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ABSTRACT speech. However, these algorithms typically exploit qomi

With the recent attention to audio processing in the time ity in spectral structures and are implicitly aided by thetfa
frequency domain we increasingly encounter the problem ofhat speech recordings usually contain signals from asingl
missing data. In this paper we present an approach thatsllovgource (the voice) and exhibit spectro-temporal patteors f

for imputing missing values in the time-frequency domain ofthat source alone. General audio or music recordings haweve
audio signals. The presented approach is able to deal witiclude a variety of sounds, many of which are concurrently
real-world polyphonic signals by performing imputatioreav ~ active at any time, and each of which has its own typical pat-
in the presence of complex mixtures. We show that this apterns, and are hence much harder to model.

proach outperforms generic imputation approaches, and we The algorithm proposed in this paper characterizes time-

present a variety of situations that highlight its utility. frequency representations as histograms of draws from a mix
ture model as proposed il [5]. Being a mixture, the model is
1. INTRODUCTION implicitly capable of representing multiple concurrenesp

tral patterns. The process of imputing missing values then

In this paper we address the problem of estimating missing rd&€comes one of learning from incomplete data. Experimen-
gions of time-frequency representations of audio sigriie. tal eyaluatlpns show thgt the |mpu.ted .spectral constrastio
problem of missing data in the time-frequency domain occur§btained with our algorithm result in distinctly betteryas
in several scenarios. The problem is common in speech Ior(t,Ijesged signals than those obtained from other common im-
cessing algorithms that employ computational auditoryiece Putation methods.
analysis or related methods to mask out time-frequency com-
ponents for recognition, denoising or signal separafp&]1 2. MISSING DATA IN THE TIME-FREQUENCY
An increasing number of audio processing tools allow inter- DOMAIN
active spectral editing of audio signals, which can oftesulte
in the excision of time-frequency regions of sound. In yetBefore we proceed, we briefly describe the time-frequency
other scenarios, such as in signals that have passed thaoughepresentations used to characterize the signal, andrprese
telephone or have encountered other linear or non-linear fisome examples with missing data. We will assume that the
tering operations, excision of time-frequency regionshaf t time-frequency representations are derived throughghmet
signal can occur naturally. Fourier transformation (STFT) of the signal [6]. The short-
In a majority of these scenarios the goal is to resynthesizéme Fourier transform converts an audio signal into a se-
the audio from the incomplete time-frequency characterizaquence of vectors, each of which represents the Fourier spec
tions. To do so, the “missing” regions of the time-frequencytrum of a short (typically 20-60ms wide) segmentframe
representations must first be “filled in” somehow, in order toof the signal. The STFT of a signal can be inverted to the
effect the transform from the time-frequency represeaitetth  original time-domain signal by an inverse short-time Feuwri
a time-domain signal. In certain cases the missing values cdransform. Being complex, the STFT of the signal has both
be set to zero and the resulting reconstructions do notrsuff@ magnitude and a phase. However most sound processing
heavily from perceptible artifacts. In most cases however algorithms for denoising, recognition, synthesis andieglit
moderate to severe distortion is easily noticeable. Tls®di  operate primarily on the magnitude since it is known to rep-
tion can render speech recordings unintelligible, or sg#dyer resent most of the perceptual information in the signal — the
reduce the quality of a music recording thereby distractingphase contributes mainly to the perceived quality of the sig
the listener. nal rather than its intelligibility. Recovery of full or paal
Although existing generic imputation algorithms [3] can missing phase information can be done with good results us-
be used to infer the values of the missing data they are ofng the technique in[]7]. Since the phase reconstruction is
ten ill-suited for use with audio signals and result in alglib highly dependent on the magnitude values we will primarily
distortions. Other algorithms such as thoseri |1, 4] are sui examine the reconstruction of the magnitudes of the missing
able for imputation of missing time-frequency componentsi time-frequency terms in this paper.



Figurela shows an example of the magnitude of the STF$ome reason. Figur&s 1b ddd 1c show examples of spectro-
of a speech signal that is a mixture of a spoken utterance argtams with missing data. In these examples time-frequency
a phone ring. We will refer to matrix-like representationsregions of the spectrogram have been erased to eliminate the
of the magnitudes of STFTs of a signal, such as the one iphone ring from the signal, automatically in one case and by
Figure[la as “magnitude spectrograms”, or simply as “speananual editing in the other. Missing data may also occur for
trograms” in this paper. Spectral magnitudes have the progsther reasons, such as systematic filtering etc. In order-to r
erty that when multiple sounds co-occur, the spectral magnconstruct a time-domain signal from these incomplete spec-
tudes of the mixed signal are approximately (but not exactlytrograms the values in the missing regions must be imputed
equal to the sum of the spectral magnitudes of the compsomehow. A simple technique is to simply floor these terms
nent soundk This is apparent in the spectrogram in Figureto some threshold value; however time-domain signals recon
Ma which shows the distinctive spectral patterns of both thstructed from such spectrograms will often contain audible
speech and phone ring. and often unacceptable artefacts. A more principled afmbroa

is required to reconstruct the missing regions in an acbépta
Mixture spectrogram m an n e r.

3. MODELING THE SPECTROGRAM

Frequency

At the outset, we would like to specify the terminology and
notation we will use. We will denote the (magnitude) spec-

Time trogram of any signal aS. The spectrogram consists of a
Masked spectrum sequence of (magnitude) spectral vectfys 0 < ¢ < T,
- each of which in turn consists of a number of frequency com-
. ? ponentsS;(f), 0 < f < F. All of these terms, being magni-
§ =i ﬁ tudes are non-negative.
Z s Tl In our model we viewS as a scaled version of a histogram

_% S comprising purely integer valued components, such that

L — S = C~'S; however the scaling factat cancels out of all
equations in our formulation and is thus not required to be

known. In the rest of the paper, we therefore ti®ételf as a

histogram and do not explicitly invoke the scaling facta; b

sides assuming that it is very large so that for 5’@§/f) such

— thatS,(f) = C~15,(f) the following holds:

CTS(f) = CTH(Su(f) + 1), (1)

Manually masked spectrum

Frequency

4. MODEL DEFINITION

Fig. 1. a. Magnitude spectrogram of a mixture of a spokenye model each spectral vectst as a scaled histogram of
utterance and a phone ring. The spectrogram clearly showga,ys from a mixture multinomial distribution. Per our mbde
the spectral patterns for both signals — the wavy lines ang\t is generated by repeated draws from a distribufffy),
the clouds of data are derived from the spoken word and th\?/heref is a random variable over the frequendigs. . ., F'}

phone ring is represented by the three horizontal, padie| andP,(f) is a mixture multinomial given by
thin lines. b. An incomplete spectrogram with missing re-

gions. In this example time-frequency components deemed P(f) = Z P,(2)P(f|2) @)
not to belong to the main speech signal have been erased by B

an automated algorithmc. Another example of an incom-

plete spectrogram. Here time-frequency regions dominate_'derez re_presents the identity of the_multi_nomial components
by the phone ring have been manually edited out. in the mixture. P(f|z) are the multinomial components or
“bases” that compose the mixture. Note that the component
A spectrogram with “missing” data is one where somemultinomialsP(f|z) are not specific to any givesi, butare
time-frequency components have been lost or erased due € same at all. P(f|z) are thus assumed to be characteristic
to the entire data set of whic®i is representative. The only
component signals are uncorrelated, in practice phaseelegions in finite parameter that is SpeC_IfIC tave the m.IXture weight®, (z).
analysis windows make this true for spectral magnitudesedato a power The model essgptlally Ch?ra‘?tenzes the. spectral vectors
that is closer to 1.0 than 2.0. themselves as additive combinations of of histograms drawn

1Although in theory this statement holds true for speqimater when the



from each of the multinomial bases. Consequently, it is in<F;" will similarly refer to the set of frequencies for which the

herently able to model complex sounds such as music that avalues ofS; are missingi.e. the set of frequencies ifi]".

additively composed by several component sounds. Thisisin

contrast to conventional models used for data imputa&ion 51 The Conditional Distribution of Missing Terms

[, 2,[4], that model the spectral components as the outcome

of a single draw from a distribution (although the distribut  In the first step we obtain the conditional probability distr

itself might be a mixture) and cannot model the additive nabution of the missing term§;" () given the observed terms

ture of the data. S¢ and the probability distributio#; (f) from which S* was
The model of Equatiolll2 is nearly identical to the one-drawn. LetNy = 3 . . S?(f). Ny is the total value

sided model for Probabilistic Latent Semantic Analysis, in of all observed spectral frequencies at timelLet P, ; =

troduced by Hoffman[]8], with the distinction that whereas>_;c - F%(f) be the total probability of all observed frequen-

the original PLSA model characterizes random variables agies att. The probability distribution o5}, given that the

documents and words, we refer instead to time and frequefrequencies iy are known to have been drawn exaciy

cies. Also, while the one-sided PLSA specifies a probabilitfimes cumulatively is easily shown to be given by tiegative

distribution over documents, in our model we do not have anultinomial distribution [9]:

similar probability distribution over the time variable (NP + Zfe]—‘m S (f)) p o

P = S My rsp ) 11 o 1L O™
4.1. Learningthemodel parameters t/Llfery t feFm ©

We can estimate the parameters of the generative model Wherefg” is the set of all frequency componentsdft. The

Equation(® forS using the Expectation Maximization algo- expected value of any tersy™ () whose probability is spec-
rithm [8]. In the expectation step of the EM algorithm at eachified by Equatiorib is given iy

time ¢ we estimate tha posteriori probabilities for the multi-

nomial bases conditioned on the observation of a frequgnc m o (f

bi(2)P(f]2)
P(z|f) = 3
)= S REPUTE) )
Inthe maximization step we update the spectral-vectocifipe
mixture weightsP;(z) and data-set characteristic multinomial

basesP(f|z) as:

We now describe the actual learning procedures to estimate
model parameters and missing spectral components. We iden-
tify two situations, stated in order of increasing comptexi

as (a) where the multinomial bases for the dB{g|z) are
knowna priori and only the mixture weight®;(z) are un-

S P2 f)Si(f) known, and (b) where none of the model parameters are known.
Pi(z) = bl - ! (4) We address them in reverse order below to simplify the pre-
> 2y P2 1)Se(f) sentation.
g2 Pe(z|f)Se(f) 5.2. LearningtheModel Parametersfrom Incomplete Data

Let A be the set of all parametefi(z) and P(f|z) of the
model defined by Equatidd 2. We derive a set of likelihood-

. . . maximizing rules to estimat& from S° using the Expectation
The algorithm of Sectioi 4.1 assumes that the entire SPenaximization algorithm as follows

trogramsS is available to learn model parameters. When the We denote the set of draws that resulted in the the gener-

spectr_ograms_ are mgomplete, severgl of 26f) terms in ation of S asz. Thecomplete data specification required by
_Equ_athlﬂl WI|| be missing or otherwise u_nknown. Our Ob'EM is thus given by(S°, S™, z) = (S, z), whereS™ andz
jective in this paper is to estlmat_e the missing componentgre unseen. The EM algorithm iteratively estimates theaslu
on the data. Along the way we will also estimate the mode f A that maximizes the expected value of the log likelihood

parameters themselves as necessary. ) ) of the complete data with respect to the unseen variablés [10
In the rest of the paper we use the following notation: WE o it optimizes:

will denote theobserved regions of any spectrogragass,

and themissing regions asS,,,. Within any spectral vector Q(A A) - E logP(S°,S™, z|A)
. 9 Sm,z\SO,A g ) 9

S; of S, we will represent the set of observed components as B : 50 8™ Z|A) (8

S¢ and the missing components 88'. S?(f) and S/ (f) = Esnjse 1 Bys,ilogP(8%, 8, z|A) (8)

will refer to specific frequency components §f and 53" 2To be precise Equatiofi$ 6 all 7 must actually be specifiedrirstef

respectively 7y will refer tq the set of frequencies_for yvhich C~1N?+1; however, given the assumption in Equaiidn 1, Equaion Tchvh
the values ofS; are knownj.e. the set of frequencies if¢. is the primary equation of interest remains valid.

5. ESTIMATION WITH INCOMPLETE DATA




whereA is the current estimate of. Since the draws that the observed and the imputed data is got guaranteed to in-

compose any spectruff) are independent of those that com- crease all the time however it always converges, and dogs tha

pose any othef,/, EquatiorfB simplifies to:. monotonically so after the first few iterations once the im-
putation becomes increasingly plausible. Fiddre 2 shows th

QA A) = ZEstm\Sg7AEzt|ShAlogP(S$S?7 zt|/A) (9)  convergence patters for the experiment in the next section.
t

wherez; is the set of draws that compos&g Optimizing 6. EXPERIMENTAL EVALUATION

Equatior® with respect ta, and invoking Equatiofl 7 leads

us to the following update rules: In this section we will evaluate the algorithms of Secfibm5 o

several examples of spectrograms with missing time-freque

P(z|f) = Pt(z)lf(ﬂz) - (10)  regions, showing both their convergence and effectiveaess
2. B2 P(f2) imputation. In our examples the spectrograms are from com-
N - SP(f) (11) plex musical recordings with multiple, additive concutren
b e P(f) spectral patterns. Such data are particularly difficultnte i
5.0/) g (}) i fer pute using conventional algorithms.
t = Ot 1 e F
NP (f) if f e B (12) 6.1 Nlustrative example
~ p
P (z|f)S
Pi(z) = 2 t](D |f/) tg) (13)  We first evaluate our proposed approach with an illustrative
2w Zf 1 (2 |f) t(f) example. The input data in this case consisted of a synthetic
P(flz) = S Pz f)Se(f) (14) piano recording of some isolated notes and subsequently of a
(flz) = Zf, S Pz £)S:(f) mixt_ure of these notes. We remove_d atriangular time-fraque
section of the part where the multiple notes took place. We

Note thatS;(f) are also the minimum mean-squared es+rained our model using the isolated note sections and ex-
timates of the terms i8"*. The above update rules thus alsotracted 60 multinomial bases which we then used to impute
implicitly impute the missing values of the data. the missing values. Figufd 3 shows both the original spec-

In some situations the multinomial basB§f|z) may be  trogram (with the missing region marked by the dotted line)
available, for instance when they have been learned sebarat and the reconstructed spectrogram. As a comparator we also
from regions of the data that have no missing time-frequencghow the complete spectrograms obtained by imputation of
components. In such situations, only the mixture weightshe missing regions using SVD and K-nearest neighbors, two
Py(z) need to be learned for any incomplete spectral vectoalgorithms which are two commonly used models that of-
Sy in order to estimaté, ( f). This can be achieved simply by ten perform very well in imputation problenis [3,111]. SVD
iterations of EquatioriS 10, 1T 112 dnd 13. in particular also models the data additively and may be ex-

pected to capture additive patterns.
Model likelihoods over training iterations

-8.9 T T T
ok . . B K-NN SVD Proposed model Ground Truth
I by =y a3
o1k 'Y i L~ 1
-_— = ip— i
L I \ I \ I I \
9.2 e \ L B \ “ \
| \ =) 5 e - g = -
“ [= \ [== - = \ —_ \
€ 93 [ 5 L |
g \ . \ \
g |7 \ el o \ = .
= 1 1 1 \ T
£ g4l — - -
5 94 " \ 8 \ i \ i \
| I I = |
-95F = e = - f—
, Likelihood over observed data ’ . A | I
/ — — — Likelihood over all data | ~— | - | - - |
-9.6- )/ b I a8 I il I » I =
By 1 B —- B —
971" v : B i i1 d e jil4 4
- n— En— — S —
I I I I I I I I I — e - =
50

-9.8
0 5 10 15 20 25 30 35 40 45
Iteration #

Fig. 3. Comparison of three data imputation approaches on

Fig. 2. Likelihood of observed datd°® (solid line) and com- a simple problem. The missing data area is denoted by the

plete spectrograr8 (dashed line) as a function of iteration dashed black line in all plots. The first plot from the left aiso
the results from K-NN imputation, the second from SVD im-

for the data in FigurEl6.
putation, the third using our proposed model and the fosrth i

The likelihood of the model for the observed data is guarthe ground truth.
anteed to converge monotonically, and that has been vatidat

with multiple experiments. The model likelihood over both  We note that even in this simple problem the K-NN ap-



proach does a poor job of modeling all three notes and in- Ground Truth Missing Data Input
stead averages out the imputed data thus creating a visibly
and audibly incorrect reconstruction. The SVD imputation
is more successful, appropriately borrowing elements 1o re
construct the coinciding notes. However this approachaann
guarantee that the the imputed output will be non-negative i
(as required for magnitude spectra) and can potentiallymet Sl e [ S
negative values which must be either set to zero, or be recti- = e e Tl
fied, resulting in musical noise. The proposed method prop-
erly layers elements of multiple notes to impute the missing SVD Imputation Proposed Imputation
data and does not suffer from producing negative values. The
result is almost indistinguishable from the ground truth.
Although our approach s not as fast as the k-nearest neigh-
bors approach, it is an order of magnitude faster than the
SVD approach since each iteration involves the evaluation o
a small number of inner products as opposed to the computa-
tion of an entire SVD. The computation times for the above
example were 0.7 seconds for k-nearest neighbors, 90 sec-
onds for the SVD and 8 seconds for our proposed approach.
Simulations were run on an ordinary laptop computer.
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Fig. 4. Example reconstruction of a gap filling experiment.

The leftmost plot shows the actual data, the second plotshow
6.2. Real-world examples the input with the large gap removing about 15% of the data,
we have zoomed into the region of the gap by not plot-

In this section we will consider some complex cases derive Ing some of the higher frequency content. the third plot is

out of real-wor!d record!ngs with challenging missing datathe SVD reconstruction and the fourth plot is our proposed
cases. We will first examine a more complex case of the abovr%ethod
example where we attempt to fill a large continuous gap in '

the spectrogram for a complex musical piece. The section

with the gap was a five second real piano recording of Bach’§he spectral excision here is very systematic and consisten
three-part piano invention #3 in D - BWV 879]12]. The size we |earn a set of 120 multinomial bases from other wideband
of the gap was 4.3 seconds by 3 kHz at its widest extentyaining data, and use these to infer the missing spectral co
We also used 10 seconds of data from another piano piegent of the bandlimited signal. This presumes that theitgin
(two-part invention #3 in D -BWV 774) which provided the data is similar in nature to the testing data (i.e. if we need t
needed information to impute the missing data. We extractegbsample piano music we should train on piano music). An
60 multinomial bases while training on both the complete angxample of this is shown in figufd 5. We removed 80% of
the incomplete data. As a comparator, we also reconstructgde upper frequencies of a ten second rock recording of the
the spectrogram using a rank-60 SVD. The sampling rate wWagong "Back in Black” by the band AC/DC and we trained on
14700Hz and the spectrum size was 1024 points The imputan eight second recording by the same band playing a differ-
tion results are shown in figufé 4. One can find some visuaint song ("Highway to Hell’). The sampling rate was once
inconsistencies using the SVD most noticeably in the roughehgain 14700Hz and the spectrum size was 1024 points. As
texture of the reconstructed area. In contrast our appm@ach 3 comparator we have also reconstructed the spectrogram us-
sults into visually more plausible results. We also inveet t jng rank-120 SVD. The SVD clearly underperforms in both
spectrograms back to the time domain in order to perform ghe audible and the visual reconstruction in this experimen
listening evaluation. In order to accurately compare thie ar \yhereas our proposed method results in a plausible, althoug
facts caused by the imputation we used the phase values frog8 expected non-exact, reconstruction.
the original signal. The proposed method resulted in vilstua Finally we present a very challenging case where the miss-
inaudible recoqstructin artifacts whereas the SVD apitoa jng gata was evenly and randomly distributed across the in-
introduced audible noifie . put. For this test a smoothed random binary mask was ap-
In the next example we attempt to perfobandwidthex-  plied to an input sound so that about 60% of the data was
pansion. Audio signals can often be bandlimited by havingremoved. The input sound was sampled as 22050Hz and
been passed through a restrictive channel, such as a telephoy,e time-frequency values were obtained using a 1024 point
3The soundfiles for all the examples in the remainder of thisiee are Short-tlme Fou“er tran_Sform' We modeled the data with a
attached in the original PDF file of this paper. They can bgeglausing any ~ Mixture of 60 multinomials. As a comparator, a rank-60 SVD
PDF reading software that allows the viewing of PDF attaafitsie was also used to reconstruct the spectrogram. The results of
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Fig. 5. Example reconstruction of a bandwidth expansionFig. 6. Example reconstruction of a music signal with a bi-
In the leftmost plot the original signal is shown. The seconchary mask occluding roughly 60% of the samples. The left-
plot displays the bandlimited input we used where 80% ofnost plot shows the original signal, the second plot shoe's th
the top frequencies were removed. The third plot is the SVDnasked input we used for the reconstruction, the third plot
reconstruction and the fourth plot is the reconstructiangis shows the reconstruction using the SVD and the fourth one
our model. shows the reconstruction using our model.
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