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Abstract

We study an expansion of the log-likelihood in undirected graphical models such as the Restricted Boltzmann
Machine (RBM), where each term in the expansion is associated with a sample in a Gibbs chain alternating
between two random variables (the visible vector and the hidden vector, in RBMs). We are particularly interested
in estimators of the gradient of the log-likelihood obtained through this expansion. We show that its terms converge
to zero, justifying the use of a truncation, i.e. running only a short Gibbs chain, which is the main idea behind
the Contrastive Divergence approximation of the log-likelihood gradient. By truncating even more, we obtain a
stochastic reconstruction error, related through a mean-field approximation to the reconstruction error often used
to train autoassociators and stacked auto-associators. The derivation is not specific to the particular parametric
forms used in RBMs, and only requires convergence of the Gibbs chain.

1 Introduction

Motivated by the theoretical limitations of a large class ofnon-parametric learning algorithms (Bengio & Le Cun,
2007), recent research has focussed on learning algorithmsfor so-calleddeep architectures(Hinton, Osindero,
& Teh, 2006; Hinton & Salakhutdinov, 2006; Bengio, Lamblin,Popovici, & Larochelle, 2007; Salakhutdinov
& Hinton, 2007; Ranzato, Poultney, Chopra, & LeCun, 2007; Larochelle, Erhan, Courville, Bergstra, & Bengio,
2007). These represent the learned function through many levels of composition of elements taken in a small or
parametric set. The most common element type found in the above papers is the soft or hard linear threshold unit,
or artificial neuron

output(input)= s(w′input+ b) (1)

with parametersw (vector) andb (scalar), and wheres(a) could be 1a>0, tanh(a), or sigm(a) = 1
1+e−a , for example.

Here, we are particularly interested in the Restricted Boltzmann Machine (Smolensky, 1986; Freund & Haussler,
1994; Hinton, 2002; Welling, Rosen-Zvi, & Hinton, 2005; Carreira-Perpiñan & Hinton, 2005), a family of bipartite
graphical models with hidden variables (the hidden layer) which are used as components in building Deep Belief
Networks (Hinton et al., 2006; Bengio et al., 2007; Salakhutdinov & Hinton, 2007; Larochelle et al., 2007). Deep
Belief Networks have yielded impressive performance on several benchmarks, clearly beating the state-of-the-art
and other non-parametric learning algorithms in several cases. Currently the most successful learning algorithms
for training a Restricted Boltzmann Machine (RBM) is the Contrastive Divergence (CD) algorithm. An RBM
represents the joint distribution between avisible vectorX which is the random variable observed in the data, and a
hidden random variableH. There is not tractable representation ofP(X,H) but conditional distributionsP(H|X) and
P(X|H) can easily be computed and sampled from. CD-k is based on a Gibbs Monte-Carlo Markov Chain (MCMC)
starting at an exampleX = x1 from the empirical distribution and converging to the RBM’sgenerative distribution
P(X). CD-k relies on a biased estimator obtained after a small numberk of Gibbs steps (often only 1 step). Each
Gibbs step is composed of two alternating sub-steps: samplinght ∼ P(H|X = xt) and samplingxt+1 ∼ P(X|H = ht),
starting att = 1.

The surprising empirical result is that evenk = 1 (CD-1) often gives good results. An extensive numerical
comparison of training with CD-k versus exact log-likelihood gradient has been presented in(Carreira-Perpiñan
& Hinton, 2005). In these experiments, takingk larger than 1 gives more precise results, although very good
approximations of the solution can be obtained even withk = 1.
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CD-1 has originally been justified (Hinton, 2002) as an approximation of the gradient of
KL(P(X2 = · |x1)||P(X = · )) − KL(P̂(X = · )||P(X = · )), whereKL is Kullback-Leibler divergence andP(X2 = · |x1)
denotes the distribution of the chain after one step. The term left out in the approximation of the gradient of theKL
difference is (Hinton, 2002)

∑

x

∂KL(P(X2 = · |x1)||P(X = · )
∂P(X2 = x|x1)

∂P(X2 = x|x1)
∂θ

(2)

which was empirically found to be small. On the one hand it is not clear how aligned are the log-likelihood gradient
and the gradient with respect to the aboveKL difference. On the other hand it would be nice to prove that left-
out terms are small in some sense. One of the motivations for this paper is to obtain the Contrastive Divergence
algorithm from a different route, by which we can prove that the term left-out withrespect to thelog-likelihood
gradientis small and converging to zero, as we takek larger.

We show that the log-likelihood and its gradient can be written down as a series where each term is associated
with a step of the Gibbs chain. We show that when truncating the gradient series tok steps, the remainder converges
to zero at a rate that depends on the mixing rate of the chain. The inspiration for this derivation comes from Hinton
et al. (2006): first the idea that the Gibbs chain can be associated with an infinite directed graphical model (which
here we associate to an expansion of the log-likelihood and of its gradient), and second that the convergence of the
chain justifies Contrastive Divergence (since thek-th sample from the Gibbs chain becomes equivalent to a model
sample).

Interestingly, the derivation is independent of the particular parametric formulation ofP(H|X) andP(X|H), al-
though the standard CD update is recovered in the case of the standard parametric formulation of RBMs. Finally, we
show that when truncating the series to a single sub-step we obtain the gradient of a stochastic reconstruction error.
A mean-field approximation of that error is the reconstruction error often used to train autoassociators (Rumelhart,
Hinton, & Williams, 1986; Bourlard & Kamp, 1988; Hinton & Zemel, 1994; Schwenk & Milgram, 1995; Japkow-
icz, Hanson, & Gluck, 2000). Auto-associators can be stacked using the same principle used to stack RBMs into a
Deep Belief Network in order to train deeep neural networks (Bengio et al., 2007; Ranzato et al., 2007; Larochelle
et al., 2007). Reconstruction error has also been used to monitor progress in training RBMs by CD (Taylor, Hinton,
& Roweis, 2006; Bengio et al., 2007), because it can be computed tractably and analytically, without sampling
noise.

In the following we drop theX = x notation and use shorthands such asP(x|h) instead ofP(X = x|H = h). The
t index is used to denote position in the Markov chain, whereasindicesi or j denote an element of the hidden or
visible vector respectively.

2 Restricted Boltzmann Machines and Contrastive Divergence

2.1 Boltzmann Machines

A Boltzmann Machine (Hinton, Sejnowski, & Ackley, 1984; Hinton & Sejnowski, 1986) is a probabilistic model
of the joint distribution betweenvisible units x, marginalizing over the values ofhidden units h,

P(x) =
∑

h

P(x, h) (3)

and where the joint distribution between hidden and visibleunits is associated with aquadraticenergy function

E(x, h) = −b′x− c′h− h′Wx− x′Ux− h′Vh. (4)

with,

P(x, h) =
e−E(x,h)

Z
(5)

whereZ =
∑

x,h e−E(x,h) is a normalization constant (called the partition function) and (b, c,W,U,V) are parameters
of the model.bi is called the bias of visible unitxi , ci is the bias of visible unithi, and the matricesW, U, andV
representinteraction terms between units. Note that non-zeroU andV mean that there are interactions between
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units belonging to the same layer (hidden layer or visible layer). Marginalizing overh at the level of the energy
yields the so-calledfree energy:

F (x) = − log
∑

h

e−E(x,h)
. (6)

We can rewrite the log-likelihood accordingly

logP(x) = log
∑

h

e−E(x,h) − log
∑

x̃,h̃

e−E(x̃,h̃) = −F (x) − log
∑

x̃

e−F (x̃). (7)

Differentiating the above, the gradient of the log-likelihood can be written as follows:

∂ logP(x)
∂θ

= −

∑

h e−E(x,h) ∂E(x,h)
∂θ

∑

h e−E(x,h)
+

∑

x̃,h̃ e−E(x̃,h̃) ∂E(x̃,h̃)
∂θ

∑

x̃,h̃ e−E(x̃,h̃)

= −
∑

h

P(h|x)
∂E(x, h)
∂θ

+
∑

x̃,h̃

P(x̃, h̃)
∂E(x̃, h̃)
∂θ

. (8)

Computing ∂E(x,h)
∂θ

is straightforward. Therefore, if sampling from the model was possible, one could obtain a
stochastic gradient for use in training the model, as follows. Two samples are necessary:h givenx for the first term,
which is called thepositive phase, and an ( ˜x, h̃) pair fromP(x̃, h̃) in what is called thenegative phase. Note how
the resulting stochastic gradient estimator

−
∂E(x, h)
∂θ

+
∂E(x̃, h̃)
∂θ

(9)

has one term for each of the positive phase and negative phase, with the same form but opposite signs. Letu = (x, h)
be a vector with all the unit values. In a general Boltzmann machine, one can compute and sample fromP(ui |u−i),
whereu−i is the vector with all the unit values except thei-th. Gibbs sampling with as many sub-steps as units in
the model has been used to train Boltzmann machines in the past, with very long chains, yielding correspondingly
long training times.

2.2 Restricted Boltzmann Machines

In a Restricted Boltzmann Machine (RBM),U = 0 andV = 0 in eq. 4, i.e. the only interaction terms are between
a hidden unit and a visible unit, but not between units of the same layer. This form of model was first introduced
under the name ofHarmonium (Smolensky, 1986). Because of this restriction,P(h|x) andP(x|h) factorize and
can be computed and sampled from easily. This enables the useof a 2-step Gibbs sampling alternating between
h ∼ P(H|X = x) andx ∼ P(X|H = h). In addition, the positive phase gradient can be obtained exactly because the
free energy factorizes:

e−F (x) =
∑

h

eb′x+c′h+h′Wx = eb′x
∑

h1

∑

h2

. . .
∑

hk

k
∏

i=1

ecihi+(Wx)i hi

= eb′x
∑

h1

eh1(c1+W1x) . . .
∑

hk

ehk(ck+Wkx)

= eb′x
k

∏

i=1

∑

hi

ehi (ci+Wi x)

whereWi is thei-th row of W. Using the same type of factorization, one obtains for example in the most common
case wherehi is binary

−
∑

h

P(h|x)
∂E(x, h)
∂Wi j

= E[Hi |x] · x j , (10)

where
E[Hi |x] = P(Hi = 1|X = x) = sigm(ci +Wi x). (11)
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The log-likelihood gradient forWi j thus has the form

∂ logP(x)
∂Wi j

= P(Hi = 1|X = x) · x j − EX[P(Hi = 1|X) · X j ] (12)

whereEX is an expectation overP(X). Samples fromP(X) can be approximated by running an alternating Gibbs
chainx1 ⇒ h1 ⇒ x2 ⇒ h2 ⇒ . . .. Since the modelP is trying to imitate the empirical distribution̂P, it is a good
idea to start the chain from̂P, so that we start the chain from a distribution close to the asymptotic one.

In most uses of RBMs (Hinton, 2002; Carreira-Perpiñan & Hinton, 2005; Hinton et al., 2006; Bengio et al.,
2007) bothhi and xi are binary, but many extensions are possible and have been studied, including cases where
hidden and/or visible units are continuous-valued (Freund & Haussler,1994; Welling et al., 2005; Bengio et al.,
2007).

2.3 Contrastive Divergence

Thek-step Contrastive Divergence (CD-k) (Hinton, 1999, 2002) involves a second approximation besides the use of
MCMC to sample fromP. This additional approximation introduces some bias in thegradient: we run the MCMC
chain for onlyk steps, starting from the observed examplex. Using the same technique as in eq. 8 to express the
log-likelihood gradient, but keeping the sums overh inside the free energy, we obtain

∂ logP(x)
∂θ

=
∂(−F (x) − log

∑

x e−F (x))
∂θ

= −
∂F (h)
∂θ

+

∑

x̃ e−F (x̃) ∂F (x̃)
∂θ

∑

x̃ e−F (x̃)

= −
∂F (h)
∂θ

+
∑

x̃

P(x̃)
∂F (x̃)
∂θ
. (13)

The CD-k update after seeing examplex is taken proportional to

∆θ = −
∂F (x)
∂θ

+
∂F (x̃)
∂θ

(14)

wherex̃ is a sample from our Markov chain afterk steps. We know that whenk→ ∞, the samples from the Markov
chain converge to samples fromP, and the bias goes away. We also know that when the model distribution is very
close to the empirical distribution, i.e.,P ≈ P̂, then when we start the chain fromx (a sample fromP̂) the MCMC
samples have already converged toP, and we need less sampling steps to obtain an unbiased (albeit correlated)
sample fromP.

3 Log-Likelihood Expansion via Gibbs Chain

In the following we consider the case where bothh andx can only take a finite number of values. We also assume
that there is no pair (x, h) such thatP(x|h) = 0 or P(h|x) = 0. This ensures the Markov chain associated with
Gibbs sampling isirreducible (one can go from any state to any other state), and there exists a unique stationary
distributionP(x, h) the chain converges to.

Lemma 3.1. Consider the irreducible Gibbs chain x1 ⇒ h1 ⇒ x2 ⇒ h2 . . . starting at data point x1. The log-
likelihood can be expanded as follows for any path of the chain:

logP(x1) = logP(xt) +
t−1
∑

s=1

log
P(xs|hs)
P(hs|xs)

+ log
P(hs|xs+1)
P(xs+1|hs)

(15)

and consequently, since this is true for any path:

logP(x1) = E[log P(xt)|x1] +
t−1
∑

s=1

E

[

log
P(xs|hs)
P(hs|xs)

+ log
P(hs|xs+1)
P(xs+1|hs)

∣

∣

∣

∣

∣

x1

]

(16)

where the expectation is over Markov chain sample paths.
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Proof. We will expand the expression of the log-likelihood by introducing samples of the Gibbs chainx1 ⇒ h1 ⇒

x2 ⇒ h2⇒ . . .:

logP(x1) = log
P(x1)
P(h1)

P(h1)
P(x2)

P(x2)
P(h2)

. . .
P(ht−1)
P(xt)

P(xt)

and substitute
P(xs)
P(hs)

=
P(xs|hs)
P(hs|xs)

(17)

and
P(hs)

P(xs+1)
=

P(hs|xs+1)
P(xs+1|hs)

(18)

to obtain

logP(x1) = logP(xt) +
t−1
∑

s=1

(

log
P(xs|hs)
P(hs|xs)

+ log
P(hs|xs+1)
P(xs+1|hs)

)

. (19)

Since this is true for any sequenceh1, x2, h2, . . . xt, it is also true of any weighted average of such sequences. Taking
these weights to beP(h1, x2, h2, . . . xt|x1) and summing over all possible paths of the chain, we obtain

logP(x1) = E[log P(xt)|x1] +
t−1
∑

s=1

E

[

log
P(xs|hs)
P(hs|xs)

+ log
P(hs|xs+1)
P(xs+1|hs)

∣

∣

∣

∣

∣

x1

]

. (20)

�

Note thatE[log P(xt)] is the negative entropy of thet-th visible sample of the chain, and it does not become
smaller ast → ∞. Therefore it does not seem reasonable to truncate this expansion. However, the gradient of the
log-likelihood is more interesting. But first we need a simple lemma.

Lemma 3.2. For any model P(Y) with parametersθ,

E

[

∂ logP(Y)
∂θ

]

= 0 (21)

when the expected value is taken according to P(Y).

Proof. We start from the sum to 1 constraint onP(Y), differentiate and obtain the Lemma. To obtain the last line
below we use the fact that for any functionf (θ), we have∂ f (θ)

∂θ
= f (θ) ∂ log f (θ)

∂θ
.

E[1] =
∑

y

P(Y = y) = 1

∂
∑

y P(Y = y)

∂θ
=
∂1
∂θ
= 0

∑

y

P(Y = y)
∂ logP(Y = y)

∂θ
= 0

�

The lemma is clearly also true for conditional distributions with corresponding conditional expectations.

Theorem 3.3. Consider the converging Gibbs chain x1 ⇒ h1 ⇒ x2 ⇒ h2 . . . starting at data point x1. The
log-likelihood gradient can be expanded in a converging series as follows:

∂ logP(x1)
∂θ

=

t−1
∑

s=1

(

E

[

∂ logP(xs|hs)
∂θ

∣

∣

∣

∣

∣

x1

]

+ E

[

∂ logP(hs|xs+1)
∂θ

∣

∣

∣

∣

∣

x1

])

+ E

[

∂ logP(xt)
∂θ

∣

∣

∣

∣

∣

x1

]

(22)

and the terms in the sum as well as the final term converge to zero as s and t respectively are taken larger.
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Proof. We take derivatives with respect to a parameterθ in the log-likelihood expansion in eq. 15 of Lemma 3.1:

∂ logP(x1)
∂θ

=
∂ logP(xt)
∂θ

+

t−1
∑

s=1

∂ logP(xs|hs)
∂θ

−
∂ logP(hs|xs)

∂θ
+
∂ logP(hs|xs+1)

∂θ
−
∂ logP(xs+1|hs)

∂θ
. (23)

Then we take expectations with respect to the Markov chain conditional onx1, getting

∂ logP(x1)
∂θ

= E

[

∂ logP(xt)
∂θ

∣

∣

∣

∣

∣

x1

]

+ E

















t−1
∑

s=1

∂ logP(xs|hs)
∂θ

−
∂ logP(hs|xs)

∂θ
+
∂ logP(hs|xs+1)

∂θ
−
∂ logP(xs+1|hs)

∂θ

∣

∣

∣

∣

∣

∣

∣

x1

















. (24)

Notice that the terms with a minus correspond to conditionals occuring in the chain, i.e., Lemma 3.2 can be applied
to eliminate them, e.g.,

Exs

[

Ehs

[

∂ logP(hs|xs)
∂θ

∣

∣

∣

∣

∣

xs

]
∣

∣

∣

∣

∣

∣

x1

]

= Exs[0|x1] = 0, (25)

yielding

∂ logP(x1)
∂θ

= E

[

∂ logP(xt)
∂θ

∣

∣

∣

∣

∣

x1

]

+

t−1
∑

s=1

(

E

[

∂ logP(xs|hs)
∂θ

∣

∣

∣

∣

∣

x1

]

+ E

[

∂ logP(hs|xs+1)
∂θ

∣

∣

∣

∣

∣

x1

])

. (26)

In order to prove the convergence of each individual term towards zero, we will use the assumed convergence of the
chain, which can be written

P(Xt = x|X1 = x1) = P(x) + εt(x) (27)

with
∑

x εt(x) = 1 and limt→+∞ εt(x) = 0 for all x. Sincex is discrete,εt
de f
= maxx |εt(x)| also verifies limt→+∞ εt = 0.

Then we can rewrite the first expectation as follows:

E

[

∂ logP(xt)
∂θ

∣

∣

∣

∣

∣

x1

]

=
∑

xt

P(xt|x1)
∂ logP(xt)
∂θ

=
∑

xt

(P(xt) + εt(xt))
∂ logP(xt)
∂θ

=
∑

xt

P(xt)
∂ logP(xt)
∂θ

+
∑

xt

εt(xt)
∂ logP(xt)
∂θ

.

Using Lemma 3.2, the first sum is equal to zero. Thus we can bound this expectation by
∣

∣

∣

∣

∣

∣

E

[

∂ logP(xt)
∂θ

∣

∣

∣

∣

∣

x1

]
∣

∣

∣

∣

∣

∣

≤
∑

xt

|εt(xt)|
∣

∣

∣

∣

∣

∂ logP(xt)
∂θ

∣

∣

∣

∣

∣

≤

(

Nx max
x

∣

∣

∣

∣

∣

∂ logP(x)
∂θ

∣

∣

∣

∣

∣

)

εt

whereNx is the number of discrete configurations for the random variableX. This proves the expectation converges
to zero ast → +∞, since limt→+∞ εt = 0.

To prove thatE
[

∂ logP(xt)
∂θ

∣

∣

∣

∣

x1

]

also converges to zero we need to formalize the convergence of the chain for con-

ditional probabilities. For anyx, h we have that lims→+∞ P(Xs = x,Hs = h|X1 = x1) = P(x, h) and lims→+∞ P(Hs =

h|X1 = x1) = P(h). It follows that

lim
s→+∞

P(Xs = x|Hs = h,X1 = x1) = lim
s→+∞

P(Xs = x,Hs = h|X1 = x1)
P(Hs = h|X1 = x1)

=
P(x, h)
P(h)

= P(x|h).
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Thus we can write
P(Xs = x|Hs = h,X1 = x1) = P(x|h) + δs(x, h) (28)

where lims→+∞ δs(x, h) = 0. Sincex andh are discreteδs
de f
= maxx,h |δs(x, h)| verifies lims→+∞ δs = 0. Fors> 1, the

second expectation in eq. 26 becomes

E

[

∂ logP(xs|hs)
∂θ

∣

∣

∣

∣

∣

x1

]

=
∑

xs,hs

P(xs, hs|x1)
∂ logP(xs|hs)

∂θ

=
∑

hs

P(hs|x1)
∑

xs

P(xs|hs, x1)
∂ logP(xs|hs)

∂θ

=
∑

hs

P(hs|x1)
∑

xs

(P(xs|hs) + δs(xs, hs))
∂ logP(xs|hs)

∂θ

=
∑

hs

P(hs|x1)
∑

xs

P(xs|hs)
∂ logP(xs|hs)

∂θ
+

∑

hs,xs

P(hs|x1)δs(xs, hs)
∂ logP(xs|hs)

∂θ

Using Lemma 3.2, the first term is equal to zero so that the above expectation can be bounded by
∣

∣

∣

∣

∣

∣

E

[

∂ logP(xs|hs)
∂θ

∣

∣

∣

∣

∣

x1

]
∣

∣

∣

∣

∣

∣

≤
∑

hs,xs

P(hs|x1)|δs(xs, hs)|
∣

∣

∣

∣

∣

∂ logP(xs|hs)
∂θ

∣

∣

∣

∣

∣

≤

(

NhNx max
x,h

∣

∣

∣

∣

∣

∂ logP(x|h)
∂θ

∣

∣

∣

∣

∣

)

δs

whereNh andNx are respectively the number of possible configurations of the hidden and visible layers. As a result,
this expectation converges to zero lims→+∞ δs = 0. By switching the roles ofx andh, a similar argument can be
made to prove that the third expectation also verifies

lim
s→+∞

E

[

∂ logP(hs|xs+1)
∂θ

∣

∣

∣

∣

∣

x1

]

= 0. (29)

�

One may wonder to what extent the above results still hold in the situation wherex and h are not discrete
anymore, but instead may take values in infinite (possibly uncountable) sets. We assumeP(x|h) and P(h|x) are
such that there still exists a unique stationary distribution P(x, h). Lemma 3.1 and its proof remain unchanged. On
another hand, Lemma 3.2 is only true for distributionsP such that

∫

y

∂P(y)
∂θ

dy=
∂

∂θ

∫

y
P(y)dy. (30)

This equation can be guaranteed to be verified under additional “niceness” assumptions onP, and we assume it is
the case for distributionsP(x), P(x|h) andP(h|x). Consequently, the gradient expansion (eq. 22) in Theorem3.3
can be obtained in the same way as before. The key point to justify further truncation of this expansion is the
convergence towards zero of the residual term

E

[

∂ logP(xt)
∂θ

∣

∣

∣

∣

∣

x1

]

. (31)

This convergence is not necessarily guaranteed unless we have convergence ofP(xt|x1) to P(xt) in the sense that

lim
t→∞

E

[

∂ logP(xt)
∂θ

∣

∣

∣

∣

∣

x1

]

= E

[

∂ logP(x)
∂θ

]

, (32)

where the second expectation is over the stationary distribution P. If the distributionsP(x|h) andP(h|x) are such
that eq. 32 is verified, then this limit is also zero accordingto Lemma 3.2, and it makes sense to truncate eq. 22.
Note however than eq. 32 does not necessarily hold in the mostgeneral case (Hernández-Lerma & Lasserre, 2003).
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4 Connection with Contrastive Divergence

The above result justifies truncating the series afterk steps, i.e., computing only the firstk steps in the chain. Note
how the sums in the above expansion can be readily replaced bysampling (which is easy for the firstk steps in the
Gibbs chain). This gives rise to a stochastic gradient, whose expected value is the exact expression associated with
a truncation of the above log-likelihood gradient expansion. Finally, we show that truncating to the firstk steps
gives a parameter update that is exactly the CD-k update in the case of a binomial RBM, i.e., with binary-valued
units.

Corollary 4.1. When considering only the terms arising from the first k stepsin the Gibbs chain x1 ⇒ h1⇒ x2⇒

h2 ⇒ . . . xk ⇒ hk, the unbiased stochastic estimator of the gradient of the truncated log-likelihood expansion of
Theorem 3.3 (with expectations replaced by samples in the chain) equals the CD-k update in the case of a binomial
RBM.

Proof. Let W· j denote thej-th column ofW andWi. its i-th row. In the Restricted Boltzmann Machine (RBM)
we haveP(h|x) =

∏

i P(hi |x), with P(hi = 1|x) = sigmoid(bi + Wi.x) and similarlyP(x|h) =
∏

j P(x j |h), with
P(x j = 1|h) = sigmoid(c j + h′W· j). We want to see what the terms in the truncated sum of eq. 22 look like with this
parametrization:

∂ logP(xt|ht)
∂Wi j

= (xt j − P(x j = 1|ht))hti (33)

and
∂ logP(ht|xt+1)

∂Wi j
= (hti − P(hi = 1|xt+1))xt+1, j. (34)

Adding the two terms, and taking the expectation overP(xt+1, j |ht), we notice that in expectation−P(x j = 1|ht))hti

cancelshti xt+1, j . That leaves
∆Wi j = xt jhti − P(hi = 1|xt+1)xt+1, j (35)

Whent = k = 1, this is exactly 1-step contrastive divergence for the RBM. Consider two such consecutive differ-
ences, fort andt + 1:

xt jhti − P(hi = 1|xt+1)xt+1, j +

xt+1, jht+1,i − P(hi = 1|xt+2)xt+2, j .

Again, we notice a cancellation, in expectation, of−P(hi = 1|xt+1)xt+1, j with xt+1, jht+1,i, becauseht+1,i is sam-
pled fromP(hi |xt+1). Hence fork-step generalized contrastive divergence applied to an RBM, all the intermediate
products cancel out, and we are left with only the first and last product:

∆Wi j = x1 jh1i − P(hi = 1|xk+1)xk+1, j. (36)

This is the standardk-step contrastive divergence update rule for binomial RBMs. Using the same procedure, the
same can be shown for the biases. �

Inspection of the proof of the theorem suggests that the mixing rate of the Gibbs chain is an important factor in
the quality of the approximation obtained by CD-k for different values ofk, since it determines the error in throwing
out the final term in the series. When the RBM weights are largeit is plausible that the chain will mix more slowly
because there is less randomness in each sampling step. Hence it might be advisable to use larger values ofk as the
weights become larger. However, it is not clear from this analysis how to precisely adjustk.

5 Connection with Autoassociator Reconstruction Error

Theorem 3.3 can be rewritten easily so that the final term is not E
[

∂ logP(xt)
∂θ

∣

∣

∣

∣

x1

]

but ratherE
[

∂ logP(ht)
∂θ

∣

∣

∣

∣

x1

]

, and now

the expansion has an odd number of terms (in addition to the remainder). If we truncate the gradient series so as to
keep onlythe first term, we obtain

∑

h1

P(h1|x1)
∂ logP(x1|h1)

∂θ
(37)
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which is an average overP(h1|x1), which could be approximated by sampling. Note that this isnot quite the negated
gradient of thestochastic reconstruction error

SRE= −
∑

h1

P(h1|x1) logP(x1|h1). (38)

The gradient of the stochastic reconstruction error would be

∂SRE
∂θ

= −
∑

h1

P(h1|x1)

(

∂ logP(x1|h1)
∂θ

+ logP(x1|h1)
∂ logP(h1|x1)

∂θ

)

. (39)

Here we consider a notion ofmean-field approximationby which an averageEX[ f (X)] over configurations of a
random variableX is approximated byf (E[X]), i.e., using the mean configuration. Applying such an approximation
to either eq. 37 or the above stochastic reconstruction gradient, i.e., instead of summing over allh1 configurations
we replace instances ofh1 by ĥ1 = E[H1|x1]. Both eq. 37 and eq. 39 become (up to sign)

∂ logP(x1|ĥ1)
∂θ

(40)

because, e.g., in the case whereh1 is binomial withE[H1i |x1] = P(H1i = 1|X1 = x1) = sigm(ai), we have

∂ logP(h1|x1)
∂θ

=
∑

i

(h1i − E[H1i |x1])
∂ai

∂θ
(41)

and replacingh1 by ĥ1, we obtain
∑

i

(ĥ1i − E[H1i |x1])
∂ai

∂θ
= 0. (42)

It is arguable whether the mean-field approximation per se gives us license to include in∂ logP(x1|ĥ1)
∂θ

the effect ofθ
on ĥ1, but if we do not then only the effect ofθ on the reconstruction given̂h1 as fixed would be taken into account,
and it seems preferable to take also into account the influence of θ on ĥ1.

In that case, we find that eq. 40 can be interpreted as the gradient of thereconstruction error typically used
in training autoassociators (Rumelhart et al., 1986; Bourlard & Kamp, 1988; Hinton & Zemel, 1994; Schwenk &
Milgram, 1995; Japkowicz et al., 2000; Bengio et al., 2007; Ranzato et al., 2007; Larochelle et al., 2007),

RE= − logP(x1|ĥ1) (43)

which is a mean-field approximation of the stochastic reconstruction error.
Whereas CD-1 keeps the first two terms in the series, reconstruction error update thus relies only the first term,

and on a mean-field approximation of that term (to convert from stochastic reconstruction error to reconstruction
error). The reconstruction error gradient can be seen as a more biased approximation of the log-likelihood gra-
dient than CD-1. Comparative experiments between reconstruction error training and CD-1 training confirm this
view (Bengio et al., 2007; Larochelle et al., 2007): CD-1 updating generally has a slight advantage over reconstruc-
tion error gradient.

However, reconstruction error can be computed deterministically and has been used as an easy method to mon-
itor the progress of training RBMs with CD, whereas the CD-k itself is generally not the gradient of anything and
is stochastic.

6 Conclusion

This paper provides a theoretical analysis of the log-likelihood gradient in graphical models involving a hidden
variableh in addition to the observed variablex, and where conditionalsP(h|x) andP(x|h) are easy to compute and
sample from. That includes the case of Contrastive Divergence for Restricted Boltzmann Machines (RBM). The
analysis justifies the use of a short Gibbs chain to obtain a biased but converging estimator of the log-likelihood
gradient. Since the left-over term in the gradient expansion depends on the closeness between thet-th sample in the
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chain and a sample from the model, it confirms the importance of paying attention to the mixing rate of the Gibbs
chain (either by some form of regularization or by selectingk adaptively).

The analysis also shows a connection between reconstruction error and log-likelihood and Contrastive Diver-
gence (CD), which helps understand the better results generally obtained with CD and justify the use of reconstruc-
tion error as a monitoring device when training an RBM by CD. The generality of the analysis also opens the door
to other learning algorithms in whichP(h|x) andP(x|h) do not have the parametric forms of RBMs.
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