
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

14-513 18-613

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Synchronization: Advanced

18-213/18-613: Introduction to Computer Systems
25th Lecture, August 1st, 2023

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Client /
Server
Session

Reminder: Iterative Echo Server
Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close
EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Iterative Servers

 Iterative servers process one connection at a time

Client 1 Server

connect

accept

write read

call read

close close

writeret read

read

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Iterative Servers

 Iterative servers process one request at a time

Client 1 Server Client 2

connect

accept connect

write read

call read

close

accept

write

read

close Wait for server
to finish with
Client 1

call read

write

ret read

writeret read

read

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Where Does Second Client Block?

 Second client attempts to
connect to iterative server

 Call to connect returns
▪ Even though connection not

yet accepted

▪ Server side TCP manager
queues request

▪ Feature known as “TCP listen
backlog”

 Call to rio_writen returns
▪ Server side TCP manager

buffers input data

 Call to rio_readlineb blocks!
▪ Server hasn’t written anything

for it to read yet.

Client

socket

rio_readlineb

rio_writen

Connection
request

open_clientfd

connect

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Fundamental Flaw of Iterative Servers

 Solution: use concurrent servers instead
▪ Concurrent servers use multiple concurrent flows to serve multiple

clients at the same time

User goes
out to lunch

Client 1 blocks
waiting for user
to type in data

Client 2 blocks
waiting to read
from server

Server blocks
waiting for
data from

Client 1

Client 1 Server Client 2

connect

accept connect

write call read

call read
write

call read
writeret read

call read

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Approaches for Writing Concurrent Servers

Allow server to handle multiple clients concurrently

1. Process-based
▪ Kernel automatically interleaves multiple logical flows

▪ Each flow has its own private address space

2. Event-based
▪ Programmer manually interleaves multiple logical flows

▪ All flows share the same address space

▪ Uses technique called I/O multiplexing

3. Thread-based
▪ Kernel automatically interleaves multiple logical flows

▪ Each flow shares the same address space

▪ Hybrid of process-based and event-based

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Process-based Servers CSAPP 12.1

 Event-based Servers CSAPP 12.2

 Thread-based Servers CSAPP 12.3

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Approach #1: Process-based Servers

 Spawn separate process for each client

client 1 server

call connect
call accept

call read

ret accept

call fgets
forkchild 1

User goes
out to lunch

Client 1
blocks

waiting for
user to type

in data

call accept

Child blocks
waiting for
data from

Client 1

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Approach #1: Process-based Servers

 Spawn separate process for each client

client 1 server client 2

call connect
call accept

call read

ret accept call connect

call fgets
forkchild 1

User goes
out to lunch

Client 1
blocks

waiting for
user to type

in data

call accept

ret accept

call fgets

writefork

call

read

child 2

write

call read

ret read

close
close

...

Child blocks
waiting for
data from

Client 1

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

int main(int argc, char **argv)

{

 int listenfd, connfd;

 socklen_t clientlen;

 struct sockaddr_storage clientaddr;

listenfd = Open_listenfd(argv[1]);

 while (1) {

 clientlen = sizeof(struct sockaddr_storage);

 connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);

echo(connfd);

Close(connfd);

 }

 exit(0);

}

Iterative Echo Server

echoserverp.c

▪Accept a connection request

▪Handle echo requests until client terminates

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

int main(int argc, char **argv)

{

 int listenfd, connfd;

 socklen_t clientlen;

 struct sockaddr_storage clientaddr;

Signal(SIGCHLD, sigchld_handler);

listenfd = Open_listenfd(argv[1]);

 while (1) {

 clientlen = sizeof(struct sockaddr_storage);

 connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);

 if (Fork() == 0) {

 Close(listenfd); /* Child closes its listening socket */

echo(connfd); /* Child services client */

Close(connfd); /* Child closes connection with client */

 exit(0); /* Child exits */

 }

 Close(connfd); /* Parent closes connected socket (important!) */

 }

}

Making a Concurrent Echo Server

echoserverp.c

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

int main(int argc, char **argv)

{

 int listenfd, connfd;

 socklen_t clientlen;

 struct sockaddr_storage clientaddr;

Signal(SIGCHLD, sigchld_handler);

listenfd = Open_listenfd(argv[1]);

 while (1) {

 clientlen = sizeof(struct sockaddr_storage);

 connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);

 if (Fork() == 0) {

 Close(listenfd); /* Child closes its listening socket */

echo(connfd); /* Child services client */

Close(connfd); /* Child closes connection with client */

 exit(0); /* Child exits */

 }

 Close(connfd); /* Parent closes connected socket (important!) */

 }

}

Making a Concurrent Echo Server

echoserverp.c
Why?

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

int main(int argc, char **argv)

{

 int listenfd, connfd;

 socklen_t clientlen;

 struct sockaddr_storage clientaddr;

Signal(SIGCHLD, sigchld_handler);

listenfd = Open_listenfd(argv[1]);

 while (1) {

 clientlen = sizeof(struct sockaddr_storage);

 connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);

 if (Fork() == 0) {

 Close(listenfd); /* Child closes its listening socket */

echo(connfd); /* Child services client */

Close(connfd); /* Child closes connection with client */

 exit(0); /* Child exits */

 }

 Close(connfd); /* Parent closes connected socket (important!) */

 }

}

Making a Concurrent Echo Server

echoserverp.c

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

int main(int argc, char **argv)

{

 int listenfd, connfd;

 socklen_t clientlen;

 struct sockaddr_storage clientaddr;

Signal(SIGCHLD, sigchld_handler);

listenfd = Open_listenfd(argv[1]);

 while (1) {

 clientlen = sizeof(struct sockaddr_storage);

 connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);

 if (Fork() == 0) {

 Close(listenfd); /* Child closes its listening socket */

echo(connfd); /* Child services client */

Close(connfd); /* Child closes connection with client */

 exit(0); /* Child exits */

 }

 Close(connfd); /* Parent closes connected socket (important!) */

 }

}

Process-Based Concurrent Echo Server

echoserverp.c

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Process-Based Concurrent Echo Server (cont)

void sigchld_handler(int sig)

{

 while (waitpid(-1, 0, WNOHANG) > 0)

 ;

return;

}

▪ Reap all zombie children

echoserverp.c

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concurrent Server: accept Illustrated
listenfd(3)

Client

1. Server blocks in accept,
waiting for connection
request on listening
descriptor listenfd

clientfd

Server

listenfd(3)

Client

clientfd

Server
2. Client makes connection
request by calling connect

Connection
request

listenfd(3)

Client

clientfd

Server

3. Server returns connfd from
accept. Forks child to handle
client. Connection is now
established between clientfd
and connfd

Server
Child

connfd(4)

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Client 2 data

Process-based Server Execution Model

▪ Each client handled by independent child process

▪ No shared state between them

▪ Both parent & child have copies of listenfd and connfd
▪ Parent must close connfd

▪ Child should close listenfd

Client 1
server

process

Client 2
server

process

Listening
server

process

Connection requests

Client 1 data

Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Issues with Process-based Servers

 Listening server process must reap zombie children

▪ to avoid fatal memory leak

 Parent process must close its copy of connfd

▪ Kernel keeps reference count for each socket/open file

▪ After fork, refcnt(connfd) = 2

▪ Connection will not be closed until refcnt(connfd) = 0

Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Pros and Cons of Process-based Servers

+ Handle multiple connections concurrently.

+ Clean sharing model.
▪ descriptors (no)

▪ file tables (yes)

▪ global variables (no)

+ Simple and straightforward.

– Additional overhead for process control.

– Nontrivial to share data between processes.
▪ (This example too simple to demonstrate)

Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Threading Servers

 Process-based Servers CSAPP 12.1

 Event-based Servers CSAPP 12.2

 Thread-based Servers CSAPP 12.3

Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Approach #2: Event-based Servers

 Server maintains set of active connections
▪ Array of connfd’s

 Repeat:
▪ Determine which descriptors (connfd’s or listenfd) have pending inputs

▪ e.g., using select function

▪ arrival of pending input is an event

▪ If listenfd has input, then accept connection

▪ and add new connfd to array

▪ Service all connfd’s with pending inputs

 Details for select-based server in book

Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

I/O Multiplexed Event Processing

10

connfd’s

7

4

-1

-1

12

5

-1

-1

-1

0

1

2

3

4

5

6

7

8

9

Active

Inactive

Active

Never Used

listenfd = 3

Active Descriptors

10

connfd’s

7

4

-1

-1

12

5

-1

-1

-1

listenfd = 3

Pending Inputs

Read and service

Anything
happened?

Read and
service

Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Pros and Cons of Event-based Servers

+ One logical control flow and address space.

+ Can single-step with a debugger.

+ No process or thread control overhead.
▪ Design of choice for high-performance Web servers and search engines.

e.g., Node.js, nginx, Tornado

– Significantly more complex to code than process-based
 or thread-based designs.

– Hard to provide fine-grained concurrency.
▪ E.g., how to deal with partial HTTP request headers

– Cannot take advantage of multi-core.
▪ Single thread of control

Carnegie Mellon

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Threading Servers

 Process-based Servers CSAPP 12.1

 Event-based Servers CSAPP 12.2

 Thread-based Servers CSAPP 12.3

Carnegie Mellon

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Approach #3: Thread-based Servers

 Very similar to approach #1 (process-based)

▪ …but using threads instead of processes

Carnegie Mellon

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Thread-Based Concurrent Echo Server
int main(int argc, char **argv)

{

 int listenfd, *connfdp;

 socklen_t clientlen;

 struct sockaddr_storage clientaddr;

 pthread_t tid;

listenfd = Open_listenfd(argv[1]);

 while (1) {

 clientlen=sizeof(struct sockaddr_storage);

connfdp = Malloc(sizeof(int));

*connfdp = Accept(listenfd, (SA *) &clientaddr, &clientlen);

Pthread_create(&tid, NULL, thread, connfdp);

}

return 0;

} echoservert.c

▪ Spawn new thread for each client

▪ Pass it copy of connection file descriptor

▪ Note use of Malloc()! [but not Free()]

Carnegie Mellon

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Thread-Based Concurrent Server (cont)

/* Thread routine */

void *thread(void *vargp)

{

int connfd = *((int *)vargp);

 Pthread_detach(pthread_self());

 Free(vargp);

 echo(connfd);

 Close(connfd);

 return NULL;

}

▪ Run thread in “detached” mode.

▪ Runs independently of other threads

▪ Reaped automatically (by kernel) when it terminates

▪ Free storage allocated to hold connfd.

▪ Close connfd (important!)

echoservert.c

Carnegie Mellon

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Thread-based Server Execution Model

▪ Each client handled by individual peer thread

▪ Threads share all process state except TID

▪ Each thread has a separate stack for local variables

Client 1
server

peer
thread

Client 2
server
peer

thread

Listening
server

main thread

Connection requests

Client 1 data Client 2 data

Carnegie Mellon

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Issues With Thread-Based Servers

 Run “detached” to automatically reap/cleanup threads
▪ At any point in time, a thread is either joinable or detached

▪ Joinable thread can be reaped and killed by other threads

▪ must be reaped (with pthread_join) to free memory resources

▪ Detached thread cannot be reaped or killed by other threads

▪ resources are automatically reaped on termination

▪ Default state is joinable

▪ use pthread_detach(pthread_self()) to make detached

 Must be careful to avoid unintended sharing
▪ For example, passing pointer to main thread’s stack

▪ Pthread_create(&tid, NULL, thread, (void *)&connfd);

 All functions called by a thread must be thread-safe
▪ (next lecture)

Carnegie Mellon

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Potential Form of Unintended Sharing

main thread

peer1

while (1) {

 int connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);

Pthread_create(&tid, NULL, thread, &connfd);

 }

connfd

Main thread stack

vargp

Peer1 stack

connfd = connfd1

connfd = *vargp

peer2

connfd = connfd2

connfd = *vargp

Race!

Why would both copies of vargp point to same location?

Peer2 stack

vargp

Carnegie Mellon

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Correct passing of thread arguments

/* Main routine */

int *connfdp;

connfdp = Malloc(sizeof(int));

*connfdp = Accept(. . .);

Pthread_create(&tid, NULL, thread, connfdp);

 Producer-Consumer Model
▪ Allocate in main

▪ Free in thread routine

/* Thread routine */

void *thread(void *vargp)

{

int connfd = *((int *)vargp);

 . . .

 Free(vargp);

 . . .

 return NULL;

}

Carnegie Mellon

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Pros and Cons of Thread-Based Designs

+ Easy to share data structures between threads

▪ e.g., logging information, file cache

+ Threads are more efficient than processes

– Unintentional sharing can introduce subtle and
 hard-to-reproduce errors!

▪ The ease with which data can be shared is both the greatest
strength and the greatest weakness of threads

▪ Hard to know which data shared & which private

▪ Hard to detect by testing

▪ Probability of bad race outcome very low

▪ But nonzero!

▪ Future lectures

Carnegie Mellon

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary: Approaches to Concurrency

 Process-based
▪ Hard to share resources: Easy to avoid unintended sharing

▪ High overhead in adding/removing clients

 Event-based
▪ Tedious and low level

▪ Total control over scheduling

▪ Very low overhead

▪ Cannot create as fine grained a level of concurrency

▪ Does not make use of multi-core

 Thread-based
▪ Easy to share resources: Perhaps too easy

▪ Medium overhead

▪ Not much control over scheduling policies

▪ Difficult to debug: Event orderings not repeatable

Carnegie Mellon

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Threads review

 Sharing

 Mutual exclusion

 Semaphores

 Producer-Consumer Synchronization

Carnegie Mellon

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Enforcing Mutual Exclusion

 Question: How can we guarantee a safe trajectory?

 Answer: We must synchronize the execution of the threads so
that they can never have an unsafe trajectory.
▪ i.e., need to guarantee mutually exclusive access for each critical

section.

 Classic solution:
▪ Mutex (pthreads)

▪ Semaphores (Edsger Dijkstra)

 Other approaches (out of our scope)
▪ Condition variables (pthreads)

▪ Monitors (Java)

Carnegie Mellon

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

MUTual EXclusion (mutex)

 Mutex: boolean synchronization variable

 enum {locked = 0, unlocked = 1}

 lock(m)

▪ If the mutex is currently not locked, lock it and return

▪ Otherwise, wait (spinning, yielding, etc) and retry

 unlock(m)
▪ Update the mutex state to unlocked

Carnegie Mellon

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

MUTual EXclusion (mutex)

 Mutex: boolean synchronization variable *

 Swap(*a, b)
[t = *a; *a = b; return t;]

// Notation: what’s inside the brackets [] is indivisible (a.k.a. atomic)

// by the magic of hardware / OS

 Lock(m):

while (swap(&m->state, locked) == locked) ;

 Unlock(m):

m->state = unlocked;

*For now. In reality, many other implementations and design choices (c.f., 15-410, 418, etc).

Carnegie Mellon

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

badcnt.c: Improper Synchronization

/* Global shared variable */

volatile long cnt = 0; /* Counter */

int main(int argc, char **argv)

{

 long niters;

 pthread_t tid1, tid2;

niters = atoi(argv[1]);

Pthread_create(&tid1, NULL,

thread, &niters);

Pthread_create(&tid2, NULL,

thread, &niters);

Pthread_join(tid1, NULL);

Pthread_join(tid2, NULL);

/* Check result */

 if (cnt != (2 * niters))

printf("BOOM! cnt=%ld\n", cnt);

else

printf("OK cnt=%ld\n", cnt);

exit(0);

}

/* Thread routine */

void *thread(void *vargp)

{

 long j, niters =

 *((long *)vargp);

 for (j = 0; j < niters; j++)

cnt++;

return NULL;

}

How can we fix this using
synchronization?

badcnt.c

Carnegie Mellon

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

goodmcnt.c: Mutex Synchronization

 Define and initialize a mutex for the shared variable cnt:

volatile long cnt = 0; /* Counter */

 pthread_mutex_t mutex;

pthread_mutex_init(&mutex, NULL); // No special attributes

 Surround critical section with lock and unlock:

for (i = 0; i < niters; i++) {

pthread_mutex_lock(&mutex);

cnt++;

pthread_mutex_unlock(&mutex);

}

linux> ./goodmcnt 10000

OK cnt=20000

linux> ./goodmcnt 10000

OK cnt=20000

linux>
goodcnt.cFunction badcnt goodmcnt

Time (ms)
niters = 106

12.0 214.0

Slowdown 1.0 17.8

Carnegie Mellon

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Threads review

 Sharing

 Mutual exclusion

 Semaphores

 Producer-Consumer Synchronization

Carnegie Mellon

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Semaphores
 Semaphore: non-negative global integer synchronization variable.

Manipulated by P and V operations.
 P(s)

▪ If s is nonzero, then decrement s by 1 and return immediately.

▪ Test and decrement operations occur atomically (indivisibly)

▪ If s is zero, then suspend thread until s becomes nonzero and the thread is
restarted by a V operation.

▪ After restarting, the P operation decrements s and returns control to the
caller.

 V(s):
▪ Increment s by 1.

▪ Increment operation occurs atomically

▪ If there are any threads blocked in a P operation waiting for s to become non-
zero, then restart exactly one of those threads, which then completes its P
operation by decrementing s.

 Semaphore invariant: s ≥ 0

Carnegie Mellon

45Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Semaphores
 Semaphore: non-negative global integer synchronization

variable

 Manipulated by P and V operations:
▪ P(s): [while (s == 0) wait(); s--;]

▪ Dutch for “Proberen” (test)

▪ V(s): [s++;]

▪ Dutch for “Verhogen” (increment)

 OS kernel guarantees that operations between brackets [] are
executed indivisibly/atomically

▪ Only one P or V operation at a time can modify s.

▪ When while loop in P terminates, only that P can decrement s

 Semaphore invariant: s ≥ 0

Carnegie Mellon

46Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

C Semaphore Operations

Pthreads functions:

#include <semaphore.h>

int sem_init(sem_t *s, 0, unsigned int val);} /* s = val */

int sem_wait(sem_t *s); /* P(s) */

int sem_post(sem_t *s); /* V(s) */

CS:APP wrapper functions:

#include "csapp.h”

void P(sem_t *s); /* Wrapper function for sem_wait */

void V(sem_t *s); /* Wrapper function for sem_post */

Carnegie Mellon

47Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Using Semaphores to Coordinate
Access to Shared Resources

 Basic idea: Thread uses a semaphore operation to notify
another thread that some condition has become true
▪ Use counting semaphores to keep track of resource state.

▪ Use binary semaphores to notify other threads.

 The Producer-Consumer Problem
▪ Mediating interactions between processes that generate

information and that then make use of that information

Carnegie Mellon

48Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Producer-Consumer Problem

 Common synchronization pattern:
▪ Producer waits for empty slot, inserts item in buffer, and notifies consumer

▪ Consumer waits for item, removes it from buffer, and notifies producer

 Examples
▪ Multimedia processing:

▪ Producer creates video frames, consumer renders them

▪ Event-driven graphical user interfaces

▪ Producer detects mouse clicks, mouse movements, and keyboard hits
and inserts corresponding events in buffer

▪ Consumer retrieves events from buffer and paints the display

producer
thread

shared
buffer

consumer
thread

Carnegie Mellon

49Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Producer-Consumer on 1-element Buffer

 Maintain two semaphores: full + empty

empty
buffer

0

full

1

empty

full
buffer

1

full

0

empty

Carnegie Mellon

50Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Producer-Consumer on 1-element Buffer

#include "csapp.h"

#define NITERS 5

void *producer(void *arg);

void *consumer(void *arg);

struct {

 int buf; /* shared var */

 sem_t full; /* sems */

 sem_t empty;

} shared;

int main(int argc, char** argv) {

 pthread_t tid_producer;

 pthread_t tid_consumer;

 /* Initialize the semaphores */

 Sem_init(&shared.empty, 0, 1);

 Sem_init(&shared.full, 0, 0);

 /* Create threads and wait */

 Pthread_create(&tid_producer, NULL,

 producer, NULL);

 Pthread_create(&tid_consumer, NULL,

 consumer, NULL);

 Pthread_join(tid_producer, NULL);

 Pthread_join(tid_consumer, NULL);

 return 0;

}

Initial
value

Carnegie Mellon

51Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Producer-Consumer on 1-element Buffer

void *producer(void *arg) {

 int i, item;

 for (i=0; i<NITERS; i++) {

 /* Produce item */

 item = i;

 printf("produced %d\n",

 item);

 /* Write item to buf */

 P(&shared.empty);

 shared.buf = item;

 V(&shared.full);

 }

 return NULL;

}

void *consumer(void *arg) {

 int i, item;

 for (i=0; i<NITERS; i++) {

 /* Read item from buf */

 P(&shared.full);

 item = shared.buf;

 V(&shared.empty);

 /* Consume item */

 printf("consumed %d\n“, item);

 }

 return NULL;

}

Initially: empty==1, full==0

Producer Thread Consumer Thread

Carnegie Mellon

52Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Why 2 Semaphores for 1-Entry Buffer?

 Consider multiple producers & multiple consumers

 Producers will contend with each to get empty

 Consumers will contend with each other to get full

shared
buffer

P1

Pn







C1

Cm







P(&shared.full);

item = shared.buf;

V(&shared.empty);

Consumers

P(&shared.empty);

shared.buf = item;

V(&shared.full);

Producers
fullempty

Carnegie Mellon

53Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Producer-Consumer on an n-element Buffer

 Implemented using a shared buffer package called sbuf.

P1

Pn







C1

Cm








Between 0 and n elements

Carnegie Mellon

54Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Circular Buffer (n = 10)

 Store elements in array of size n

 items: number of elements in buffer

 Empty buffer:
▪ front = rear

 Nonempty buffer
▪ rear: index of most recently inserted element

▪ front: (index of next element to remove – 1) mod n

 Initially:

items 0

rear 0

front 0 8765432 910

Carnegie Mellon

55Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Circular Buffer Operation (n = 10)
 Insert 7 elements

 Remove 5 elements

 Insert 6 elements

 Remove 8 elements

items 7

rear 7

front 0 8765432 910

items 2

rear 7

front 5 8765432 910

items 8

rear 3

front 5 8765432 910

items 0

rear 3

front 3 8765432 910

Carnegie Mellon

56Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sequential Circular Buffer Code

insert(int v)

{

 if (items >= n)

 error();

 if (++rear >= n) rear = 0;

 buf[rear] = v;

 items++;

}

int remove()

{

 if (items == 0)

 error();

 if (++front >= n) front = 0;

 int v = buf[front];

 items--;

 return v;

}

init(int v)

{

 items = front = rear = 0;

}

Carnegie Mellon

57Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Producer-Consumer on an n-element Buffer

 Requires a mutex and two counting semaphores:
▪ mutex: enforces mutually exclusive access to the buffer and counters

▪ slots: counts the available slots in the buffer

▪ items: counts the available items in the buffer

 Makes use of general semaphores
▪ Will range in value from 0 to n

P1

Pn







C1

Cm








Between 0 and n elements

Carnegie Mellon

58Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

sbuf Package - Declarations

#include "csapp.h”

typedef struct {

 int *buf; /* Buffer array */

 int n; /* Maximum number of slots */

 int front; /* buf[front+1 (mod n)] is first item */

 int rear; /* buf[rear] is last item */

 sem_t mutex; /* Protects accesses to buf */

 sem_t slots; /* Counts available slots */

 sem_t items; /* Counts available items */

} sbuf_t;

void sbuf_init(sbuf_t *sp, int n);

void sbuf_deinit(sbuf_t *sp);

void sbuf_insert(sbuf_t *sp, int item);

int sbuf_remove(sbuf_t *sp);

sbuf.h

Carnegie Mellon

59Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

sbuf Package - Implementation

/* Create an empty, bounded, shared FIFO buffer with n slots */

void sbuf_init(sbuf_t *sp, int n)

{

 sp->buf = Calloc(n, sizeof(int));

 sp->n = n; /* Buffer holds max of n items */

 sp->front = sp->rear = 0; /* Empty buffer iff front == rear */

 Sem_init(&sp->mutex, 0, 1); /* Binary semaphore for locking */

 Sem_init(&sp->slots, 0, n); /* Initially, buf has n empty slots */

 Sem_init(&sp->items, 0, 0); /* Initially, buf has zero items */

}

/* Clean up buffer sp */

void sbuf_deinit(sbuf_t *sp)

{

 Free(sp->buf);

}

sbuf.c

Initializing and deinitializing a shared buffer:

Carnegie Mellon

60Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

sbuf Package - Implementation

/* Insert item onto the rear of shared buffer sp */

void sbuf_insert(sbuf_t *sp, int item)

{

 P(&sp->slots); /* Wait for available slot */

 P(&sp->mutex); /* Lock the buffer */

 if (++sp->rear >= sp->n) /* Increment index (mod n) */

 sp->rear = 0;

 sp->buf[sp->rear] = item; /* Insert the item */

 V(&sp->mutex); /* Unlock the buffer */

 V(&sp->items); /* Announce available item */

}

sbuf.c

Inserting an item into a shared buffer:

Carnegie Mellon

61Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

sbuf Package - Implementation

/* Remove and return the first item from buffer sp */

int sbuf_remove(sbuf_t *sp)

{

 int item;

 P(&sp->items); /* Wait for available item */

 P(&sp->mutex); /* Lock the buffer */

 if (++sp->front >= sp->n) /* Increment index (mod n) */

 sp->front = 0;

 item = sp->buf[sp->front]; /* Remove the item */

 V(&sp->mutex); /* Unlock the buffer */

 V(&sp->slots); /* Announce available slot */

 return item;

} sbuf.c

Removing an item from a shared buffer:

Carnegie Mellon

62Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Demonstration

 See program produce-consume.c in code directory

 10-entry shared circular buffer

 5 producers
▪ Agent i generates numbers from 20*i to 20*i – 1.

▪ Puts them in buffer

 5 consumers
▪ Each retrieves 20 elements from buffer

 Main program
▪ Makes sure each value between 0 and 99 retrieved once

Carnegie Mellon

63Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary

 Programmers need a clear model of how variables are
shared by threads.

 Variables shared by multiple threads must be protected
to ensure mutually exclusive access
▪ E.g., using mutex lock and unlock, semaphore P and V

 Semaphores are a fundamental mechanism for enforcing
mutual exclusion
▪ And can also support producer-consumer synchronization

Carnegie Mellon

64Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Using semaphores to schedule shared resources CSAPP 12.5.4
▪ Readers-writers problem

 Other concurrency issues CSAPP 12.7
▪ Races

▪ Deadlocks

▪ Thread safety

▪ Interactions between threads and signal handling

Carnegie Mellon

65Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Readers-Writers Problem

 Problem statement:
▪ Reader threads only read the object

▪ Writer threads modify the object (read/write access)

▪ Writers must have exclusive access to the object

▪ Unlimited number of readers can access the object concurrently

 Occurs frequently in real systems, e.g.,
▪ Online airline reservation system

▪ Multithreaded caching Web proxy

W1

W3

W2

R1

R3

R2

Read/
Write
Access

Read-only
Access

Carnegie Mellon

66Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Readers/Writers Examples

W1

W3

W2

R1

R3

R2

W1

W3

W2

R1

R3

R2

Carnegie Mellon

67Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Variants of Readers-Writers

 First readers-writers problem (favors readers)
▪ No reader should be kept waiting unless a writer has already been

granted permission to use the object.

▪ A reader that arrives after a waiting writer gets priority over the
writer.

 Second readers-writers problem (favors writers)
▪ Once a writer is ready to write, it performs its write as soon as

possible

▪ A reader that arrives after a writer must wait, even if the writer is
also waiting.

 Starvation (where a thread waits indefinitely) is possible
in both cases.

Carnegie Mellon

68Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Solution to First Readers-Writers Problem

int readcnt; /* Initially 0 */

sem_t mutex, w; /* Both initially 1 */

void reader(void)

{

 while (1) {

 P(&mutex);

 readcnt++;

 if (readcnt == 1) /* First in */

 P(&w);

 V(&mutex);

 /* Reading happens here */

 P(&mutex);

 readcnt--;

 if (readcnt == 0) /* Last out */

 V(&w);

 V(&mutex);

 }

}

void writer(void)

{

 while (1) {

 P(&w);

 /* Writing here */

 V(&w);

 }

}

Readers: Writers:

rw1.c

A reader that arrives

after a waiting writer
gets priority over the writer

Carnegie Mellon

69Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Readers/Writers Examples

W1

W3

W2

R1

R3

R2

W1

W3

W2

R1

R3

R2

w = 0
readcnt = 0

W1

W3

W2

R1

R3

R2

w = 1
readcnt = 0

w = 0
readcnt = 2

Carnegie Mellon

70Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Solution to First Readers-Writers Problem

int readcnt; /* Initially 0 */

sem_t mutex, w; /* Both initially 1 */

void reader(void)

{

 while (1) {

 P(&mutex);

 readcnt++;

 if (readcnt == 1) /* First in */

 P(&w);

 V(&mutex);

 /* Reading happens here */

 P(&mutex);

 readcnt--;

 if (readcnt == 0) /* Last out */

 V(&w);

 V(&mutex);

 }

}

void writer(void)

{

 while (1) {

 P(&w);

 /* Writing here */

 V(&w);

 }

}

Readers: Writers:

rw1.c

Arrivals: R1 R2 W1 R3

Carnegie Mellon

71Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Solution to First Readers-Writers Problem

int readcnt; /* Initially 0 */

sem_t mutex, w; /* Both initially 1 */

void reader(void)

{

 while (1) {

 P(&mutex);

 readcnt++;

 if (readcnt == 1) /* First in */

 P(&w);

 V(&mutex);

 /* Reading happens here */

 P(&mutex);

 readcnt--;

 if (readcnt == 0) /* Last out */

 V(&w);

 V(&mutex);

 }

}

void writer(void)

{

 while (1) {

 P(&w);

 /* Writing here */

 V(&w);

 }

}

Readers: Writers:

rw1.c

Arrivals: R1 R2 W1 R3
R1

readcnt == 1
w == 0

Carnegie Mellon

72Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Solution to First Readers-Writers Problem

int readcnt; /* Initially 0 */

sem_t mutex, w; /* Both initially 1 */

void reader(void)

{

 while (1) {

 P(&mutex);

 readcnt++;

 if (readcnt == 1) /* First in */

 P(&w);

 V(&mutex);

 /* Reading happens here */

 P(&mutex);

 readcnt--;

 if (readcnt == 0) /* Last out */

 V(&w);

 V(&mutex);

 }

}

void writer(void)

{

 while (1) {

 P(&w);

 /* Writing here */

 V(&w);

 }

}

Readers: Writers:

rw1.c

Arrivals: R1 R2 W1 R3
R1

readcnt == 2
w == 0

R2

Carnegie Mellon

73Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Solution to First Readers-Writers Problem

int readcnt; /* Initially 0 */

sem_t mutex, w; /* Both initially 1 */

void reader(void)

{

 while (1) {

 P(&mutex);

 readcnt++;

 if (readcnt == 1) /* First in */

 P(&w);

 V(&mutex);

 /* Reading happens here */

 P(&mutex);

 readcnt--;

 if (readcnt == 0) /* Last out */

 V(&w);

 V(&mutex);

 }

}

void writer(void)

{

 while (1) {

 P(&w);

 /* Writing here */

 V(&w);

 }

}

Readers: Writers:

rw1.c

Arrivals: R1 R2 W1 R3
R1

readcnt == 2
w == 0

R2

W1

Carnegie Mellon

74Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Solution to First Readers-Writers Problem

int readcnt; /* Initially 0 */

sem_t mutex, w; /* Both initially 1 */

void reader(void)

{

 while (1) {

 P(&mutex);

 readcnt++;

 if (readcnt == 1) /* First in */

 P(&w);

 V(&mutex);

 /* Reading happens here */

 P(&mutex);

 readcnt--;

 if (readcnt == 0) /* Last out */

 V(&w);

 V(&mutex);

 }

}

void writer(void)

{

 while (1) {

 P(&w);

 /* Writing here */

 V(&w);

 }

}

Readers: Writers:

rw1.c

Arrivals: R1 R2 W1 R3

R1

readcnt == 1
w == 0

R2

W1

Carnegie Mellon

75Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Solution to First Readers-Writers Problem

int readcnt; /* Initially 0 */

sem_t mutex, w; /* Both initially 1 */

void reader(void)

{

 while (1) {

 P(&mutex);

 readcnt++;

 if (readcnt == 1) /* First in */

 P(&w);

 V(&mutex);

 /* Reading happens here */

 P(&mutex);

 readcnt--;

 if (readcnt == 0) /* Last out */

 V(&w);

 V(&mutex);

 }

}

void writer(void)

{

 while (1) {

 P(&w);

 /* Writing here */

 V(&w);

 }

}

Readers: Writers:

rw1.c

Arrivals: R1 R2 W1 R3

R1

readcnt == 2
w == 0

R2

W1

R3

Carnegie Mellon

76Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Solution to First Readers-Writers Problem

int readcnt; /* Initially 0 */

sem_t mutex, w; /* Both initially 1 */

void reader(void)

{

 while (1) {

 P(&mutex);

 readcnt++;

 if (readcnt == 1) /* First in */

 P(&w);

 V(&mutex);

 /* Reading happens here */

 P(&mutex);

 readcnt--;

 if (readcnt == 0) /* Last out */

 V(&w);

 V(&mutex);

 }

}

void writer(void)

{

 while (1) {

 P(&w);

 /* Writing here */

 V(&w);

 }

}

Readers: Writers:

rw1.c

Arrivals: R1 R2 W1 R3

readcnt == 1
w == 0

R2

W1

R3

Carnegie Mellon

77Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Solution to First Readers-Writers Problem

int readcnt; /* Initially 0 */

sem_t mutex, w; /* Both initially 1 */

void reader(void)

{

 while (1) {

 P(&mutex);

 readcnt++;

 if (readcnt == 1) /* First in */

 P(&w);

 V(&mutex);

 /* Reading happens here */

 P(&mutex);

 readcnt--;

 if (readcnt == 0) /* Last out */

 V(&w);

 V(&mutex);

 }

}

void writer(void)

{

 while (1) {

 P(&w);

 /* Writing here */

 V(&w);

 }

}

Readers: Writers:

rw1.c

Arrivals: R1 R2 W1 R3

readcnt == 0
w == 1

W1

R3

Carnegie Mellon

78Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Other Versions of Readers-Writers

 Shortcoming of first solution
▪ Continuous stream of readers will block writers indefinitely

 Second version
▪ Once writer comes along, blocks access to later readers

▪ Series of writes could block all reads

 FIFO implementation
▪ See rwqueue code in code directory

▪ Service requests in order received

▪ Threads kept in FIFO

▪ Each has semaphore that enables its access to critical section

Carnegie Mellon

79Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Solution to Second Readers-Writers Problem
int readcnt, writecnt; // Initially 0

sem_t rmutex, wmutex, r, w; // Initially 1

void reader(void)

{

 while (1) {

 P(&r);

 P(&rmutex);

 readcnt++;

 if (readcnt == 1) /* First in */

 P(&w);

 V(&rmutex);

 V(&r)

 /* Reading happens here */

 P(&rmutex);

 readcnt--;

 if (readcnt == 0) /* Last out */

 V(&w);

 V(&rmutex);

 }

} A reader that arrives after a writer must
wait, even if the writer is also waiting

void writer(void)

{

 while (1) {

 P(&wmutex);

 writecnt++;

 if (writecnt == 1)

 P(&r);

 V(&wmutex);

 P(&w);

 /* Writing here */

 V(&w);

 P(&wmutex);

 writecnt--;

 if (writecnt == 0);

 V(&r);

 V(&wmutex);

 }

}

Carnegie Mellon

80Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Managing Readers/Writers with FIFO

 Idea
▪ Read & Write requests are inserted into FIFO

▪ Requests handled as remove from FIFO

▪ Read allowed to proceed if currently idle or processing read

▪ Write allowed to proceed only when idle

▪ Requests inform controller when they have completed

 Fairness
▪ Guarantee every request is eventually handled

R WRWWRRRWR

Time

Requests

Allowed
Concurrency

Carnegie Mellon

81Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Readers Writers FIFO Implementation

 Full code in rwqueue.{h,c}

/* Queue data structure */

typedef struct {

 sem_t mutex; // Mutual exclusion

 int reading_count; // Number of active readers

 int writing_count; // Number of active writers

 // FIFO queue implemented as linked list with tail

 rw_token_t *head;

 rw_token_t *tail;

} rw_queue_t;

/* Represents individual thread's position in queue */

typedef struct TOK {

 bool is_reader;

 sem_t enable; // Enables access

 struct TOK *next; // Allows chaining as linked list

} rw_token_t;

Carnegie Mellon

82Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Readers Writers FIFO Use
 In rwqueue-test.c

/* Get write access to data and write */

void iwriter(int *buf, int v)

{

 rw_token_t tok;

 rw_queue_request_write(&q, &tok);

 /* Critical section */

 *buf = v;

 /* End of Critical Section */

 rw_queue_release(&q);

}
/* Get read access to data and read */

int ireader(int *buf)

{

 rw_token_t tok;

 rw_queue_request_read(&q, &tok);

 /* Critical section */

 int v = *buf;

 /* End of Critical section */

 rw_queue_release(&q);

 return v;

}

Carnegie Mellon

83Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Library Reader/Writer Lock

 Data type pthread_rwlock_t

 Operations
▪ Acquire read lock

Pthread_rwlock_rdlock(pthread_rw_lock_t *rwlock)

▪ Acquire write lock

Pthread_rwlock_wrlock(pthread_rw_lock_t *rwlock)

▪ Release (either) lock

Pthread_rwlock_unlock(pthread_rw_lock_t *rwlock)

 Observation
▪ Library must be used correctly!

▪ Up to programmer to decide what requires read access and
what requires write access

	Slide 1
	Slide 2: Synchronization: Advanced 18-213/18-613: Introduction to Computer Systems 25th Lecture, August 1st, 2023
	Slide 3: Reminder: Iterative Echo Server
	Slide 4: Iterative Servers
	Slide 5: Iterative Servers
	Slide 6: Where Does Second Client Block?
	Slide 7: Fundamental Flaw of Iterative Servers
	Slide 8: Approaches for Writing Concurrent Servers
	Slide 9: Today
	Slide 10: Approach #1: Process-based Servers
	Slide 11: Approach #1: Process-based Servers
	Slide 12: Iterative Echo Server
	Slide 14: Making a Concurrent Echo Server
	Slide 15: Making a Concurrent Echo Server
	Slide 16: Making a Concurrent Echo Server
	Slide 17: Process-Based Concurrent Echo Server
	Slide 18: Process-Based Concurrent Echo Server (cont)
	Slide 19: Concurrent Server: accept Illustrated
	Slide 20: Process-based Server Execution Model
	Slide 21: Issues with Process-based Servers
	Slide 22: Pros and Cons of Process-based Servers
	Slide 23: Today
	Slide 24: Approach #2: Event-based Servers
	Slide 25: I/O Multiplexed Event Processing
	Slide 26: Pros and Cons of Event-based Servers
	Slide 27: Today
	Slide 28: Approach #3: Thread-based Servers
	Slide 29: Thread-Based Concurrent Echo Server
	Slide 30: Thread-Based Concurrent Server (cont)
	Slide 31: Thread-based Server Execution Model
	Slide 32: Issues With Thread-Based Servers
	Slide 33: Potential Form of Unintended Sharing
	Slide 34: Correct passing of thread arguments
	Slide 35: Pros and Cons of Thread-Based Designs
	Slide 36: Summary: Approaches to Concurrency
	Slide 37: Today
	Slide 38: Enforcing Mutual Exclusion
	Slide 39: MUTual EXclusion (mutex)
	Slide 40: MUTual EXclusion (mutex)
	Slide 41: badcnt.c: Improper Synchronization
	Slide 42: goodmcnt.c: Mutex Synchronization
	Slide 43: Today
	Slide 44: Semaphores
	Slide 45: Semaphores
	Slide 46: C Semaphore Operations
	Slide 47: Using Semaphores to Coordinate Access to Shared Resources
	Slide 48: Producer-Consumer Problem
	Slide 49: Producer-Consumer on 1-element Buffer
	Slide 50: Producer-Consumer on 1-element Buffer
	Slide 51: Producer-Consumer on 1-element Buffer
	Slide 52: Why 2 Semaphores for 1-Entry Buffer?
	Slide 53: Producer-Consumer on an n-element Buffer
	Slide 54: Circular Buffer (n = 10)
	Slide 55: Circular Buffer Operation (n = 10)
	Slide 56: Sequential Circular Buffer Code
	Slide 57: Producer-Consumer on an n-element Buffer
	Slide 58: sbuf Package - Declarations
	Slide 59: sbuf Package - Implementation
	Slide 60: sbuf Package - Implementation
	Slide 61: sbuf Package - Implementation
	Slide 62: Demonstration
	Slide 63: Summary
	Slide 64: Today
	Slide 65: Readers-Writers Problem
	Slide 66: Readers/Writers Examples
	Slide 67: Variants of Readers-Writers
	Slide 68: Solution to First Readers-Writers Problem
	Slide 69: Readers/Writers Examples
	Slide 70: Solution to First Readers-Writers Problem
	Slide 71: Solution to First Readers-Writers Problem
	Slide 72: Solution to First Readers-Writers Problem
	Slide 73: Solution to First Readers-Writers Problem
	Slide 74: Solution to First Readers-Writers Problem
	Slide 75: Solution to First Readers-Writers Problem
	Slide 76: Solution to First Readers-Writers Problem
	Slide 77: Solution to First Readers-Writers Problem
	Slide 78: Other Versions of Readers-Writers
	Slide 79: Solution to Second Readers-Writers Problem
	Slide 80: Managing Readers/Writers with FIFO
	Slide 81: Readers Writers FIFO Implementation
	Slide 82: Readers Writers FIFO Use
	Slide 83: Library Reader/Writer Lock

