Next: About this document ...
Up: Competitive Coevolution through Evolutionary
Previous: Appendix B. Robot Duel
-
Amores, A., Force, A., Yan, Y.-L., Joly, L., Amemiya, C., Fritz, A., Ho, R. K.,
Langeland, J., Prince, V., Wang, Y.-L., Westerfield, M., Ekker, M.,
Postlethwait, J. H. (1998).
- Zebrafish HOX clusters and vertebrate genome evolution.
Science, 282, 1711-1784.
-
Angeline, P. J., Pollack, J. B. (1993).
- Competitive environments evolve better solutions for complex
tasks
.
In Forrest, S. (Ed.), Proceedings of the Fifth International
Conference on Genetic Algorithms (pp. 264-270). San Francisco, CA: Morgan
Kaufmann.
-
Angeline, P. J., Saunders, G. M., Pollack, J. B.
(1993).
- An evolutionary algorithm that constructs recurrent neural networks.
IEEE Transactions on Neural Networks, 5, 54-65.
-
Attias, H. (2000).
- A variational bayesian framework for graphical models
.
In Advances in Neural Information Processing Systems, 12 (pp.
209-215). Cambridge, MA: MIT Press.
-
Blackmore, J., Miikkulainen, R. (1995).
- Visualizing high-dimensional structure with the incremental
grid growing neural network
.
In Prieditis, A., Russell, S. (Eds.),
Machine Learning: Proceedings of the 12th Annual Conference (pp.
55-63). San Francisco, CA: Morgan Kaufmann.
-
Brave, S. (1996).
- Evolving deterministic finite automata using cellular encoding.
In Koza, J. R., Goldberg, D. E., Fogel, D. B.,
Riolo, R. L. (Eds.), Genetic Programming
1996: Proceedings of the First Annual Conference (pp. 39-44). Stanford
University, CA, USA: MIT Press.
-
Carroll, S. B. (1995).
- Homeotic genes and the evolution of arthropods and chordates.
Nature, 376, 479-485.
-
Cliff, D., Harvey, I., Husbands, P. (1993).
- Explorations in evolutionary robotics.
Adaptive Behavior, 2, 73-110.
-
Cybenko, G. (1989).
- Approximation by superpositions of a sigmoidal function.
Mathematics of Control, Signals, and Systems, 2 (4),
303-314.
-
Darwen, P. J. (1996).
- Co-Evolutionary Learning by Automatic Modularisation with
Speciation.
Doctoral Dissertation, School of Computer Science, University
College, University of New South Wales.
-
Dawkins, R., Krebs, J. R. (1979).
- Arms races between and within species.
Proceedings of the Royal Society of London Series B,
205, 489-511.
-
Fahlman, S. E., Lebiere, C. (1990).
- The cascade-correlation learning architecture.
In Touretzky, D. S. (Ed.), Advances in Neural Information
Processing Systems 2 (pp. 524-532). San Francisco, CA: Morgan Kaufmann.
-
Ficici, S. G., Pollack, J. B. (2001).
- Pareto optimality in coevolutionary learning.
In Kelemen, J. (Ed.), Sixth European Conference on Artificial
Life. Berlin; New York: Springer-Verlag.
-
Floreano, D., Nolfi, S. (1997).
- God save the red queen! Competition in co-evolutionary robotics.
Evolutionary Computation, 5.
-
Force, A., Lynch, M., Pickett, F. B., Amores, A., lin Yan, Y.,
Postlethwait, J. (1999).
- Preservation of duplicate genes by complementary, degenerative
mutations.
Genetics, 151, 1531-1545.
-
Fritzke, B. (1995).
- A growing neural gas network learns topologies
.
In G.Tesauro, D.S.Touretzky, T.K.Leen
(Eds.), Advances in Neural Information Processing Systems 7 (pp.
625-632). Cambridge, MA: MIT Press.
-
Goldberg, D. E., Richardson, J. (1987).
- Genetic algorithms with sharing for multimodal function
optimization
.
In Grefenstette, J. J. (Ed.), Proceedings of the Second
International Conference on Genetic Algorithms (pp. 148-154). San
Francisco, CA: Morgan Kaufmann.
-
Gomez, F., Miikkulainen, R. (1997).
- Incremental evolution of complex general behavior
.
Adaptive Behavior, 5, 317-342.
-
Gruau, F., Whitley, D., Pyeatt, L. (1996).
- A comparison between cellular encoding and direct encoding for
genetic neural networks.
In Koza, J. R., Goldberg, D. E., Fogel, D. B.,
Riolo, R. L. (Eds.), Genetic Programming
1996: Proceedings of the First Annual Conference (pp. 81-89). Cambridge,
MA: MIT Press.
-
Harvey, I. (1993).
- The Artificial Evolution of Adaptive Behavior
.
Doctoral Dissertation, School of Cognitive and Computing Sciences,
University of Sussex, Sussex.
-
Holland, P. W., Garcia-Fernandez, J., Williams, N. A.,
Sidow, A. (1994).
- Gene duplications and the origin of vertebrate development.
Development Supplement, pp. 125-133.
-
Jim, K.-C., Giles, C. L. (2000).
- Talking helps: Evolving communicating agents for the
predator-prey pursuit problem
.
Artificial Life, 6 (3), 237-254.
-
Koza, J. (1995).
- Gene duplication to enable genetic programming to concurrently evolve
both the architecture and work-performing steps of a computer program.
In Proceedings of the 14th International Joint Conference on
Artificial Intelligence. Morgan Kaufmann.
-
Koza, J. R. (1992).
- Genetic Programming: On the Programming of Computers by Means
of Natural Selection.
Cambridge, MA: MIT Press.
-
Lindgren, K., Johansson, J. (2001).
- Coevolution of strategies in n-person prisoner's dilemma
.
In Crutchfield, J., Schuster, P. (Eds.),
Evolutionary Dynamics - Exploring the Interplay of Selection,
Neutrality, Accident, and Function. Reading, MA: Addison-Wesley.
-
Lipson, H., Pollack, J. B. (2000).
- Automatic design and manufacture of robotic lifeforms
.
Nature, 406, 974-978.
-
Mahfoud, S. W. (1995).
- Niching Methods for Genetic Algorithms
.
Doctoral Dissertation, University of Illinois at Urbana-Champaign,
Urbana, IL.
-
Maley, C. C. (1999).
- Four steps toward open-ended evolution.
In Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO-1999) (pp. 1336-1343). San Francisco, CA: Morgan
Kaufmann.
-
Martin, A. P. (1999).
- Increasing genomic complexity by gene duplication and the origin of
vertebrates.
The American Naturalist, 154 (2), 111-128.
-
Mengshoel, O. J. (1999).
- Efficient Bayesian Network Inference: Genetic
Algorithms, Stochastic Local Search, and Abstraction
.
Doctoral Dissertation, University of Illinois at Urbana-Champaign
Computer Science Department, Urbana-Champaign, IL.
-
Miller, G., Cliff, D. (1994).
- Co-evolution of pursuit and evasion i: Biological and
game-theoretic foundations.
Tech. Rep. CSRP311, School of Cognitive and Computing Sciences,
University of Sussex, Brighton, UK.
-
Miller, J. F., Job, D., Vassilev, V. K.
(2000a).
- Principles in the evolutionary design of digital circuits - Part
I.
Journal of Genetic Programming and Evolvable Machines,
1 (1), 8-35.
-
Miller, J. F., Job, D., Vassilev, V. K.
(2000b).
- Principles in the evolutionary design of digital circuits - Part
II.
Journal of Genetic Programming and Evolvable Machines,
3 (2), 259-288.
-
Mitchell, M., Crutchfield, J. P., Das, R. (1996).
- Evolving cellular automata with genetic algorithms: A review of
recent work.
In Proceedings of the First International Conference on
Evolutionary Computation and Its Applications (EvCA'96). Russian Academy of
Sciences.
-
Mondada, F., Franzi, E., Ienne, P. (1993).
- Mobile robot miniaturization: A tool for investigation in control
algorithms.
In Proceedings of the Third International Symposium on
Experimental Robotics (pp. 501-513).
-
Nadeau, J. H., Sankoff, D. (1997).
- Comparable rates of gene loss and functional divergence after genome
duplications early in vertebrate evolution.
Genetics, 147, 1259-1266.
-
Noble, J., Watson, R. A. (2001).
- Pareto coevolution: Using performance against coevolved opponents
in a game as dimensions for parerto selection.
In et al, L. S. (Ed.), Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO-2001). San Francisco, CA:
Morgan Kaufmann.
-
O'Reilly, U.-M. (2000).
- Emergent design: Artificial life for architecture design.
In 7th International Conference on Artificial Life
(ALIFE-00). Cambridge, MA: MIT Press.
-
Postlethwait, H. H., Yan, Y. L., Gates, M. A., Horne, S., Amores, A., Brownlie,
A., Donovan, A. (1998).
- Vertebrate genome evolution and the zebrafish gene map.
Nature Genetics, 18, 345-349.
-
Radcliffe, N. J. (1993).
- Genetic set recombination and its application to neural network
topology optimization.
Neural computing and applications, 1 (1), 67-90.
-
Radding, C. M. (1982).
- Homologous pairing and strand exchange in genetic recombination.
Annual Review of Genetics, 16, 405-437.
-
Reggia, J. A., Schulz, R., Wilkinson, G. S.,
Uriagereka, J. (2001).
- Conditions enabling the evolution of inter-agent signaling
in an artificial world
.
Artificial Life, 7, 3-32.
-
Rosin, C. D. (1997).
- Coevolutionary Search Among Adversaries
.
Doctoral Dissertation, University of California, San Diego, San
Diego, CA.
-
Rosin, C. D., Belew, R. K. (1997).
- New methods for competitive evolution.
Evolutionary Computation, 5.
-
Ryan, C. (1994).
- Pygmies and civil servants
.
In Kinnear, Jr., K. E. (Ed.), Advances in Genetic
Programming (Chap. 11, pp. 243-263). MIT Press.
-
Sidow, A. (1996).
- Gen(om)e duplications in the evolution of early vertebrates.
Current Opinion in Genetics and Development, 6,
715-722.
-
Sigal, N., Alberts, B. (1972).
- Genetic recombination: The nature of a crossed strand-exchange
between two homologous DNA molecules.
Journal of Molecular Biology, 71 (3), 789-793.
-
Sims, K. (1994).
- Evolving 3D morphology and behavior by competition
.
In Brooks, R. A., Maes, P. (Eds.),
Proceedings of the Fourth International Workshop on the Synthesis and
Simulation of Living Systems (Artificial Life IV) (pp. 28-39). Cambridge,
MA: MIT Press.
-
Spears, W. (1995).
- Speciation using tag bits.
In Handbook of Evolutionary Computation. IOP Publishing Ltd.
and Oxford University Press.
-
Stanley, K. O., Miikkulainen, R.
(2002a).
- The dominance tournament method of monitoring progress in
coevolution.
In Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO-2002) Workshop Program. San Francisco, CA: Morgan
Kaufmann.
-
Stanley, K. O., Miikkulainen, R.
(2002b).
- Efficient evolution of neural network topologies
.
In Proceedings of the 2002 Congress on Evolutionary Computation
(CEC'02). IEEE.
-
Stanley, K. O., Miikkulainen, R.
(2002c).
- Efficient reinforcement learning through evolving neural
network topologies
.
In Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO-2002). San Francisco, CA: Morgan Kaufmann.
-
Stanley, K. O., Miikkulainen, R.
(2002d).
-
Evolving neural networks through augmenting topologies.
Evolutionary Computation, 10 (2), 99-127.
-
Ueda, N., Ghahramani, Z. (2002).
- Bayesian model search for mixture models based on optimizing
variational bounds
.
Neural Networks, 15, 1223-1241.
-
Van Valin, L. (1973).
- A new evolutionary law.
Evolution Theory, 1, 1-30.
-
Yao, X. (1999).
- Evolving artificial neural networks.
Proceedings of the IEEE, 87 (9), 1423-1447.
-
Zhang, B.-T., Muhlenbein, H. (1993).
- Evolving optimal neural networks using genetic algorithms with
Occam's razor.
Complex Systems, 7, 199-220.
Kenneth O. Stanley
2004-02-08