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Abstract— With the introduction of autonomous robots that
help perform various tasks in our environments, we can
opportunistically use them for collecting fine-grain sensor
measurements about our surroundings. Use of mobile robots for
data collection scales much better than static sensors in terms of
number of measurement locations and provide more fine-grain
accuracy and reliability than alternate human crowd-sourcing
efforts. One of the unique features of mobile robots is the ability
to control and direct where and when measurements should be
collected. In this paper, we present a system to compute paths
for the robot to follow that incorporates the robot’s limited
expected deployment time, expected measurement value at each
location, and a history of when each location was last visited.

I. INTRODUCTION

It is difficult for traditional data collection efforts to
collect accurate, fine-grain, and reliable sensor measurements
across large, indoor environments. Static sensors do not scale
well as the hardware requirements increase quickly with
large environments. Even dense static sensor deployments
cannot capture fine-grain measurements so they often use
interpolation techniques to estimate fine-grain variations [1],
[2]. Crowd-sourced data collection from humans with mobile
phones has been popular but it remains a challenge to accu-
rately localize these devices and deal with sensor variations
across different devices [3], [4], [5].

We can use autonomous robots to complement these alter-
nate measurement collection efforts. The major advantage of
mobile robots as data collection devices is continuous local-
ization with high accuracy, automatic navigation to numerous
locations, and reliable measurement collection under similar
mounting conditions [6], [7], [8]. Each robot only requires
mounting one sensing device so it is relatively low cost to
collect measurements across large environments. In addition,
the ability to dynamically adjust data collection strategies
provides great flexibility. The challenge of using mobile
robots is their limited battery life and uncertain operating
time.

In this work, we investigate the challenge of deciding
where the robot should direct its active data collection efforts
in indoor environments when faced with uncertainties from
interruptions from higher priority tasks. Some measurement
locations may have higher value than others and therefore
deserve more frequent visits. As a result, an intelligent
collection strategy needs to balance the value of measure-
ments at various locations with the navigation time between
locations as well as the robot’s expected deployment time.

We focus on creating a flexible framework that adjusts
navigation strategies across multiple deployments. Our ap-
proach is centered around maintaining a history of data

collection efforts over time and formulating the problem
as a reward collecting traveling salesman problem (TSP).
We evaluate our framework under several variations of the
traveling salesman problem and find the discounted-reward
TSP performs well when faced with operation uncertainties.

II. BACKGROUND

We introduce background on autonomous robots and
various sensors. We then discuss how easy it is to equip
autonomous robots for sensor data measurement collection.

A. Autonomous Robots

Mobile robots move around an indoor environment on
their own without human intervention. As shown in Figure 1,
the robot used in this study has dimensions (1.2m x 0.5m x
0.5m) with an omni-directional wheeled based for driving
across the environment. An on-board tablet performs all
robot computations and also provides a GUI for interacting
with humans. The robot is equipped with perceptive sensors
including LIDAR and Kinect that can provide centimeter-
level localization accuracy and a battery that sustains up to
four hours of continuous navigation on a single charge. We
will define robot location updates as a time and position tuple
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Fig. 1: An autonomous robot equipped for data collection.

B. Sensors

It is relatively easy to mount additional sensors on to a
robot when compared with smaller more mobile devices like
cell phones. A large platform enables one to mount various
sensors including indoor climate (temperature and humidity),
air quality (CO, CO2, Nitrogen, etc.), and wireless signals.
Each measurement update can be represented as a time and
value tuple (¢;, s;). These types of measurements can be used
for a variety of purposes including building management [9],
[10] and wireless infrastructure management [11].



C. Sensor Data Collection with Autonomous Robots

While in operation, the robot can easily record sensor
measurements as well as the corresponding time and location
as it moves across the environment. Given that different
sensors update at different rates, one can align the mea-
surement updates (t;, s;) by timestamp to identify the best
location estimate (t;,x;,y;) for each sensor measurement
(t;, i, i, Si). Sensors that update at a low frequency (like
indoor climate sensors for temperature and humidity) may
result in the robot moving several meters between successive
sensor updates when operating at normal speeds, making an
accurate location estimate less certain. As a result, it may
sometimes be necessary for the robot to move more slowly
when collecting certain types of sensor measurements.

In general, there are two robot deployment modes. The
first is when the robot is performing some task so we can
only opportunistically collect sensor data wherever the robot
happens to navigate through. The second is when the robot
has no tasks to perform so it can actively decide where to
focus its data collection efforts. This second use case is the
focus of this paper.

III. DATA, DATA, EVERYWHERE BUT HERE

We first motivate the need for autonomous robots to
proactively navigate by showing the unique challenges of
data collected by a mobile platform. We show data collected
from real-world deployments of autonomous robots in an
enterprise environment to show that while the aggregate
volume of data and number of unique locations visited is
large, the number of measurements at any specific location
is small. This is a unique challenge when compared to a
static sensor that provides fine-grain temporal visibility but
only from a single location. When coupled with limited
deployment times, there is a clear need for robots to be
intelligent about where they decide to collect measurements
to ensure up-to-date and fine-grain sensor maps.

As an example, we collect 802.11 WiFi measurements in
this work because there are many possible sensor configu-
rations and the sensor measurements vary considerably over
just a few meters, which makes them difficult to predict.
Variations in the wireless signals are highly dependent on
the transmitting device. We collected measurements with an
autonomous robot deployed over a 30 day period. These
measurements targeted wireless measurements from static
infrastructure access points (APs).

Figure 2a shows how the number of wireless measure-
ments differs across all observed APs. Some APs are mea-
sured frequently - for example, one AP is measured over
1400 times. However, many APs are observed less than 50
times. Part of the reason is that each AP broadcasts packets
every 100 ms. APs that are communicating with nearby
wireless devices provide additional wireless measurement
samples, which helps to explain why some APs have many
more measurement samples.

Even for APs with a large number of measurements, fur-
ther segmentation based on factors like location reveals the
limited number of measurements for any specific location.

Figure 2b shows one AP which had 542 wireless samples.
We segmented the measurements by 1m x 1m grid areas.
From this, we can see variations across the number of visits
for each unique grid. In addition, we also see that just
because the robot visited a location does not guarantee that
it collected any measurements for this specific AP. Despite
a large number of wireless measurements collected, we can
see that the view of an AP at any particular location varies
a lot, which supports the need for active data collection.
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Fig. 2: Showing various ways in which we can refine analysis
of various sensor specific features that can lead to sparse
measurements for certain sensor configurations.

IV. PATH PLANNING FOR ACTIVE MEASUREMENT
COLLECTION

By tracking where the robot previously collected sensor
measurements, the robot over the course of multiple de-
ployments should intelligently navigate to ensure best effort
coverage and periodically revisit important measurement
locations over time.

A. Path Planning for Data Collection

Our approach computes navigation paths at the beginning
of each active data collection deployment by combining
the robot’s starting location, expected deployment time, and
the measurement value of different locations. To contend
with the numerous factors that discriminate navigation path
for collecting measurements, we divide relevant factors into
either costs or one-time rewards for each measurement loca-
tion. Costs include navigation and measurement time while
rewards estimate the expected measurement value. Rewards
are readjusted between deployments so that recently visited
locations have lower priority than other less recently visited
ones. Therefore, two successive deployments from the same
starting location should result in very different navigation
strategies.
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Fig. 3: Different navigation path choices across multiple deployments. High priority locations (triangle) have not been visited
in the previous three deployments versus low priority locations (square) have been recently visited. Start position indicated
with the circle S. The navigation order is indicated by the gradient from green to red as well as select arrows.

One possible representation of the environment would
be an occupancy grid; however, our intent is not for the
robot to stop frequently at each grid location as it creates
inconvenient obstacles for humans moving around. Instead,
our intent is for the robot to continuously move while
collecting measurements with some flexibility in adjusting
the robot’s speed based on measurement needs. Therefore,
measurement locations are identified via segments of edges
emeas along the robot’s original navigation graph. The paths
computed identify the order in which the robot should visit
these measurement edges €,,.qs. This computation needs to
balance the costs and rewards as well as the uncertainty about
the robot’s actual deployment time.

B. Data Collection System

The data collection system is composed of three main
pieces: contextual data records, path planning computation,
and robot deployment. As shown in Figure 4, data flow across
these pieces is important for ensuring the robot executes
intelligent data collection strategies over time.

Contextual data records include the robot’s original navi-
gation graph and sensor measurement cost-reward parameters
for each measurement edge (€meas, Cmeass T'meas). With up-
to-date contextual data, the robot can compute a navigation
path (x1,y1), (x2,y2)... € P at the beginning of each
deployment starting from its current location (Tint, Yinit)-
The robot executes the path while it is deployed, contin-
uously updating the contextual data records as it collects
measurements at different measurement locations e,,¢qs in
the environment. Even if the robot is unable to complete
the entire path traversal, the data records are updated to re-
weight measurement priorities so that less frequently visited
locations will be more likely to be visited across multiple
deployments.
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Fig. 4: Data flow across the major pieces of our active data
collection system.

C. Formulation as Prize Collecting TSP

We assume that the robot wants to visit all measurement
locations if time permits. With uncertain deployment times,
the robot needs to carefully consider the order in which
it visits each measurement location €,,.,s. In addition, the
robot’s underlying navigation graph (V, E) € G constrains
how long it takes to navigate between different measurement
locations. Attached to each measurement location are cost
and reward parameters (e;, ¢;, r;), which allows us to com-
pute navigation paths using variants of the prize collecting
traveling salesman problem. Reward adjustments between
deployments will incentivize measurement collection from
less visited locations in subsequent deployments.



1) Cost-Reward Parameters: The robot’s active data col-
lection strategy can be influenced by adjusting the cost and
reward parameters.

There are two types of costs for each measurement lo-
cation: navigation cost cpq, and measurement COst Cpeqs-
The navigation cost is based on traversal time, the time to
cover the shortest distance across the edge at normal speeds.
Measurement cost can be much higher for reasons like slower
speeds for more accurate sensor measurement locations. As
a result, the total cost ¢; of an measurement location is either
its navigation cost or measurement cost ¢; = {Cnav|Cmeas }
depending on whether the robot is simply driving through or
capturing measurements along the edge.

Rewards discriminate the relative importance of different
measurement locations. The robot collects one-time rewards
for each measurement location r; for each deployment that
are either: no reward r,,, low priority reward 7;,,, Or
high priority reward rp;g,. The total reward is simply the
sum of these rewards 7; = 7Tno + Tiow + Thigh- AS an
example, the low priority rewards can be the difference
in time from the current time and time since last visit
to help bias unvisited locations. The high priority rewards
provide additional flexibility to further influence the robot’s
navigation for particularly important measurement locations.
For example, if we wish for a location to be visited once a
week, then we adjust 74, based on this condition.

2) TSP for Computing Paths: With the formulation of
each measurement location as (e;, ¢;,7;), we can construct
a tour to visit all locations and compute a navigation path
using variants of the prize collecting traveling salesman prob-
lem. Notice that the traditional traveling salesman problem
solely considers finding the shortest path cycle and does not
consider measurement value.

minici (1)
0

In contrast, the prize collecting TSP also consider rewards
collected. One variant is called the orienteering problem,
which finds the maximum reward path within a fixed time
limit MAX_COST.

J
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Another variant called the discounted-reward TSP (DRTSP)
finds the maximum discounted reward path with discount
rate . The discounted-reward results in paths biased towards
earlier than later collection of rewards.

0o r;

Equation 4 shows how one can select an appropriate discount
rate v by providing the proportion of reward p that should
remain after some expected deployment time ¢. For example,

in our evaluation, we aim to discount the reward by 50%
of the original value by the time 20 minutes have passed.
As a result, we use a discount rate of 1.2%. By adjusting
the discount rate, one can easily influence the importance of
collecting measurements earlier or later during a deployment.
1
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Solving these variants of the TSP is NP-hard but we are
working with metric maps, which is the special case Eu-
clidean TSP. As a result, we can use the minimum spanning
tree heuristic in combination with the triangle inequality to
find paths within a factor of two optimal. Unfortunately, this
guarantee no longer holds if the measurement cost is not the
same as the navigation cost. Given that the robot computes
a different path for each deployment, we continued using
the heuristic because it is more worthwhile for the robot to
continuously move than wait for an optimal solution.

3) Adjusting Rewards Across Deployments: After each
deployment, readjusting the rewards for recently visited mea-
surement locations will ensure variability in the navigation
paths for subsequent deployments. There are many potential
strategies to readjust these weights. In our evaluation, we
consider the simple goal of ensuring each measurement
location is visited once every three deployments. Therefore,
recently visited measurement locations are assigned a much
lower reward value. We will show that these efforts result in
intelligent navigation strategies that emphasize data collec-
tion.

V. EVALUATION

In our evaluation, we wish to show that a robot can
be intelligent about active data collection under uncertain
deployment times. We first compare how different TSP
variants balance the tradeoffs between cost and rewards
during a single deployment. We then illustrate how the
robot follows different navigation paths across deployments.
Finally, we show how these strategies perform under long-
term deployments, where the robot is periodically deployed
under variable deployment times.

A. Single Deployment Path Strategies

We first look at how much reward would be collected
if the deployment was interrupted at any point in time.
We consider a robot with an expected deployment time of
20 minutes. From a real navigation map of an enterprise
environment, we have marked 25 high priority hallway
segments assigned uniform expected measurement reward
value of 1. The remaining hallways can be optionally visited
with a reward of .01 to incentivize traveling through different
hallways. The orienteering algorithm is provided a 20 minute
limit. The DRTSP uses a discount rate of 1.2%.

The accumulated rewards from one deployment are shown
in Figure 5a while the total distance traveled versus number
of unique locations traversed is shown in Figure 5b. There are
clear differences across the three path planning algorithms.



First, the original TSP naturally finds a path that takes the
least amount of time since it only consider the costs. Both the
orienteering problem and discounted-reward TSP (DRTSP)
also consider the reward collected so it is no surprise that
they find paths with higher initial rewards.

The orienteering solution excels when the exact deploy-
ment time is known but has no contingency plan should there
be additional time. In contrast, the DRTSP has a plan for
additional deployment time making it well equipped when
there is uncertainty regarding the robot’s deployment time.
Due to the small .01 reward for visiting different locations,
DRTSP traverses an additional unique 14.16 meters in ex-
change for traveling 33.22 meters more than the shortest
cycle path discovered by the TSP.
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Fig. 5: Comparing differences in rewards collected by path
planning algorithms. Dashed line in Figure 5a indicates the
target 20 minute time limit. Higher up-front rewards are
desirable when faced with limited collection time.

B. Across Multiple Deployments

We now show how navigation paths evolve over multiple
deployments due to simple readjustments of rewards after
each deployment. We apply a simply strategy that assigns
a reward of 1 for measurement locations not visited in the
last three deployments and 0.1 for those that have. Figure 3
shows how this simple adjustment of rewards influences
the path traversed when the robot is given a fixed 20
minute time limit each deployment and starts from the same
initial position. It takes three deployments to fully cover the
environment at which point the navigation strategy focuses
on visiting low priority locations. As we can see, adjusting

the rewards provides flexibility in deciding where the robot
should emphasize its data collection efforts.

Next, we wish to see how effective these navigation
paths are able to cover measurement locations over multiple
deployments under uncertain deployment times. We consider
deployment times randomly generated from Gaussian distri-
bution with mean of 20 minutes and standard deviation of 10
minutes all starting from the same initial location. Rewards
are adjusted after each deployment as before. Orienteering
is once again given a 20 minute time limit and DRTSP is
given a 1.2% discount rate. Figure 6 shows the proportion of
measurement locations visited within the last three deploy-
ments. It is desirable to have higher proportion of recently
visited measurement locations.

Since the TSP does not consider rewards, it simply exe-
cutes the same navigation path and serves as a baseline. The
orienteering solution is able to maintain higher proportion of
recently visited locations but it fails to take full advantage of
situations where the robot has additional time. The DRTSP
is most effective at ensuring it maintain fresh measurements
since it emphasizes paths that collect rewards early while
also having a plan in case the robot is deployed longer than
the expected deployment time.
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Fig. 6: Percentage of measurement locations visited in the
previous three deployments.

VI. RELATED WORK

Related efforts for collecting measurements have different
limitations from robots, which makes use of autonomous
robots a complementary effort. Some alternate efforts that
use mobile robots do not focus on robots that opportunisti-
cally collect sensor measurements.

Dense static sensor deployments enable simultaneous data
collection at numerous locations but require a significant
amount of hardware, must contend with limited physical
placement options and still requires human effort to mark
sensor locations [12], [11]. High cost and initial labor costs
often means that it is difficult to upgrade system hardware. In
general, it is difficult to capture fine-grain measurements that
a robot can so static sensor efforts use geo-statistical inter-
polation efforts like Kriging [1] and Gaussian Processes [2]
that rely on assumptions about the co-variance of nearby



measurement locations. Of course, static sensors do not move
so they cannot even consider active path planning issues.

Manual efforts, such as wardriving or site surveys, require
people to walk around the building with some sensing
device. Users periodically trigger measurement recordings by
stopping and then marking their location on a given map [13],
[14]. Unfortunately, collected sensor data is susceptible to
human influences. More recent efforts automatically estimate
device location [15], [3], [4], [5] but they have much worse
accuracy than mobile robots equipped with much more
powerful extrinsic sensors [6], [7].

Our work differs from the use of mobile robots for cov-
erage and exploration. Coverage focuses on the distributed
problem of ensuring multiple robots maintain connectiv-
ity [16], [17] while exploration tackles the dynamic issue
of exploring a new environment [18].

Mobile robots have also been used as data mules for col-
lecting data wirelessly from static sensors dispersed across an
environment for both wheeled [19], [20] and underwater [21]
robots. Some such efforts focus on optimizing the paths
traversed, which tend to focus on the TSP that emphasizes
neighborhoods [22]. Recent work also targeting data collec-
tion emphasizes minimizing the combined movement and
transmission costs [23], [24]. Across most of these works,
the paths computed are intended to be repeated periodically
by the robot without interruption, which differs from our
goal of generating trajectories for robots with limited and
uncertain data collection time.

VII. CONCLUSION AND FUTURE WORK

We contribute a framework for enabling autonomous
robots to actively navigate across the environment for the
purposes of data collection when it has free time. There is
often uncertainty regarding how long these opportunities will
be so we investigated navigation strategies that adjust based
on data collected from previous deployments. We showed
this problem can be formulated at the prize collecting trav-
eling salesman problem and that the discounted-reward TSP
is well-suited for taking advantage of uncertain deployment
times.

For future work, there are opportunities to further extend
the algorithm for sensor hardware that require adjustment
of robot speeds for data collection. For example, indoor
climate sensors that capture temperature and humidity take
some time for measurements values to reach equilibrium.
There are also opportunities to generate active data collection
trajectories that combine potentially conflicting measurement
needs of multiple sensors.
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