread 0? peer thread 1?

ptr

cnt

i.m

msgs.m

myid.p0

myid.p1

yes yes yes

no yes yes
yes no no

yes yes yes
no yes no
no no yes

Carnegie Mellon

45Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Synchronizing Threads

 Shared variables are handy...

 …but introduce the possibility of nasty synchronization
errors.

Carnegie Mellon

46Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

badcnt.c: Improper Synchronization

/* Global shared variable */

volatile long cnt = 0; /* Counter */

int main(int argc, char **argv)

{

 long niters;

 pthread_t tid1, tid2;

niters = atoi(argv[1]);

Pthread_create(&tid1, NULL,

thread, &niters);

Pthread_create(&tid2, NULL,

thread, &niters);

Pthread_join(tid1, NULL);

Pthread_join(tid2, NULL);

/* Check result */

 if (cnt != (2 * niters))

printf("BOOM! cnt=%ld\n", cnt);

else

printf("OK cnt=%ld\n", cnt);

exit(0);

}

/* Thread routine */

void *thread(void *vargp)

{

 long j, niters =

 *((long *)vargp);

 for (j = 0; j < niters; j++)

cnt++;

return NULL;

}

linux> ./badcnt 10000

OK cnt=20000

linux> ./badcnt 10000

BOOM! cnt=13051

linux>

cnt should equal 20,000.

What went wrong?
badcnt.c

Carnegie Mellon

47Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Assembly Code for Counter Loop

for (j = 0; j < niters; j++)

cnt++;

C code for counter loop in thread i

movq (%rdi), %rcx

 testq %rcx,%rcx

 jle .L2

movl $0, %eax

.L3:

 movq cnt(%rip),%rdx

 addq $1, %rdx

 movq %rdx, cnt(%rip)

 addq $1, %rax

 cmpq %rcx, %rax

jne .L3

.L2:

Hi : Head

Ti : Tail

Li : Load cnt
Ui : Update cnt
Si : Store cnt

Asm code for thread i

Carnegie Mellon

48Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concurrent Execution
 Key idea: In general, any sequentially consistent*

interleaving is possible, but some give an unexpected result!
▪ Ii denotes that thread i executes instruction I

▪ %rdxi is the content of %rdx in thread i’s context

H1

L1

U1

S1

H2

L2

U2

S2

T2

T1

1
1
1
1
2
2
2
2
2
1

-
0
1
1
-
-
-
-
-
1

0
0
0
1
1
1
1
2
2
2

i (thread) instri cnt%rdx1

OK

-
-
-
-
-
1
2
2
2
-

%rdx2

*For now. In reality, on x86 even non-sequentially consistent interleavings are possible

Note: One of many
possible interleavings

Carnegie Mellon

49Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concurrent Execution
 Key idea: In general, any sequentially consistent interleaving

is possible, but some give an unexpected result!
▪ Ii denotes that thread i executes instruction I

▪ %rdxi is the content of %rdx in thread i’s context

H1

L1

U1

S1

H2

L2

U2

S2

T2

T1

1
1
1
1
2
2
2
2
2
1

-
0
1
1
-
-
-
-
-
1

0
0
0
1
1
1
1
2
2
2

i (thread) instri cnt%rdx1

OK

-
-
-
-
-
1
2
2
2
-

%rdx2

Thread 1
critical section

Thread 2
critical section

Carnegie Mellon

50Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concurrent Execution (cont)

 Incorrect ordering: two threads increment the counter,
but the result is 1 instead of 2

H1

L1

U1

H2

L2

S1

T1

U2

S2

T2

1
1
1
2
2
1
1
2
2
2

-
0
1
-
-
1
1
-
-
-

0
0
0
0
0
1
1
1
1
1

i (thread) instri cnt%rdx1

-
-
-
-
0
-
-
1
1
1

%rdx2

Oops!
(badcnt will print “BOOM!”)

Carnegie Mellon

51Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concurrent Execution (cont)

 How about this ordering?

 We can analyze the behavior using a progress graph

H1

L1

H2

L2

U2

S2

U1

S1

T1

T2

1
1
2
2
2
2
1
1
1
2

i (thread) instri cnt%rdx1 %rdx2

0
0

0

1
1 1

1
1 1

1 Oops again!
1

Carnegie Mellon

52Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Progress Graphs

A progress graph depicts
the discrete execution
state space of concurrent
 threads.

Each axis corresponds to
the sequential order of
instructions in a thread.

Each point corresponds to
a possible execution state
(Inst1, Inst2).

E.g., (L1, S2) denotes state
where thread 1 has
completed L1 and thread
2 has completed S2.H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2

(L1, S2)

Carnegie Mellon

53Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Trajectories in Progress Graphs

A trajectory is a sequence of legal
state transitions that describes one
possible concurrent execution of the
threads.

Example:

H1, L1, U1, H2, L2, S1, T1, U2, S2, T2

H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2

Carnegie Mellon

54Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Trajectories in Progress Graphs

A trajectory is a sequence of legal
state transitions that describes one
possible concurrent execution of the
threads.

Example:

H1, L1, U1, H2, L2, S1, T1, U2, S2, T2

H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2

Carnegie Mellon

55Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Critical Sections and Unsafe Regions

L, U, and S form a critical
section with respect to the
shared variable cnt

Instructions in critical
sections (wrt some shared
variable) should not be
interleaved

Sets of states where such
interleaving occurs form
unsafe regions

H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2

critical section wrt cnt

critical
section

wrt
cnt

Unsafe region

Carnegie Mellon

56Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Critical Sections and Unsafe Regions

H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2

critical section wrt cnt

critical
section

wrt
cnt

Unsafe region

Def: A trajectory is safe iff it does
not enter any unsafe region

Claim: A trajectory is correct (wrt
cnt) iff it is safe

unsafe

safe

Carnegie Mellon

57Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

badcnt.c: Improper Synchronization

/* Global shared variable */

volatile long cnt = 0; /* Counter */

int main(int argc, char **argv)

{

 long niters;

 pthread_t tid1, tid2;

niters = atoi(argv[1]);

Pthread_create(&tid1, NULL,

thread, &niters);

Pthread_create(&tid2, NULL,

thread, &niters);

Pthread_join(tid1, NULL);

Pthread_join(tid2, NULL);

/* Check result */

 if (cnt != (2 * niters))

printf("BOOM! cnt=%ld\n", cnt);

else

printf("OK cnt=%ld\n", cnt);

exit(0);

}

/* Thread routine */

void *thread(void *vargp)

{

 long j, niters =

 *((long *)vargp);

 for (j = 0; j < niters; j++)

cnt++;

return NULL;

}

badcnt.c

Variable main thread1 thread2

cnt yes* yes yes

niters.m yes yes yes

tid1.m yes no no

j.1 no yes no

j.2 no no yes

niters.1 no yes no

niters.2 no no yes

Carnegie Mellon

58Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Outline

 Concurrency

 Concurrency Hazards

 Processes Reminder

 Threads

 Sharing

 Reasoning about Sharing

 Disciplining Access and Mutual Exclusion

Carnegie Mellon

59Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Enforcing Mutual Exclusion

 Question: How can we guarantee a safe trajectory?

 Answer: We must synchronize the execution of the threads so
that they can never have an unsafe trajectory.
▪ i.e., need to guarantee mutually exclusive access for each critical

section.

 Classic solution:
▪ Mutex (pthreads)

▪ Semaphores (Edsger Dijkstra)

 Other approaches (out of our scope)
▪ Condition variables (pthreads)

▪ Monitors (Java)

Carnegie Mellon

60Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

MUTual EXclusion (mutex)

 Mutex: boolean synchronization variable

 enum {locked = 0, unlocked = 1}

 lock(m)

▪ If the mutex is currently not locked, lock it and return

▪ Otherwise, wait (spinning, yielding, etc) and retry

 unlock(m)
▪ Update the mutex state to unlocked

Carnegie Mellon

61Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

MUTual EXclusion (mutex)

 Mutex: boolean synchronization variable *

 Swap(*a, b)
[t = *a; *a = b; return t;]

// Notation: what’s inside the brackets [] is indivisible (a.k.a. atomic)

// by the magic of hardware / OS

 Lock(m):

while (swap(&m->state, locked) == locked) ;

 Unlock(m):

m->state = unlocked;

*For now. In reality, many other implementations and design choices (c.f., 15-410, 418, etc).

Carnegie Mellon

62Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

badcnt.c: Improper Synchronization

/* Global shared variable */

volatile long cnt = 0; /* Counter */

int main(int argc, char **argv)

{

 long niters;

 pthread_t tid1, tid2;

niters = atoi(argv[1]);

Pthread_create(&tid1, NULL,

thread, &niters);

Pthread_create(&tid2, NULL,

thread, &niters);

Pthread_join(tid1, NULL);

Pthread_join(tid2, NULL);

/* Check result */

 if (cnt != (2 * niters))

printf("BOOM! cnt=%ld\n", cnt);

else

printf("OK cnt=%ld\n", cnt);

exit(0);

}

/* Thread routine */

void *thread(void *vargp)

{

 long j, niters =

 *((long *)vargp);

 for (j = 0; j < niters; j++)

cnt++;

return NULL;

}

How can we fix this using
synchronization?

badcnt.c

Carnegie Mellon

63Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

goodmcnt.c: Mutex Synchronization

 Define and initialize a mutex for the shared variable cnt:

volatile long cnt = 0; /* Counter */

 pthread_mutex_t mutex;

pthread_mutex_init(&mutex, NULL); // No special attributes

 Surround critical section with lock and unlock:

for (i = 0; i < niters; i++) {

pthread_mutex_lock(&mutex);

cnt++;

pthread_mutex_unlock(&mutex);

}

linux> ./goodmcnt 10000

OK cnt=20000

linux> ./goodmcnt 10000

OK cnt=20000

linux>
goodcnt.cFunction badcnt goodmcnt

Time (ms)
niters = 106

12.0 214.0

Slowdown 1.0 17.8

Carnegie Mellon

64Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Why Mutexes Work

Provide mutually exclusive
access to shared variable by
surrounding critical section
with lock and unlock
operations

H1 lo(m) un(m) T1

Thread 1

Thread 2

L1 U1 S1

H2

lo(m)

un(m)

T2

L2

U2

S2

Initially
m = 1

1 0 0 0

0

-1

Unsafe region

Carnegie Mellon

65Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Why Mutexes Work

Provide mutually exclusive
access to shared variable by
surrounding critical section
with lock and unlock
operations

Mutex invariant creates a
forbidden region that encloses
unsafe region and that cannot
be entered by any trajectory.

H1 lo(m) un(m) T1

Thread 1

Thread 2

L1 U1 S1

H2

lo(m)

un(m)

T2

L2

U2

S2

Initially: m = 1

1 0 0 0

0

Unsafe region

Carnegie Mellon

66Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Why Mutexes Work

Provide mutually exclusive
access to shared variable by
surrounding critical section
with lock and unlock
operations

Mutex invariant creates a
forbidden region that encloses
unsafe region and that cannot
be entered by any trajectory.

H1 lo(m) un(m) T1

Thread 1

Thread 2

L1 U1 S1

H2

lo(m)

un(m)

T2

L2

U2

S2

1 0 0 0

0

Unsafe region

0 1

0

Initially: m = 1

Carnegie Mellon

67Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Unsafe region

Why Mutexes Work

Provide mutually exclusive
access to shared variable by
surrounding critical section
with lock and unlock
operations

Mutex invariant creates a
forbidden region that encloses
unsafe region and that cannot
be entered by any trajectory.

H1 lo(m) un(m) T1

Thread 1

Thread 2

L1 U1 S1

H2

lo(m)

un(m)

T2

L2

U2

S2

1 1 0 0 0 0 1 1

1 1 0 0 0 0 1 1

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1 1 0 0 0 0 1 1

1 1 0 0 0 0 1 1

Initially
m = 1

Forbidden region

Carnegie Mellon

68Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary: Managing Races

 Identify the resources

 Identify the shared resources

 Identify the critical resources, i.e. the resources that
are shared in a way that is not naturally safe

 Discipline the use of the critical resources to ensure
that they are used safely

▪ Augment the critical sections of code i.e. the code that
makes otherwise unsafe use of the critical resources to
enforce the safe discipline.

▪ Mutual exclusion, a.k.a. “At most one (concurrent user)” is a
very common discipline that is straight-forward to enforce

Carnegie Mellon

69Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Aside/Extra: Multiplexed Event Processing
 Concurrency can also be managed by taking explicit control over

the scheduling and avoiding bad schedules
▪ This approach does not require a new abstraction for work, i.e. it doesn’t

require threads, etc.

▪ It is “old school”, but still used in microcontrollers and other austere
environments without threads.

 Server maintains set of active fd connections
▪ Array of connfd’s

 Loop:
▪ Determine which descriptors (connfd’s or listenfd) have pending inputs

▪ e.g., using select function

▪ arrival of pending input is an event

▪ If listenfd has input, then accept connection and add new connfd to array

▪ Service all connfd’s with pending inputs

 Details for select-based server in book

Carnegie Mellon

70Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

I/O Multiplexed Event Processing

10

connfd’s

7

4

-1

-1

12

5

-1

-1

-1

0

1

2

3

4

5

6

7

8

9

Active

Inactive

Active

Never Used

listenfd = 3

Active Descriptors

10

connfd’s

7

4

-1

-1

12

5

-1

-1

-1

listenfd = 3

Pending Inputs

Read and service

Anything
happened?

Read and
service

	Slide 1
	Slide 2: Concurrent Programming 18-213/18-613: Introduction to Computer Systems 21st Lecture, August 20, 2023
	Slide 3: Outline
	Slide 4: Concurrency
	Slide 5: Sequential thinking in a concurrent world
	Slide 6: A concurrent world described sequentially
	Slide 7: How many cooks can we use (and when)?
	Slide 8: How many cooks can we use (and when)?
	Slide 9: What happens if some things get out of order?
	Slide 10: Concurrent Programming is Hard!
	Slide 11: Outline
	Slide 12: What can go wrong? Deadlock
	Slide 13: Deadlock
	Slide 14: Testing Printf Deadlock
	Slide 15: Why Does Printf require Locks?
	Slide 16: Starvation
	Slide 17: Data Race
	Slide 18: Concurrent Programming is Hard!
	Slide 19: Concurrent Programming is Hard!
	Slide 20: Outline
	Slide 21: Models for concurrency
	Slide 22: The Familiar: A Traditional Process
	Slide 23: Outline
	Slide 24: Alternate View of a Process: Separate the activity from the resources
	Slide 25: A Process With Multiple Threads
	Slide 26: Logical View of Threads
	Slide 27: Concurrent Threads
	Slide 28: Concurrent Thread Execution
	Slide 29: Threads vs. Processes
	Slide 30: Threads vs. Signals
	Slide 31: Posix Threads (Pthreads) Interface
	Slide 32: The Pthreads "hello, world" Program
	Slide 33: Execution of Threaded “hello, world”
	Slide 34: Pros and Cons of Thread-Based Designs
	Slide 35: Summary: Approaches to Concurrency
	Slide 36: Outline
	Slide 37: What happens here?
	Slide 38: Ut-Oh: Experimental Results
	Slide 39: Outline
	Slide 40: Sharing: A More Involved Example
	Slide 41: Mapping Variable Instances to Memory
	Slide 42: Mapping Variable Instances to Memory
	Slide 43: Shared Variable Analysis
	Slide 44: Shared Variable Analysis
	Slide 45: Synchronizing Threads
	Slide 46: badcnt.c: Improper Synchronization
	Slide 47: Assembly Code for Counter Loop
	Slide 48: Concurrent Execution
	Slide 49: Concurrent Execution
	Slide 50: Concurrent Execution (cont)
	Slide 51: Concurrent Execution (cont)
	Slide 52: Progress Graphs
	Slide 53: Trajectories in Progress Graphs
	Slide 54: Trajectories in Progress Graphs
	Slide 55: Critical Sections and Unsafe Regions
	Slide 56: Critical Sections and Unsafe Regions
	Slide 57: badcnt.c: Improper Synchronization
	Slide 58: Outline
	Slide 59: Enforcing Mutual Exclusion
	Slide 60: MUTual EXclusion (mutex)
	Slide 61: MUTual EXclusion (mutex)
	Slide 62: badcnt.c: Improper Synchronization
	Slide 63: goodmcnt.c: Mutex Synchronization
	Slide 64: Why Mutexes Work
	Slide 65: Why Mutexes Work
	Slide 66: Why Mutexes Work
	Slide 67: Why Mutexes Work
	Slide 68: Summary: Managing Races
	Slide 69: Aside/Extra: Multiplexed Event Processing
	Slide 70: I/O Multiplexed Event Processing

