next up previous
Next: Appendix Up: Popular Ensemble Methods: An Previous: 6. Conclusions

Bibliography

Ali Pazzani1996
Ali, K. Pazzani, M. 1996.
Error reduction through learning multiple descriptions
Machine Learning, 24, 173-202.

Alpaydin1993
Alpaydin, E. 1993.
Multiple networks for function learning
In Proceedings of the 1993 IEEE International Conference on Neural Networks, I, 27-32 San Francisco.

Arbib1995
Arbib, M.. 1995.
The Handbook of Brain Theory and Neural Networks.
MIT Press.

Asker Maclin1997a
Asker, L. Maclin, R. 1997a.
Ensembles as a sequence of classifiers
In Proceedings of the Fifteenth International Joint Conference on Artificial Intelligence, 860-865 Nagoya, Japan.

Asker Maclin1997b
Asker, L. Maclin, R. 1997b.
Feature engineering and classifier selection: A case study in Venusian volcano detection
In Proceedings of the Fourteenth International Conference on Machine Learning, 3-11 Nashville, TN.

Bauer Kohavi1999
Bauer, E. Kohavi, R. 1999.
An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
Machine Learning, 36, 105-139.

Baxt1992
Baxt, W. 1992.
Improving the accuracy of an artificial neural network using multiple differently trained networks
Neural Computation, 4, 772-780.

Breiman1996a
Breiman, L. 1996a.
Bagging predictors
Machine Learning, 24(2), 123-140.

Breiman1996b
Breiman, L. 1996b.
Bias, variance, and arcing classifiers
460, UC-Berkeley, Berkeley, CA.

Breiman1996c
Breiman, L. 1996c.
Stacked regressions
Machine Learning, 24(1), 49-64.

Clemen1989
Clemen, R. 1989.
Combining forecasts: A review and annotated bibliography
Journal of Forecasting, 5, 559-583.

Drucker Cortes1996
Drucker, H. Cortes, C. 1996.
Boosting decision trees
In Touretsky, D., Mozer, M., Hasselmo, M., Advances in Neural Information Processing Systems, 8, 479-485 Cambridge, MA. MIT Press.

Drucker et al.1994
Drucker, H., Cortes, C., Jackel, L., LeCun, Y., Vapnik, V. 1994.
Boosting and other machine learning algorithms
In Proceedings of the Eleventh International Conference on Machine Learning, 53-61 New Brunswick, NJ.

Efron Tibshirani1993
Efron, B. Tibshirani, R. 1993.
An Introduction to the Bootstrap.
Chapman and Hall, New York.

Fisher McKusick1989
Fisher, D. McKusick, K. 1989.
An empirical comparison of ID3 and back-propagation
In Proceedings of the Eleventh International Joint Conference on Artificial Intelligence, 788-793 Detroit, MI.

Freund Schapire1996
Freund, Y. Schapire, R. 1996.
Experiments with a new boosting algorithm
In Proceedings of the Thirteenth International Conference on Machine Learning, 148-156 Bari, Italy.

Friedman1996
Friedman, J. 1996.
On bias, variance, 0/1-loss, and the curse-of-dimensionality
Journal of Data Mining and Knowledge Discovery, 1.

Friedman et al.1998
Friedman, J., Hastie, T., Tibshirani, R. 1998.
Additive logistic regression: A statistical view of boosting
(http://www-stat.stanford.edu/$\tilde{ }$jhf).

Geman et al.1992
Geman, S., Bienenstock, E., Doursat, R. 1992.
Neural networks and the bias/variance dilemma
Neural Computation, 4, 1-58.

Granger1989
Granger, C. 1989.
Combining forecasts: Twenty years later
Journal of Forecasting, 8, 167-173.

Grove Schuurmans1998
Grove, A. Schuurmans, D. 1998.
Boosting in the limit: Maximizing the margin of learned ensembles
In Proceedings of the Fifteenth National Conference on Artificial Intelligence, 692-699 Madison, WI.

Hampshire Waibel1989
Hampshire, J. Waibel, A. 1989.
The meta-pi network: Building distributed knowledge representations for robust pattern recognition
CMU-CS-89-166, CMU, Pittsburgh, PA.

Hansen Salamon1990
Hansen, L. Salamon, P. 1990.
Neural network ensembles
IEEE Transactions on Pattern Analysis and Machine Intelligence, 12, 993-1001.

Hashem1997
Hashem, S. 1997.
Optimal linear combinations of neural networks
Neural Networks, 10(4), 599-614.

Jacobs et al.1991
Jacobs, R., Jordan, M., Nowlan, S., Hinton, G. 1991.
Adaptive mixtures of local experts
Neural Computation, 3, 79-87.

Kohavi Wolpert1996
Kohavi, R. Wolpert, D. 1996.
Bias plus variance decomposition for zero-one loss functions
In Proceedings of the Thirteenth International Conference on Machine Learning, 275-283 Bari, Italy.

Kong Dietterich1995
Kong, E. Dietterich, T. 1995.
Error-correcting output coding corrects bias and variance
In Proceedings of the Twelfth International Conference on Machine Learning, 313-321 Tahoe City, CA.

Krogh Vedelsby1995
Krogh, A. Vedelsby, J. 1995.
Neural network ensembles, cross validation, and active learning
In Tesauro, G., Touretzky, D., Leen, T., Advances in Neural Information Processing Systems, 7, 231-238 Cambridge, MA. MIT Press.

Lincoln Skrzypek1989
Lincoln, W. Skrzypek, J. 1989.
Synergy of clustering multiple back propagation networks
In Touretzky, D., Advances in Neural Information Processing Systems, 2, 650-659 San Mateo, CA. Morgan Kaufmann.

Maclin1998
Maclin, R. 1998.
Boosting classifiers regionally
In Proceedings of the Fifteenth National Conference on Artificial Intelligence, 700-705 Madison, WI.

Maclin Opitz1997
Maclin, R. Opitz, D. 1997.
An empirical evaluation of bagging and boosting
In Proceedings of the Fourteenth National Conference on Artificial Intelligence, 546-551 Providence, RI.

Maclin Shavlik1995
Maclin, R. Shavlik, J. 1995.
Combining the predictions of multiple classifiers: Using competitive learning to initialize neural networks
In Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence, 524-530 Montreal, Canada.

Mani1991
Mani, G. 1991.
Lowering variance of decisions by using artificial neural network portfolios
Neural Computation, 3, 484-486.

Mooney et al.1989
Mooney, R., Shavlik, J., Towell, G., Gove, A. 1989.
An experimental comparison of symbolic and connectionist learning algorithms
In Proceedings of the Eleventh International Joint Conference on Artificial Intelligence, 775-780 Detroit, MI.

Murphy Aha1994
Murphy, P. M. Aha, D. W. 1994.
UCI repository of machine learning databases (machine-readable data repository)
University of California-Irvine, Department of Information and Computer Science.

Nowlan Sejnowski1992
Nowlan, S. Sejnowski, T. 1992.
Filter selection model for generating visual motion signals
In Hanson, S., Cowan, J., Giles, C., Advances in Neural Information Processing Systems, 5, 369-376 San Mateo, CA. Morgan Kaufmann.

Opitz Shavlik1996a
Opitz, D. Shavlik, J. 1996a.
Actively searching for an effective neural-network ensemble
Connection Science, 8(3/4), 337-353.

Opitz Shavlik1996b
Opitz, D. Shavlik, J. 1996b.
Generating accurate and diverse members of a neural-network ensemble
In Touretsky, D., Mozer, M., Hasselmo, M., Advances in Neural Information Processing Systems, 8, 535-541 Cambridge, MA. MIT Press.

Perrone1992
Perrone, M. 1992.
A soft-competitive splitting rule for adaptive tree-structured neural networks
In Proceedings of the International Joint Conference on Neural Networks, 689-693 Baltimore, MD.

Perrone1993
Perrone, M. 1993.
Improving Regression Estimation: Averaging Methods for Variance Reduction with Extension to General Convex Measure Optimization.
Ph.D. thesis, Brown University, Providence, RI.

Quinlan1993
Quinlan, J. 1993.
C4.5: Programs for Machine Learning.
Morgan Kaufmann, San Mateo, CA.

Quinlan1996
Quinlan, J. R. 1996.
Bagging, boosting, and c4.5
In Proceedings of the Thirteenth National Conference on Artificial Intelligence, 725-730. Portland, OR.

Rumelhart et al.1986
Rumelhart, D., Hinton, G., Williams, R. 1986.
Learning internal representations by error propagation
In Rumelhart, D. McClelland, J., Parallel Distributed Processing: Explorations in the microstructure of cognition. Volume 1: Foundations, 318-363. MIT Press, Cambridge, MA.

Schapire1990
Schapire, R. 1990.
The strength of weak learnability
Machine Learning, 5(2), 197-227.

Schapire et al.1997
Schapire, R., Freund, Y., Bartlett, P., Lee, W. 1997.
Boosting the margin: A new explanation for the effectiveness of voting methods
In Proceedings of the Fourteenth International Conference on Machine Learning, 322-330 Nashville, TN.

Sollich Krogh1996
Sollich, P. Krogh, A. 1996.
Learning with ensembles: How over-fitting can be useful
In Touretsky, D., Mozer, M., Hasselmo, M., Advances in Neural Information Processing Systems, 8, 190-196 Cambridge, MA. MIT Press.

Tresp Taniguchi1995
Tresp, V. Taniguchi, M. 1995.
Combining estimators using non-constant weighting functions
In Tesauro, G., Touretzky, D., Leen, T., Advances in Neural Information Processing Systems, 7, 419-426 Cambridge, MA. MIT Press.

Wolpert1992
Wolpert, D. 1992.
Stacked generalization
Neural Networks, 5, 241-259.

Zhang et al.1992
Zhang, X., Mesirov, J., Waltz, D. 1992.
Hybrid system for protein secondary structure prediction
Journal of Molecular Biology, 225, 1049-1063.



David Opitz
1999-08-24