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Abstract

We study an expansion of the log-likelihood in undirectealpical models such as the Restricted Boltzmann
Machine (RBM), where each term in the expansion is assatiith a sample in a Gibbs chain alternating
between two random variables (the visible vector and thddridrector, in RBMs). We are particularly interested
in estimators of the gradient of the log-likelihood obtairlerough this expansion. We show that its terms converge
to zero, justifying the use of a truncation, i.e. runningyoalshort Gibbs chain, which is the main idea behind
the Contrastive Divergence approximation of the log-itkebd gradient. By truncating even more, we obtain a
stochastic reconstruction error, related through a medd-dipproximation to the reconstruction error often used
to train autoassociators and stacked auto-associators.ddtivation is not specific to the particular parametric
forms used in RBMs, and only requires convergence of the $iblin.

1 Introduction

Motivated by the theoretical limitations of a large classioh-parametric learning algorithms (Bengio & Le Cun,
2007), recent research has focussed on learning algoriibhms®-calleddeep architectures(Hinton, Osindero,
& Teh, 2006; Hinton & Salakhutdinov, 2006; Bengio, LamblPopovici, & Larochelle, 2007; Salakhutdinov
& Hinton, 2007; Ranzato, Poultney, Chopra, & LeCun, 2007rochelle, Erhan, Courville, Bergstra, & Bengio,
2007). These represent the learned function through mamyslef composition of elements taken in a small or
parametric set. The most common element type found in theegbapers is the soft or hard linear threshold unit,
or artificial neuron

output(input)= s(winput+ b) Q)

with parametersv (vector) and (scalar), and whersg(a) could be 1.0, tanh@), or sigm@) = ﬁ for example.

Here, we are particularly interested in the RestrictedBoétnn Machine (Smolensky, 1986; Freund & Haussler,
1994, Hinton, 2002; Welling, Rosen-Zvi, & Hinton, 2005; @ara-Perpifian & Hinton, 2005), a family of bipartite
graphical models with hidden variables (the hidden layévictv are used as components in building Deep Belief
Networks (Hinton et al., 2006; Bengio et al., 2007; Salakingv & Hinton, 2007; Larochelle et al., 2007). Deep
Belief Networks have yielded impressive performance orbenchmarks, clearly beating the state-of-the-art
and other non-parametric learning algorithms in severs¢gaCurrently the most successful learning algorithms
for training a Restricted Boltzmann Machine (RBM) is the @astive Divergence (CD) algorithm. An RBM
represents the joint distribution betweenwisible vectorX which is the random variable observed in the data, and a
hidden random variabléd. There is not tractable representatiorP¢X, H) but conditional distribution®(H|X) and
P(X|H) can easily be computed and sampled from. KKBbased on a Gibbs Monte-Carlo Markov Chain (MCMC)
starting at an exampl¥ = x; from the empirical distribution and converging to the RBIMg&nerative distribution
P(X). CD-k relies on a biased estimator obtained after a small nutbéGibbs steps (often only 1 step). Each
Gibbs step is composed of two alternating sub-steps: sagipli~ P(H|X = %) and sampling,1 ~ P(X|H = hy),
starting att = 1.

The surprising empirical result is that evkn= 1 (CD-1) often gives good results. An extensive numerical
comparison of training with Cx-versus exact log-likelihood gradient has been presenté¢@anreira-Perpifian
& Hinton, 2005). In these experiments, takikdarger than 1 gives more precise results, although very good
approximations of the solution can be obtained even Wwithl.



CD-1 has originally been justified (Hinton, 2002) as an apgpnation of the gradient of
KL(P(Xz = - |x)IP(X = -)) — KL(P(X = -)|IP(X = -)), whereKL is Kullback-Leibler divergence ar{(X, = - |x;)
denotes the distribution of the chain after one step. The teft out in the approximation of the gradient of tké&
difference is (Hinton, 2002)

)

Z OKL(P(Xz = - [xq)|IP(X = -) OP(Xz = X|x1)
IP(Xz = X|X1) 00

which was empirically found to be small. On the one hand ibisakear how aligned are the log-likelihood gradient
and the gradient with respect to the abdte difference. On the other hand it would be nice to prove that left-
out terms are small in some sense. One of the motivationhi®paper is to obtain the Contrastive Divergence
algorithm from a diferent route, by which we can prove that the term left-out wétbpect to théog-likelihood
gradientis small and converging to zero, as we t&Karger.

We show that the log-likelihood and its gradient can be emitiown as a series where each term is associated
with a step of the Gibbs chain. We show that when truncatiagtdient series tosteps, the remainder converges
to zero at a rate that depends on the mixing rate of the chaimirkpiration for this derivation comes from Hinton
et al. (2006): first the idea that the Gibbs chain can be astsutivith an infinite directed graphical model (which
here we associate to an expansion of the log-likelihood &itd gradient), and second that the convergence of the
chain justifies Contrastive Divergence (since kit sample from the Gibbs chain becomes equivalent to a model
sample).

Interestingly, the derivation is independent of the paitic parametric formulation dP(H|X) andP(X|H), al-
though the standard CD update is recovered in the case dbidesd parametric formulation of RBMs. Finally, we
show that when truncating the series to a single sub-stefbtagathe gradient of a stochastic reconstruction error.
A mean-field approximation of that error is the reconstutgrror often used to train autoassociators (Rumelhart,
Hinton, & Williams, 1986; Bourlard & Kamp, 1988; Hinton & Zesh 1994; Schwenk & Milgram, 1995; Japkow-
icz, Hanson, & Gluck, 2000). Auto-associators can be sthcising the same principle used to stack RBMs into a
Deep Belief Network in order to train deeep neural netwoBexngio et al., 2007; Ranzato et al., 2007; Larochelle
et al., 2007). Reconstruction error has also been used tdonpnogress in training RBMs by CD (Taylor, Hinton,

& Roweis, 2006; Bengio et al., 2007), because it can be coadputictably and analytically, without sampling
noise.

In the following we drop théX = x notation and use shorthands suchPégh) instead ofP(X = x{H = h). The
t index is used to denote position in the Markov chain, wheirdisesi or j denote an element of the hidden or
visible vector respectively.

2 Restricted Boltzmann Machines and Contrastive Divergene

2.1 Boltzmann Machines

A Boltzmann Machine (Hinton, Sejnowski, & Ackley, 1984; km & Sejnowski, 1986) is a probabilistic model
of the joint distribution betweenisible units x, marginalizing over the values bdfdden units h,

P(X) = Z P(x, h) (3)
h
and where the joint distribution between hidden and visilvlis is associated with@uadraticenergy function
E(x,h) = -b'x—c’h-hWx-xUx-hVh (4)
with,
g Exh)
P(xh) = = (5)

whereZ = ¥, , e¥*M is a normalization constant (called the partition functiand @, c, W, U, V) are parameters
of the model.b; is called the bias of visible uni;, ¢; is the bias of visible unib;, and the matricegv, U, andV
represeninteraction terms between units. Note that non-zddoandV mean that there are interactions between



units belonging to the same layer (hidden layer or visibj@ita Marginalizing oveih at the level of the energy
yields the so-callefree energy.

F(x) = —log ) | e, (6)
h
We can rewrite the log-likelihood accordingly
log P(X) = log Z e €N _|og Z e €N = _7(x) - log Z e 7™, 7)
h %h X
Differentiating the above, the gradient of the log-likelihoad be written as follows:
dlogP() _ _Zne™NEEN yyye DEEN
06 - 3 et )
~ A&E(x, h) .~ 08(% h)
= - Zhl P(IX) == + %} P(%F)=—— ©)

ComputingZ&D is straightforward. Therefore, if sampling from the modedsapossible, one could obtain a

stochastic gradient for use in training the model, as fasloWvo samples are necessamgivenx for the first term,
which is called theositive phase and an x;'h) pair fromP(X, h) in what is called thenegative phase Note how
the resulting stochastic gradient estimator

_o8(xh)  98(% h)
90 90

has one term for each of the positive phase and negative phiis¢he same form but opposite signs. Let (x, h)

be a vector with all the unit values. In a general Boltzmangkmree, one can compute and sample frBo;|u_;),
whereu_; is the vector with all the unit values except thth. Gibbs sampling with as many sub-steps as units in
the model has been used to train Boltzmann machines in thewidsvery long chains, yielding correspondingly
long training times.

)

2.2 Restricted Boltzmann Machines

In a Restricted Boltzmann Machine (RBM), = 0 andV = 0 in eq. 4, i.e. the only interaction terms are between
a hidden unit and a visible unit, but not between units of e layer. This form of model was first introduced
under the name dflarmonium (Smolensky, 1986). Because of this restricti®(h|x) and P(x/h) factorize and
can be computed and sampled from easily. This enables thef as2-step Gibbs sampling alternating between
h ~ P(H|X = x) andx ~ P(X|H = h). In addition, the positive phase gradient can be obtairadt® because the
free energy factorizes:

e T Z grxrchehwx o gbrx Z Z o Z ﬁ €Sihi+Wihy

h hy hy he =1

x Z gulcwix) Z (et Wiex)
hl hk

eb’x ﬁ Z eh,((:,+V\I,x)

i=1 h

whereW, is thei-th row of W. Using the same type of factorization, one obtains for exarnmpthe most common
case wheré is binary

aE(x,h) v
_Zh: P(h|x) W, - E[HilX] - x;, (10)
where
E[Hi|X] = P(H; = 1|X = x) = sigm(c + W, X). (11)



The log-likelihood gradient fow; thus has the form

T8 — bk = 11X = ) - x; ~ Ex[P(H; = 109 X (12)

ij
whereEy is an expectation ove?(X). Samples fronP(X) can be approximated by running an alternating Gibbs
chainx; = h; = x = hy, = .... Since the modeP is trying to imitate the empirical distributioR, it is a good
idea to start the chain fro, so that we start the chain from a distribution close to ttyergsotic one.

In most uses of RBMs (Hinton, 2002; Carreira-Perpifian &tbiin 2005; Hinton et al., 2006; Bengio et al.,
2007) bothh; and x; are binary, but many extensions are possible and have begiedt including cases where
hidden angbr visible units are continuous-valued (Freund & Hausd884; Welling et al., 2005; Bengio et al.,
2007).

2.3 Contrastive Divergence

Thek-step Contrastive Divergence (Gf){Hinton, 1999, 2002) involves a second approximationdessthe use of
MCMC to sample fronP. This additional approximation introduces some bias ingitzglient: we run the MCMC
chain for onlyk steps, starting from the observed examyldJsing the same technique as in eq. 8 to express the
log-likelihood gradient, but keeping the sums okiénside the free energy, we obtain

dlogP(x) A(F(X) —log Y, e 7™)
00 00
_oF(h) | Zxe O
0 " 3eT®

_ __67;(§h) ; ZX: P(Y) —67;(5)?). (13)

The CDk update after seeing examplés taken proportional to

I |, TR
0 90

wherexis a sample from our Markov chain aftesteps. We know that whdn— oo, the samples from the Markov
chain converge to samples frof and the bias goes away. We also know that when the modedbdistn is very
close to the empirical distribution, i.€?,~ P, then when we start the chain frox{a sample fron®) the MCMC
samples have already converged®oand we need less sampling steps to obtain an unbiasedt (ediveglated)
sample fronP.

AG = -

(14)

3 Log-Likelihood Expansion via Gibbs Chain

In the following we consider the case where bbthndx can only take a finite number of values. We also assume
that there is no pairx h) such thatP(xjh) = 0 or P(h|x) = 0. This ensures the Markov chain associated with
Gibbs sampling isrreducible (one can go from any state to any other state), and theresexishique stationary
distributionP(x, h) the chain converges to.

Lemma 3.1. Consider the irreducible Gibbs chain x> h; = X = h,... starting at data point x The log-
likelihood can be expanded as follows for any path of therchai

-1
P(xshs) P(hglXs1)
logP(x1) = logP(x) + > lo +lo 15
gP(x) = log P(x) ; 9B 9 Poreahg (15)
and consequently, since this is true for any path:
t-1
P(xs/hs) P(hglXs1) }
log P(x1) = E[log P(x)[xa] + Eflo +log —/——=| x 16
9P0a) = Ellog POON] + ) B loa pgis + 09 B g ()

where the expectation is over Markov chain sample paths.



Proof. We will expand the expression of the log-likelihood by irtozing samples of the Gibbs chain= h; =
Xo =>hy= ..

P(x1) P(h1) P(x2)  P(hi_1)

109 P(x) P(hy) P(x) P(hy) *~ P(x)

P(x)

and substitute
P(Xs) _ P(xs/hs)

P(hs)  P(hslxs) 17)
" P(hs) _ P(hslXs1)
s)  _ s|As+1
P(Xs+1)  P(Xsr1lh) (18)
to obtain -~
- N P(xghs) P(helXs:1)
0gP(x) = 0gP0X) + ). (Iog S + 109 P(xs+l|h5))' 19)

Since this is true for any sequerite x,, hy, . . . X, it is also true of any weighted average of such sequencémdra
these weights to bB(hy, X, hy, . .. X|x;) and summing over all possible paths of the chain, we obtain

-1

log P(x;) = Eflog P(x)lxa] + > E [bg P(xghs) P(helXs:1)
s=1

+ —_—
P(hsIxs) P(Xs+1lhs)

(20)

O

Note thatE[log P(x;)] is the negative entropy of thieth visible sample of the chain, and it does not become
smaller ag — 0. Therefore it does not seem reasonable to truncate thisyeiqgpa However, the gradient of the
log-likelihood is more interesting. But first we need a sienl@mma.

Lemma 3.2. For any model BY) with parameter®,

dlogP(Y)
Bl —"/|_ 21
|25~ (21)
when the expected value is taken according (6)P

Proof. We start from the sum to 1 constraint &), differentiate and obtain the Lemma. To obtain the last line
below we use the fact that for any functié¢g), we haveZl? = f(g)2°21@.

~ 00
E[1] = Y P(Y=y)=1
y
axyP¥=y) _ 91 _
06 T

ZP(Y 6IogP(Y y) _ 0

The lemmais clearly also true for conditional distribugamith corresponding conditional expectations.

Theorem 3.3. Consider the converging Gibbs chain ¥ h; = x; = h,... starting at data point x The
log-likelihood gradient can be expanded in a convergingeseas follows:
d

dlogP(a) _ ti(E 8 log P(xghy)
90
xl] (22)

00

Xl} e [ 9109 P(hlxs:)
06
s=1

E [ dlogP(x)
00

and the terms in the sum as well as the final term converge toazes and t respectively are taken larger.



Proof. We take derivatives with respect to a paraméterthe log-likelihood expansion in eq. 15 of Lemma 3.1:

dlogP(x;)  dlogP(x) N til: dlogP(xshs)  dlogP(hs|xs) N 910gP(hslXsi1) 9109 P(Xs.1lhs)

9 00 a0 90 a0 90 (23)
s=1
Then we take expectations with respect to the Markov chaiditional onx;, getting
dlogP(x)) E dlogP(x;) “
0 B 0 !
t-1
dlogP(xshs) _ dlogP(hslxs) =~ dlogP(hsixsi1)  dlogP(Xs:1lhs)
E - - 24
; 30 oo o0 30 @4)

Notice that the terms with a minus correspond to conditi®paturing in the chain, i.e., Lemma 3.2 can be applied
to eliminate them, e.g.,

0logP(xg/hs)
00

dlog P(hg|x
E, [Ehs[ gaé oIXs)

X1

= E 0] =0, (25)

In order to prove the convergence of each individual termatols zero, we will use the assumed convergence of the
chain, which can be written

yielding

06

dlogP(x1) E 0logP(x)
00 a0

xl] + tii(E

s=1

Xl] e [ 10g P(hdxs.1)

P(Xt = X X1 = x1) = P(X) + &(X) (27)

: . . - def I
with ¥, &(X) = 1 and lim_.. &(X) = 0 for all x. Sincex is discreteg = max |&(X)| also verifies lim, .o & = 0.
Then we can rewrite the first expectation as follows:

E[ﬁlog P(x) xl] Z PO 1)alogP(xt)

06
0 Iog P(xt)

Z (P(x) + &(%)) ——F——

_ ZP( )BlogP(xt) Z ()6IogP(xt).

Using Lemma 3.2, the first sum is equal to zero. Thus we candthis expectation by

I I
dlogP(x)
. (Nx mxax|T\) !

whereNy is the number of discrete configurations for the random éeid. This proves the expectation converges
to zero ag — +o0, since lim_ ;. & = 0.

To prove thaE [ M X1 | also converges to zero we need to formalize the convergdtice ohain for con-

ditional probabilities. For any, h we have that ling, ., P(Xs = X, Hs = h|Xy = x3) = P(x, h) and lims_, ;. P(Hs =
h|X1 = x1) = P(h). It follows that

P(Xs = X, Hs = h|Xy = xq1)

Sll)r;rlo P(Xs = )(lHS = h, Xl = Xl) = sl—l>rpoo P(HS — h|X1 = Xl)
_ P(x,h)
= oy = PO,



Thus we can write
P(Xs = XHs = h, X1 = x1) = P(x|h) + ds(x, h) (28)

where lims_,,. d5(x, h) = 0. Sincex andh are discretés e maxn [5s(X, h)| verifies lims,.., 6s = 0. Fors > 1, the
second expectation in eq. 26 becomes

[ dlog P(x¢hs)
E P e
00

dlogP(xghs)
00

Xl] = ZP(X& hsx1)

Xs:hs

0log P(xsh
3P 37 Pl x) S

0logP(xglhs)
00

D Plhdlxa) D (Pxslhs) + 55(xs, he))
hs Xs

0logP(xg/hs)
00

S Pthg) Y POtng TP S gy, )
hs Xs

hs,Xs

Using Lemma 3.2, the first term is equal to zero so that the@bgpectation can be bounded by

E dlogP(xghs)
00

dlog P(xghs)
90

IA

x1” 37 P(hge)ios(xe, o)
hs,Xs

IA

(Nth mﬁx‘w') 65
X,

00

whereN, andNy are respectively the number of possible configurationsehtdden and visible layers. As a result,
this expectation converges to zero lim., 6s = 0. By switching the roles ok andh, a similar argument can be
made to prove that the third expectation also verifies

[ dlog P(h|Xs+1)

lim E
: 20

S—+o0

xl] _o. (29)
O

One may wonder to what extent the above results still holdhengituation wherex and h are not discrete
anymore, but instead may take values in infinite (possiblgountable) sets. We assurié€x|h) and P(h|x) are
such that there still exists a unique stationary distrdouR(x, h). Lemma 3.1 and its proof remain unchanged. On
another hand, Lemma 3.2 is only true for distributiéhsuch that

oPy) . 0
fy Wdy_ % fy P(y)dy. (30)

This equation can be guaranteed to be verified under additiniteness” assumptions d and we assume it is

the case for distributionB(x), P(xjh) and P(h|x). Consequently, the gradient expansion (eq. 22) in The@&m

can be obtained in the same way as before. The key point tifyjdigtither truncation of this expansion is the
convergence towards zero of the residual term

E [ dlogP(x)
00

Xl} . (31)
This convergence is not necessarily guaranteed unlessweechavergence d?(x|x;) to P(x;) in the sense that

xl] - E[%}, 32)

dlogP(x)

lim E
00

t—oo

where the second expectation is over the stationary disioib P. If the distributionsP(x|h) and P(h|x) are such
that eq. 32 is verified, then this limit is also zero accordmg§emma 3.2, and it makes sense to truncate eq. 22.
Note however than eq. 32 does not necessarily hold in the geostral case (Hernandez-Lerma & Lasserre, 2003).



4 Connection with Contrastive Divergence

The above result justifies truncating the series dftstieps, i.e., computing only the fidssteps in the chain. Note
how the sums in the above expansion can be readily replacedrbgling (which is easy for the firktsteps in the
Gibbs chain). This gives rise to a stochastic gradient, @lgapected value is the exact expression associated with
a truncation of the above log-likelihood gradient expansi&inally, we show that truncating to the filsisteps
gives a parameter update that is exactly the lQpdate in the case of a binomial RBM, i.e., with binary-value
units.

Corollary 4.1. When considering only the terms arising from the first k steplse Gibbs chain x= h; = x, =

h, = ...x = h, the unbiased stochastic estimator of the gradient of thedated log-likelihood expansion of
Theorem 3.3 (with expectations replaced by samples in thimbquals the CD-k update in the case of a binomial
RBM.

Proof. Let W,; denote thej-th column of W and W, its i-th row. In the Restricted Boltzmann Machine (RBM)
we haveP(h|x) = [T; P(hi|x), with P(h; = 1|x) = sigmoidf; + Wi X) and similarly P(xh) = [T; P(x;/h), with
P(x; = 1lh) = sigmoidg; + "W;j). We want to see what the terms in the truncated sum of eq.dkilee with this
parametrization:
dlog P(x/|h
T = (x4 = PO = L) (39

and
0log P(hy]x¢,1)

oW
Adding the two terms, and taking the expectation d¥eg..1 j|h;), we notice that in expectationP(x; = 1/h))hy
canceldyix.,1 ;. That leaves

= (hi — P(hi = 20%1))Xer1, - (34)

AW;j = Xijhi — P(hi = 1% 1) Xeen, (35)

Whent = k = 1, this is exactly 1-step contrastive divergence for the RBMnsider two such consecutiveter-
ences, fot andt + 1:

Xejhi — P(hi = 11%41) Xee1, +
X1, jheesi — P(hi = 1X2) %42,
Again, we notice a cancellation, in expectation,-d?(h; = 1|X1)Xer1j With Xeq jhei, becausdy, ; is sam-

pled fromP(hi|x.+1). Hence fork-step generalized contrastive divergence applied to an RBIMhe intermediate
products cancel out, and we are left with only the first antdgesduct:

AW = xgjhgi — P(hi = 1Xeq 1) X (36)

This is the standarll-step contrastive divergence update rule for binomial RBMsing the same procedure, the
same can be shown for the biases. m]

Inspection of the proof of the theorem suggests that thengisate of the Gibbs chain is an important factor in
the quality of the approximation obtained by Ger different values ok, since it determines the error in throwing
out the final term in the series. When the RBM weights are larngeplausible that the chain will mix more slowly
because there is less randomness in each sampling stepe iemght be advisable to use larger valueg& ak the
weights become larger. However, it is not clear from thidysishow to precisely adjust

5 Connection with Autoassociator Reconstruction Error

Theorem 3.3 can be rewritten easily so that the final termﬁfriig% xl] but ratherE [ %| xl], and now

the expansion has an odd number of terms (in addition to thaireler). If we truncate the gradient series so as to
keep onlythe first termwe obtain

0 |Og P(X1|h1)
P(hlx) ———— (37)
¥ et 205,



which is an average ov&{(h;|x;), which could be approximated by sampling. Note that thisisquite the negated
gradient of thestochastic reconstruction error

SRE= — Z P(h|x.) log P(xd|ny). (38)
hy

The gradient of the stochastic reconstruction error woeld b

0SRE _ dlogP(xa|hy) 0logP(hyxq)
3 =~ 2P (759 + logP(xhy 218X ) (39)

Here we consider a notion ofean-field approximationby which an averagEx| f (X)] over configurations of a
random variabl& is approximated by (E[X]), i.e., using the mean configuration. Applying such an agjnation
to either eq. 37 or the above stochastic reconstructionigmgd.e., instead of summing over &l configurations
we replace instances bf by hy = E[H1|x1]. Both eq. 37 and eq. 39 become (up to sign)

8logP(x1/hy)

4
5 (40)
because, e.g., in the case whiyés binomial withE[Hy|x1] = P(H1i = 1|X1 = X1) = sigm(@;), we have

0 |Og P(h1|X1) _ ) ) 0

a0l g (41)
and replacingy; by h;, we obtain

. da;
> (hu ~ ElHaba]) 5 = 0. (42)
i

It is arguable whether the mean-field approximation per gesgis license to include iﬂ% the dfect of 6
on ﬁl, but if we do not then only thefiect ofd on the reconstruction giveﬁrl as fixed would be taken into account,
and it seems preferable to take also into account the infeiefion ;.

In that case, we find that eq. 40 can be interpreted as theegrtaafi thereconstruction error typically used
in training autoassociators (Rumelhart et al., 1986; Bodr& Kamp, 1988; Hinton & Zemel, 1994; Schwenk &
Milgram, 1995; Japkowicz et al., 2000; Bengio et al., 200an&ato et al., 2007; Larochelle et al., 2007),

RE = — log P(x|) (43)

which is a mean-field approximation of the stochastic rettanton error.

Whereas CD-1 keeps the first two terms in the series, recanistn error update thus relies only the first term,
and on a mean-field approximation of that term (to convernfstochastic reconstruction error to reconstruction
error). The reconstruction error gradient can be seen asra mased approximation of the log-likelihood gra-
dient than CD-1. Comparative experiments between reaget®in error training and CD-1 training confirm this
view (Bengio et al., 2007; Larochelle et al., 2007): CD-1 ajaly generally has a slight advantage over reconstruc-
tion error gradient.

However, reconstruction error can be computed deterngalst and has been used as an easy method to mon-
itor the progress of training RBMs with CD, whereas the Kliself is generally not the gradient of anything and
is stochastic.

6 Conclusion

This paper provides a theoretical analysis of the log-liled gradient in graphical models involving a hidden
variableh in addition to the observed variabteand where conditionaR(h|x) andP(x/h) are easy to compute and

sample from. That includes the case of Contrastive Divazgdor Restricted Boltzmann Machines (RBM). The
analysis justifies the use of a short Gibbs chain to obtairaashni but converging estimator of the log-likelihood
gradient. Since the left-over term in the gradient expand&pends on the closeness betweent-thesample in the



chain and a sample from the model, it confirms the importafgagng attention to the mixing rate of the Gibbs
chain (either by some form of regularization or by seleckirzglaptively).

The analysis also shows a connection between reconstmuatior and log-likelihood and Contrastive Diver-
gence (CD), which helps understand the better results giynebtained with CD and justify the use of reconstruc-
tion error as a monitoring device when training an RBM by CheTenerality of the analysis also opens the door
to other learning algorithms in whidh(h|x) andP(x/h) do not have the parametric forms of RBMs.
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