next up previous
Next: About this document ... Up: Finding Approximate POMDP Solutions Previous: Acknowledgements

Bibliography

BK98
X. Boyen and D. Koller.
Tractable inference for complex stochastic processes.
In Proceedings of the 14th Annual Conference on Uncertainty in AI (UAI), pages 33-42, Madison, Wisconsin, July 1998.

BP96
C. Boutilier and D. Poole.
Computing optimal policies for partially observable Markov decision processes using compact representations.
In Proceedings of the 13th National Conference on Artificial Intelligence (AAAI-96), pages 1168-1175, 1996.

Bra97
Ronen I. Brafman.
A heuristic variable grid solution method for POMDPs.
In Benjamin K. Kuipers and Bonnie Webber, editors, Proceedings of the 14th National Conference on Artificial Intelligence (AAAI), pages 727-733, Providence, RI, 1997.

BS01
J. Andrew Bagnell and Jeff Schneider.
Autonomous helicopter control using reinforcement learning policy search methods.
In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pages 1615-1620, Seoul, South Korea, 2001. IEEE Press.

BSW98
Christopher Bishop, Markus Svensén, and Christopher Williams.
GTM: the generative topographic mapping.
Neural Computation, 10(1):215-234, 1998.

CC94
Trevor Cox and Michael Cox.
Multidimensional Scaling.
Chapman & Hall, London, 1994.

CDS02
Michael Collins, Sanjoy Dasgupta, and Robert Schapire.
A generalization of principal components analysis to the exponential family.
In T. G. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural Information Processing Systems 14 (NIPS), Cambridge, MA, 2002. MIT Press.

Che88
Hsien-Te Cheng.
Algorithms for Partially Observable Markov Decision Processes.
PhD thesis, University of British Columbia, Vancouver, Canada, 1988.

Che00
Ben M. Chen.
Robust and H-$ \infty$ Control.
Springer-Verlag, 2000.

CKK96
Anthony R. Cassandra, Leslie Kaelbling, and James A. Kurien.
Acting under uncertainty: Discrete Bayesian models for mobile-robot navigation.
In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 1996.

FBT99
Dieter Fox, Wolfram Burgard, and Sebastian Thrun.
Markov localization for mobile robots in dynamic environments.
Journal of Artificial Intelligence Research, 11:391-427, 1999.

GBFK98
Jens-Steffen Gutmann, Wolfram Burgard, Dieter Fox, and Kurt Konolige.
An experimental comparison of localization methods.
In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Victoria, Canada, October 1998.

GDT+02
Mark Galassi, Jim Davies, James Theiler, Brian Gough, Gerard Jungman, Michael Booth, and Fabrice Rossi.
GNU Scientific Library Reference Manual, 3rd edition edition, December 2002.
http://www.gnu.org/software/gsl/.

GF02
Jens-Steffen Gutmann and Dieter Fox.
An experimental comparison of localization methods continued.
In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Lausanne, Switzerland, October 2002.

Gor95
Geoffrey Gordon.
Stable function approximation in dynamic programming.
In Armand Prieditis and Stuart Russell, editors, Proceedings of the 12 International Conference on Machine Learning (ICML), pages 261-268, San Francisco, CA, July 1995. Morgan Kaufmann.

Gor03
Geoffrey Gordon.
Generalized$ ^2$ linear$ ^2$ models.
In Suzanna Becker, Sebastian Thrun, and Klaus Obermayer, editors, Advances in Neural Information Processing Systems 15 (NIPS). MIT Press, 2003.

GR70
Gene Golub and C. Reinsch.
Singular value decomposition and least squares solutions.
Numerische Mathematik, (14):403-420, 1970.

Han98
Eric Hansen.
Solving POMDPs by searching in policy space.
In Proceedings of the 14th Conference on Uncertainty in Artifical Intelligence (UAI), pages 211-219, Madison, WI, 1998.

Hau00
Milos Hauskrecht.
Value-function approximations for partially observable Markov decision processes.
Journal of Artificial Intelligence Research, 13:33-94, 2000.

HF00
E. Hansen and Z. Feng.
Dynamic programming for POMDPs using a factored state representation.
In Proceedings of the Fifth International Conference on Artificial Intelligence Planning and Scheduling (AIPS-00), Breckenridge, CO, April 2000.

How60
R. A. Howard.
Dynamic Programming and Markov Processes.
MIT, 1960.

HR03
Geoffrey Hinton and Sam Roweis.
Stochastic neighbor embedding.
In Suzanna Becker, Sebastian Thrun, and Klaus Obermayer, editors, Advances in Neural Information Processing Systems 15 (NIPS). MIT Press, 2003.

IB98
Michael Isard and Andrew Blake.
CONDENSATION - conditional density propagation for visual tracking.
International Journal of Computer Vision, 29(1):5-28, 1998.

Jol86
I. T. Joliffe.
Principal Component Analysis.
Springer-Verlag, 1986.

KKR95
K. Kanazawa, D. Koller, and S.J. Russell.
Stochastic simulation algorithms for dynamic probabilistic networks.
In Proceedings of the 11th Annual Conference on Uncertainty in AI (UAI), pages 346-351, Montreal, Canada, August 1995.

Koh82
Teuvo Kohonen.
Self-organized formation of topologically correct feature maps.
Biological Cybernetics, 48:59-69, 1982.

LDW91
John Leonard and Hugh Durrant-Whyte.
Mobile robot localization by tracking geometric beacons.
IEEE Transactions on Robotics and Automation, 7(3):376-382, June 1991.

Lov91
William S. Lovejoy.
Computationally feasible bounds for partially observable Markov decison processes.
Operations Research, 39:192-175, 1991.

LS99
Daniel D. Lee and H. Sebastian Seung.
Learning the parts of objects by non-negative matrix factorization.
Nature, 401:788-791, 1999.

MJ00
Kanti V. Mardia and Peter E. Jupp.
Directional Statistics.
Wiley, Chichester, NY, 2nd edition, 2000.

MM99
Rémi Munos and Andrew Moore.
Variable resolution discretization for high-accuracy solutions of optimal control problems.
In Thomas Dean, editor, Proceedings of the 16th International Joint Conference on Artificial Intelligence (IJCAI), pages 1348-1355, Stockholm Sweden, August 1999. Morgan Kaufmann.

MM02
Rémi Munos and Andrew Moore.
Variable resolution discretization in optimal control.
Machine Learning, 49(2-3):291-323, November-December 2002.

MN83
P. McCullagh and J. A. Nelder.
Generalized Linear Models.
Chapman and Hall, London, 2nd edition, 1983.

MPKK99
Nicolas Meuleau, Leonid Peshkin, Kee-Eung Kim, and Leslie Pack Kaelbling.
Learning finite-state controllers for partially observable environments.
In Kathryn B. Laskey and Henri Prade, editors, Proceedings of the Fifteenth International Conference on Uncertainty in Artificial Intelligence, pages 427-436, Stockholm, Sweden, July 1999. Morgan Kaufmann.

NPB95
Illah Nourbakhsh, R. Powers, and S. Birchfield.
DERVISH an office-navigating robot.
AI Magazine, 16(2):53-60, 1995.

Ols00
Clark F. Olson.
Probabilistic self-localization for mobile robots.
IEEE Transactions on Robotics and Automation, 16(1):55-66, February 2000.

PB02
Pascal Poupart and Craig Boutilier.
Value-directed compression of POMDPs.
In Suzanna Becker, Sebastian Thrun, and Klaus Obermayer, editors, Advances in Neural Information Processing Systems 15 (NIPS), Vancouver, Canada, 2002. MIT Press.

PGT03a
Joelle Pineau, Geoffrey Gordon, and Sebastian Thrun.
Point-based value iteration: An anytime algorithm for POMDPs.
In Proceedings of the 18th International Joint Conference on Artificial Intelligence (IJCAI 2003), Acapulco, Mexico, August 2003.

PGT03b
Joelle Pineau, Geoffrey Gordon, and Sebastian Thrun.
Policy-contingent abstraction for robust robot control.
In Christopher Meek and Uffe Kjælruff, editors, Proceedings of the 19th Annual Conference on Uncertainty in Artificial Intelligence (UAI), Acapulco, Mexico, August 2003.

RN95
Stuart Russell and Peter Norvig.
Artificial Intelligence: A Modern Approach.
Prentice Hall, 1995.

Roc70
R. Tyrell Rockafellar.
Convex Analysis.
Princeton University Press, New Jersey, 1970.

RS00
Sam Roweis and Lawrence Saul.
Nonlinear dimensionality reduction by locally linear embedding.
Science, 290(5500):2323-2326, December 2000.

RSH02
Sam T. Roweis, Lawrence K. Saul, and Geoffrey E. Hinton.
Global coordination of local linear models.
In T. G. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural Information Processing Systems, volume 14, Cambridge, MA, 2002. MIT Press.

RT99
Nicholas Roy and Sebastian Thrun.
Coastal navigation with mobile robots.
In Sara A. Solla, todd K. Leen, and Klaus R. Müller, editors, Advances in Neural Processing Systems 12 (NIPS), pages 1043-1049, Denver, CO, 1999. MIT Press.

SK02
Hagit Shatkay and Leslie Pack Kaelbling.
Learning geometrically-constrained hidden markov models for robot navigation: Bridging the geometrical-topological gap.
Journal of AI Research, 2002.

TdSL00
Joshua B. Tenenbaum, Vin de Silva, and John C. Langford.
A global geometric framework for nonlinear dimensionality reduction.
Science, 290(5500):2319-2323, December 2000.

TFBD00
Sebastian Thrun, Dieter Fox, Wolfram Burgard, and Frank Dellaert.
Robust Monte Carlo localization for mobile robots.
Artificial Intelligence, 128(1-2):99-141, 2000.

Was97
Richard Washington.
BI-POMDP: Bounded, incremental partially-observable Markov-model planning.
In Proceedings of the 4th European Conference on Planning (ECP), 1997.

ZH01
Rong Zhou and Eric Hansen.
An improved grid-based approximation algorithm for POMDPs.
In Benhard Nebel, editor, Proceedings of the 17th International Joint Conference on Artificial Intelligence (IJCAI), pages 707-716, Seattle, Washington, August 2001. Morgan Kaufmann.

ZZ01
Nevin L. Zhang and Weihong Zhang.
Speeding up the convergence of value iteration in partially observable Markov decision processes.
Journal of Artificial Intelligence Research, 14:1-28, 2001.



Nicholas Roy 2005-01-16