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1. Introduction

• LASSO (Least Absolute Shrinkage and Selection Operator,
Tibshirani, 1996) achieves better prediction accuracy by
shrinkage, and at the same time it gives a sparse solution (some
coefficients are exactly 0).

• A problem in LASSO is that the objective function is not
differentiable, and hence special optimization techniques (QP or
non-linear programing) are necessary.

• In this talk, I propose a gradient descent algorithm for LASSO,
called gradient LASSO, which is simpler and stabler than the
existing algorithms and can be applied to very large dimensional
data easily.
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2. LASSO: Review

• Covariate : x = (x1, . . . , xp)
′ ∈ Rp

• Response : y ∈ R

• Model: y = β
′
x + ε or Pr(y = 1|x) = logit(β

′
x) or . . .

• Data: {(yi,xi) i = 1, . . . , n}
• Objective: Estimate β using the data.

• Question: How do we estimate β when p is large compared to n?

• Two methods

– (variable) Selection

– Shrinkage
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Selection

• Select a subset of {x1, . . . , xp} and use only the selected
covariates for model fitting.

• Popular methods for selection

– All possible

– Forward Selection

– Backward elimination

– Stepwise

• The predictive model is unstable due to the nature of
discreteness of the selection process, which may result in inferior
prediction error.
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Shrinkage: Ridge regression

• Estimate β by minimizing

n∑

i=1

l(yi, β
′
xi) + λ

p∑

j=1

β2
j

where λ > 0 and l is a loss function.

• Why “Shrinkage” ? : It can be shown that ‖β̂Ridge‖2 ≤ ‖β̂‖2
where β̂

Ridge
is the Ridge estimator and β̂ is the ordinary

estimator (Ridge estimator with λ = 0).

• The Ridge estimator is stabler than that from the selection and
so gives better accuracy.

• A disadvantage of Ridge regression is that the interpretation is
hard (i.e. none of the estimated coefficients is 0).
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Comparison of Selection and Shrinkage

Term LS Selection Ridge

Intercept 2.480 2.495 2.467

x1 0.680 0.740 0.389

x2 0.305 0.367 0.238

x3 -0.141 -0.029

x4 0.210 0.159

x5 0.305 0.217

x6 -0.288 0.026

x7 -0.021 0.042

x8 0.267 0.123

Test Error 0.586 0.574 0.540
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Can we do selection and shrinkage simultaneously? Yes, it is
LASSO!!!
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LASSO

• LASSO estimates β by minimizing

n∑

i=1

l(yi, β
′
xi) + λ

p∑

j=1

|βj |.

• LASSO is first proposed by Tibshirani (1996).

• One very interesting property of LASSO is that the predictive
model is sparse (i.e. some coefficients are exactly 0).
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Comparison of LASSO with the other methods

Term LS Selection Ridge LASSO

Intercept 2.480 2.495 2.467 2.477

x1 0.680 0.740 0.389 0.545

x2 0.305 0.367 0.238 0.237

x3 -0.141 -0.029

x4 0.210 0.159 0.098

x5 0.305 0.217 0.165

x6 -0.288 0.026

x7 -0.021 0.042

x8 0.267 0.123 0.059

Test Error 0.586 0.574 0.540 0.491
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Why is LASSO sparse?

β2

β 1

LASSO

β2

β 1

Ridge
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3. Algorithms: Review

• As mentioned in Introduction, LASSO is computationally
demanding since the L1 constraint is not differentiable.

• There are various special algorithms for LASSO:

– Osborne’s algorithm

– Grafting

– ε-boosting

• Let R(β) =
∑n

i=1 l(yi, β
′
xi) be the empirical risk.

• Assume R is convex and differentiable (i.e. smooth convex loss).
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Osborne’s algorithm (Osborne et al. 2000)

• Implemented in R.

• The Obsnorne’s algorithm repeatedly updates the solution
through (i) optimization, (ii) deletion and (iii) optimality check
and addition.

• For a current solution β, let σ = {j : βj 6= 0}.
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• Optimization

– Hσ = {h ∈ Rp : hk = 0 if k 6∈ σ}.
– Solve

Minimizehσ∈HσR(β + hσ)

subject to sign(β)
′
(β + hσ) ≤ λ.

– If sign(β + hσ) = sign(β), then β + hσ is feasible (i.e.
‖β + hσ‖1 ≤ λ), then we update β = β + hσ and go to the
optimality check step. Otherwise, we go to the deletion step.

– Note: With the square error loss, hσ has the closed form
solution which includes (X

′
σXσ)−1. For general loss, one can

find hσ using the IRLS method.
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• Deletion

– Find a coordinate (say k) among σ which violates the constraint
maximally, and then update σ = σ − {k} and update β by
setting βk = 0.

– Recompute hσ.

– Delete coordinates until β + hσ is feasible.
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• Optimality check and addition

– If β satisfies the optimality condition, the algorithm is
terminated.

– Otherwise, find the coefficient (say βk) which violates the
optimality condition most.

– Update σ = σ ∪ {k} and then go to the optimization step.

Machine and Statistical Learning 2006.6.29



• Remark

– The Osborne’s algorithm can fail to converge when p is larger
than n.

– In particular, when the cardinality of σ exceeds n, (X
′
σXσ)−1

does not exist.
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Grafting (Perkins et al. 2003)

• It repeatedly modifies the set of nonzero coefficients (i.e. σ) as
follows.

– Start with σ = ∅.
– Repeat until the solution is found.

∗ Find a coefficient (say βk) where the corresponding gradient
has the largest absolute value.

∗ Modify σ = σ ∪ {k}.
∗ Solve the LASSO problem with only coefficients in σ.

• The Grafting algorithm is computationally demanding since it
solve the LASSO problem repeatedly.

• Also, similar to the Osborne’s algorithm, Grafting can fail when
p > n.
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Stagewise forward selection: ε-boosting (Friedman 2001)

• Algorithm

– Choose ε sufficiently small.

– Select βk whose gradient is the smallest.

– Update β = β + εek where ek is a p-dimensional vector where
the k-th entry is 1 and the others are zero.

– Keep iterating the above two steps until ‖β‖1 exceeds λ.

• Efron et al. (2004) for square error loss (LARS) and Rossett et
al. (2004) for general convex loss.

• It is simple and gives a solution path as a by-product.

• But for general convex loss except the square error loss, it may
not converge to the solution.
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4. Coordinatewise gradient descent (CGD)
algorithm

• Recall that for LASSO we need to solve

MinimizeβR(β)

subject to ‖β‖1 ≤ λ.

• For simplicity, we let λ = 1. For other λ, we rescale the inputs by
multiplying λ.

• Let ek be the p-dimensional vector whose k-th entry is 1 and the
others are zero (eg. e1 = (1, 0, . . . , 0)) (called it an “coordinate
vector”).

• Let E = {ek,−ek : k = 1, . . . , p}.

Machine and Statistical Learning 2006.6.29



• The LASSO problem can be restated as

Minimizeβ∈co(E)R(β)

where co(E) is the convex hull of E .

• The CGD algorithm updates β as follows.

– Get the gradient vector R(1)(β) = ∂R(β)/∂β.

– Choose the coordinate vector e ∈ E which minimizes
e
′
R(1)(β).

– Find the convex combination of β and e which minimizes R.

That is, find α ∈ [0, 1] which minimizes R(αβ + (1− α)e).

– Update β = αβ + (1− α)e.
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• That is

– The LASSO problem is an optimization problem over the
simplex of a given set of vertices.

– The CGD algorithm repeatedly finds the optimal vertex (i.e
smallest gradient) and takes the optimal convex combination (i.e.
minimizing R).
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Illustration

• The number of vertices in E is 3.
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Illustration

• β is the current solution.
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Illustration

• Find the vertex
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Illustration

• Take a convex combination
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Illustration

• Move to the optimal convex combination.
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Illustration

• A typical path
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Remark

• In each update, we only need one-dimensional optimization for
finding the optimal convex combination.

• No inversion of matrix is required.

• Hence, it can be used for very large dimensional data.
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Convergence

• Let βm be the solution obtained after the m-th iteration of the
CGD algorithm.

• Let β∗ be the optimal solution.

• Then
R(βm)−R(β∗) = O(m−1).

• Note: Apparently, O(m−1) seems to be optimal for optimization
over the convex set (Jones 1992, Barron 1993, Zhang 2003).
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5. Gradient LASSO algorithm

A problem of the CGD algorithm

• For given β, recall that σ = {j : βj 6= 0}.
• We can say that the CGD algorithm consists of only the addition

step.

• If βk 6= 0 but β∗k = 0, the CGD algorithm deletes βk by
repeatedly adding other βs.

• Hence, the CGD algorithm converges very slowly in this case.

• That is, when the optimal solution locates the boundary of the
simplex of E , the convergence is slow.

Machine and Statistical Learning 2006.6.29



• Illustration
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Speed up the CGD algorithm

• Instead of moving toward one of the vertices, move directly
toward the optimal solution inside the simplex following the
gradient direction as follows.
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• Find the gradient direction
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• Take a convex combination
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• Find the optimal convex combination
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• In many cases, the gradient may direct the outside of the simplex.

• It happens when the current solution is on the boundary of the
simplex.

• In this case, we project the gradient direction onto the simplex.
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• Illustration

– The gradient directs the outside of the simplex.
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• Illustration

– Project the gradient onto the simplex.

Machine and Statistical Learning 2006.6.29



Gradient LASSO algorithm

• Let A = ∅ (A: active set).

• The gradient LASSO algorithm consists of the two steps -
addition and deletion.

– Addition: Move the solution using the CGD algorithm, which
may result in adding a new coordinate vector into A.

– Deletion: Move toward the (projected) gradient direction on
the simplex of A (i.e. co(A)), which may result in deletion of
a coordinate vector from A.

• The gradient LASSO algorithm repeats the addition and deletion
steps until the solution converges.

• Note: The gradient LASSO algorithm always converges faster
that the CGD algorithm since the deletion step decreases the
empirical risk.
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Remark

• The gradient LASSO algorithm does not require matrix inversion.

• In each iteration, we need two one-dimensional optimizations -
one for addition and the other for deletion, which can be done
easily.

• Hence, the gradient LASSO algorithm has all of the advantages
of the CGD algorithm, and at the same time, it improves the
speed of convergence significantly.
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Comparison of the CGD and gradient LASSO algorithms

• Starting from the null model (i.e. βk = 0 for all k).
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• Starting from the full model (i.e. βk = 3/50).
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• The CGD and gradient LASSO give similar results when we start
from the null model.

• However, the CGD algorithm completely fails to delete
unnecessary coefficients when we start from the full model.

• This is because the CGD algorithm keeps adding coefficients.

• It is interesting to see that even if the number of zero coefficients
are quite different in the full model case, the empirical risks are
very close.

• This observation suggests that finding an approximated solution
(one which minimizes the empirical risk approximately) is not
enough for sparse learning, in particular for variable selection.
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6. Simulation: Gradient LASSO vs Osborne

• Logistic regression

• Sample size is 20

• Only three coefficients are set to be nonzero.

• 100 repetition
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• Results
p λ Method # NA Time Train error # zero

50 1 Osborne 0 0.04 0.4240 45.38

Gradient 0 0.13 0.4240 45.38

10 Osborne 29 0.04 0.0242 37.63

Gradient 0 0.48 0.0242 37.49

100 1 Osborne 0 0.06 0.4019 95.03

Gradient 0 0.18 0.4019 95.02

10 Osborne 63 0.07 0.0107 87.35

Gradient 0 0.48 0.0108 86.92
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• The Osborne’s algorithm is faster.

• But, it fails quite often when λ is large.

• In contrast, the gradient LASSO algorithm never fails and gives
similar results as those of Osborne’s even though it needs more
computing time.
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7. Analysis of gene expression data

• We analyzed the NCI60 data set, which consists of

– n = 60

– p = 7129 (number of genes)

– # of class = 7

• The multiclass logistic regression model is used.

• The misclassification error is measured by repeating random split
of the data to training (70%) and test (30%) data sets 100 times.

• The regularization parameter λ is selected using the five-fold
cross validation with 0-1 loss (CV1) and logistic loss (CV2).
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• Objective of the analysis

– A popular approach for gene expression data is to select a small
number of genes a priori using a prescreening measure such as
the F -ratio, and then construct a predictive model.

– This saves computing time and makes it possible to use various
advanced learning algorithms.

– But, it is not clear how the prescreening affects the accuracy.

– An objective of this analysis is to see the effect of prescreening
to prediction accuracy.
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• Results
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• Remark

– The optimal number of genes is 500, which is still large.

– Our results suggest that deleting too many genes a priori can
degrade the accuracy significantly.

– So, we recommend using prescreening procedures not for
selecting important genes but for deleting noisy genes.

– Hence, computing algorithms which can process large
dimensional data are still necessary for better accuracy even
after a prescreening process.

– The gradient LASSO algorithm is one of such algorithms.
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8. Concluding Remarks

• There are various sparse learning methods.

• Examples are fused LASSO (Tibshirani et al. 2005), grouped
LASSO (Yuan and Lin, 2004), blockwise sparse regression (Kim
et al. 2006), SCAD (Fan and Li, 2001) and elastic net (Zou and
Hastie, 2004).

• We have seen that for sparse learning methods, crude
approximated solutions may be significantly misleading,
especially for variable selection.

• Hence, it is worth pursuing to develop efficient and globally
convergent computational algorithms for these methods,
particularly for large dimensional data.
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The R-library of the gradient LASSO algorithm can be downloaded
at “http://idea.snu.ac.kr/Research/glassojskim/glasso.htm”.
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