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Abstract The RoboCup Small Size League (SSL) is

a robot soccer game with robots that play on a cus-
tomized field with overhead cameras. The majority of

the research effort to date has been on the performance

of the autonomous teams in aspects of motion planning

and team strategy. However, another critical compo-

nent of a robot game is the referee. In current SSL

games, refereeing is done by humans, who use a “referee

box” that passes their calls to the robots. In this work,

we contribute an automated referee (autoref) for SSL

games, towards enabling games to proceed with little

or no human supervision. The goal is to move closer to

the eventual full automation of complete games with

real robots. The technical challenges include the clear

definition of the rules of the game in terms of features

to be extracted from the visual perception, temporal

sequencing, and corresponding calls and game manage-

ment. We provide a description of a game of SSL as it is

relevant to an autoref, by categorizing the rules of the

game and presenting the structure of a game as a hybrid

automaton. We then describe the complete autoref using

a modular event-based architecture, following up on the

automaton as a guideline, to keep track of the state of

a game and issue referee commands accordingly. We

present the results of using our autoref to referee games

on real robots, as well as a comparison of the events

detected by the autoref to the calls made by a human

referee during the real SSL games at RoboCup 2014.
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1 Introduction

In the most general form of our research, we address

the challenge of creating an intelligent agent to observe

data produced by a dynamic continuous process in order

to find when the data matches some specific predefined

patterns. In addition, the agent needs to make deci-

sions about how to proceed based on the data patterns

detected.

Often, the decisions that need to be made and the

patterns that need to be matched at any given point in

time fall into discrete categories; meanwhile, the process

contains components that evolve continuously over time.

For instance, an agent tasked with monitoring traffic

at an intersection might be concerned with the state of

the traffic light and number of cars in view (discrete),

as well as the current time and the velocities of the cars

(continuous). This combination of discrete and continu-

ous elements defines a hybrid system. Accordingly, such

agents can often be modeled using some representation

designed for hybrid systems; one common choice is a

hybrid automaton, which we explored in this work.

We studied this general research problem in the con-

text of automated refereeing for the RoboCup Small Size

League (SSL), which is described in detail in Section 3;

in brief, it is intended to be analogous to a scaled-down

version of FIFA soccer that uses robots as the players.

A challenging example of the general problem is the
creation of an automated referee (autoref) for a game of

robot soccer. Autorefs have long been in use for robot

soccer games in simulation, but no such referees exist

yet for real robots. The soccer games with real physical

robots are refereed by humans.

Our motivation for developing an autoref specifically

is twofold. Practically speaking, the software behind

our competitive team has grown quite complex over the
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years, and it is often unclear what effect new changes

will have on our overall performance. We have histor-

ically done very little quantitative testing of our code

as a whole, since the need for refereeing means that it

takes a great deal of time and attention to evaluate its

performance in depth. Having an autoref means that

it is possible to run large amounts of game time with

relatively little human intervention — and none at all

in simulation. Apart from that benefit, we also simply

saw this as an important goal for RoboCup. Almost all

effort to date has gone into creating the competitors
in the various leagues, but automated refereeing is a

closely related and also highly desirable goal.

Initially, all refereeing of the real robots was done
manually by humans, including the positioning of the

robots to restart the game after a foul or goal. But we

soon introduced the “referee box” to the RoboCup SSL:

a computer program that connects the human refereeing
to the robots, by having a human select any of all the

possible conditions that can occur in a game, and then

communicating that condition to the physical robots.

The robots then act accordingly and autonomously po-

sition themselves in response to the command received.

Adding an autoref takes the next step by making the

selection itself autonomous, fully closing the loop of the

robotic behaviors.

While we ground our work on the concrete RoboCup

SSL game, we contribute a general formalism and algo-

rithms to detect events from a world model provided by

perception, which could be achieved for different games.

Our autoref is suitable for the refereeing of a robot game,

with a set of rules dependent on perceptual features,
and corresponding calls.

The structure of this paper is as follows: In Section 2,

we describe existing work related to the different aspects

of our refreeing formalism and system. In Section 3, we

describe the SSL and define the problem of creating an

autoref for it. In Section 4, we provide a more detailed

breakdown of some of the rules of the SSL as they relate

to an autoref. In Section 5, we discuss the mechanisms

by which input data are processed to provide a coherent

view of the world to the software. In Section 6, we

describe the autoref itself, in terms of a formalization

of a game of SSL as a hybrid automaton and a modular

architecture that effectively implements it. Finally, in

Section 7, we discuss the results of some quantitative

experiments, enabled by the autoref, which compare

two versions of our team against each other. Readers

who are familiar with the SSL may wish to proceed to

Section 3.6, our definition of the interface to a referee,

and then to Section 6.

2 Related work

Vail et al (2007) investigated using conditional random

fields for activity recognition of different robots based on

a stream of their positions over time, much like the data

available in the SSL. For automatic refereeing, it is also

necessary to perform recognition of a sort: a referee’s

fundamental task is to interpret the situations described

in the rules and determine when they are happening.

However, most of the relevant situations for refereeing

are amenable to simple handmade detectors. More ad-

vanced techniques for classification may be useful for

more difficult situations, such as those that are based

on attributing intent or negligence to the teams.

Many other authors have addressed the problem
of online processing of RoboCup games, in pursuit of

various aims. A simple example of such an aim is the

automated cameraman for the RoboCup Middle Size
League (MSL) described by RFC Stuttgart (Käppeler

et al 2010). The cameraman shares information with

a team to keep a camera pointed toward an object of

interest at all times during the game. The object of

interest is usually the ball, but may instead be a goal

or goalie when a robot makes a shot on goal.

A more involved task is producing engaging, human-

like commentary of games in real time. Rocco (Voelz et al

1999) and Mike (Tanaka et al 1998), both commentators

for simulation games, use hierarchical declarative event

systems to produce discrete events which may be the

topic of utterances. CMCast (Veloso et al 2008) is a

commentary system for soccer games played by Sony

AIBO robots; it is embodied in two humanoid robots

which can autonomously move around the field, localize

themselves, track the ball, detect game events, and give

commentary appropriately. All of these commentators

revolve around a concept of discrete “events” derived

from the continuous state of the game, similar to the

event detectors described later in this paper.

Commentating requires more understanding of the

specific game being observed than does the cameraman,

but less than full refereeing; it shares the problems of

event detection with refereeing, but the focus of such

systems is typically more on utterance selection and

audience interaction.

There have also been other efforts to provide auto-

mated refereeing for RoboCup games. For many years,

the simulation leagues have had official autorefs inte-

grated with their simulation servers, which have grown

to be encompass many rules at this point, although

games still require human referees for the more subjec-
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tive events. In both the 2D (Chen et al 2003) and 3D1

simulation leagues, the autorefs can handle

– managing the length of game halves,

– teleporting robots to legal positions when the game

is stopped,

– detecting when a free kick is taken,

– awarding the proper kicks when the ball leaves the

field or enters a goal, and

– detecting offsides situations.

Additionally, the 2D referee can detect backpasses,

but relies on a human referee to detect players surround-

ing the ball or a team blocking its own goal with too

many players. The 3D referee can detect when the play-

ers have formed a cluster around the ball that should

be broken up and when a team’s goal is being blocked

by too many of that team’s robots; in either case, it

teleports the offending robots outside the field.

The autoref we describe in this paper, when running

with a simulation of real robots (Section 3.3), is similar

to these referees in scope. However, referees that are

designed purely for simulation and execute within the

simulator itself have the advantage of being able to

rely upon having full, direct access to the state of the

world, in terms of both reading and writing. As a result,

detection of many events is much less error-prone for

them.

For real robots, Arenas et al (2009) developed a

refereeing robot that watched games of the RoboCup
2-Legged Standard Platform League and the Humanoid

League. By necessity, that work mainly focused on the

lower-level aspects of event detection from vision, since

those leagues do not have the standard centralized vision

system of the SSL, but the ultimate aim is equivalent

to ours for those leagues. For the MSL, Tech United

Eindhoven (Schoenmakers et al 2013) briefly described

an autoref that can detect when the ball leaves the field,

automatically signal the robots to stop play, and wait

for a human to place the ball in the correct position.

Their algorithm is like a simplified version of the one
described here. The RoboCup Logistics League (RCLL)

has also recently gained an autoref (Niemüller et al

2013), which was initially developed at the same time

as the work described here. The kinds of events that

need to be detected for that league are rather different,

but the ultimate goals described there are much the

same: taking a difficult job off human referees, ensuring

objectivity in judging, and benchmarking the systems

used in the game. The RCLL autoref communicates

with team robots and neutral machines over the net-

work, awarding points when robots complete particular

1 http://simspark.sourceforge.net/wiki/index.php?

title=Soccer_Simulation&oldid=3043

tasks using the game pieces, which abstractly represent

materials in a factory. The communication the autoref

receives consists of discrete messages, primarily about

completed tasks, so that it does not need to perform

its own processing of real-world data to extract relevant

events, as ours does. However, the rule-based system at

the core of the RCLL autoref achieves a similar purpose

to the structures described here, and could be used as

the basis of an alternate implementation.

Finally, at least two existing projects have worked

toward automatic refereeing for the SSL specifically. At

RoboCup 2014, the SSL released the technical challenge

of detecting certain relevant events from the game, such

as robots colliding with excessive force or kicking the

ball too fast2. ER-Force, the SSL team of University of

Erlangen-Nuremberg, has published the code it devel-

oped for the challenge3. Also, the open-source project

ssl-autonomous-refbox4 uses Prolog to declaratively
define the rules as predicates over game states. The

ER-Force code can only handle detecting those isolated

events, while ssl-autonomous-refbox is limited to ob-
serving a game and lacks the ability to handle the tran-

sitions related to restarting the game after a stop; this

work provides a more complete solution than either of

them by being able to handle a full game from start to

stop, transmitting the appropriate commands to teams.

Hybrid systems are widely found in robotics applica-

tions, due to the interaction between discrete computers

and the continuous physical world. Hybrid automata, a

standard representation of hybrid systems, originated in

the field of formal verification (Henzinger 2000; Alur et al

1993), and are typically used in that capacity. They also

find use as models for robotic systems more generally

(Egerstedt 2000; Srinivasa et al 2012), including concur-
rent multi-robot systems (Fierro et al 2001; Klavins and

Koditschek 2000), but they are generally used to model

either the internal components of either one monolithic

agent or the behaviors of multiple cooperating agents.

The model described here incorporates the observation

of robotic entities that are outside the direct control of

the agent itself in order to model an abstract system

that arises from all of the robots together.

3 The RoboCup SSL

In this section, we provide some background information

about RoboCup in general, and the RoboCup SSL in

particular, including the physical design of robots, the

2 http://robocupssl.cpe.ku.ac.th/robocup2014:

technical_challenges
3 https://github.com/robotics-erlangen/autoref
4 https://code.google.com/p/ssl-autonomous-refbox

http://simspark.sourceforge.net/wiki/index.php?title=Soccer_Simulation&oldid=3043
http://simspark.sourceforge.net/wiki/index.php?title=Soccer_Simulation&oldid=3043
http://robocupssl.cpe.ku.ac.th/robocup2014:technical_challenges
http://robocupssl.cpe.ku.ac.th/robocup2014:technical_challenges
https://github.com/robotics-erlangen/autoref
https://code.google.com/p/ssl-autonomous-refbox
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interaction between the various hardware and software

components involved, and the general flow of a game

over time. The rules of the game are described in detail

in Section 4.

3.1 RoboCup and the SSL

The RoboCup SSL promotes research in multi-agent

coordination in real-world adversarial domains. In this

league, teams of six robots play a scaled-down version of
FIFA soccer with a golf ball in a field of size 9 m× 6 m.

Each robot is controlled via radio commands sent by its

team’s offboard computer. Four overhead cameras ob-

serve the field and detect the positions of the robots and

ball with high frequency and fidelity; as compared to

other RoboCup leagues, the global vision and centralized

planning mean that teams focus on hardware develop-

ment, coordination behaviors, and high-level teamwork

strategy, as opposed to perception, locomotion, or meth-

ods of distributed planning. Games in the SSL are fast-

paced, with the robots traveling up to 3 m/s and kicking

the ball at speeds of up to 8 m/s.

The overarching target of the RoboCup Federation,

which includes several other soccer leagues, based on

widely varying robot types, as well as some non-soccer

competitions, is5

By the middle of the 21st century, a team of fully

autonomous humanoid robot soccer players shall

win a soccer game, complying with the official

rules of FIFA, against the winner of the most

recent World Cup.

The various leagues are intended to collectively spur

development in the different areas of development that
will ultimately be necessary to produce such a team.

The humanoid soccer leagues, for example, focus on

bipedal walking and ball manipulation; the SSL focuses

on centralized planning and fast reactions in a dynamic

environment; the MSL, which uses roughly human-sized

wheeled robots and a normal soccer ball, focuses on

decentralized planning and sensing without dealing with

the difficulties of legged robots; finally, the simulation

soccer leagues (2D and 3D) use simplified models of

the world to allow teams to focus more on strategy

and artificial intelligence without having to maintain

hardware.

3.2 Physical components

Although there are few restrictions on the physical de-

sign of SSL player robots, except that each one must

5 http://www.robocup.org/about-robocup/objective/

Fig. 1 The robots of CMDragons, showing (left) a full robot
with a ball on its dribbler, (middle) a robot without its top
cover, and (right) without its main electronics board

Fig. 2 A representative moment from the RoboCup 2015 tour-
nament, showing an indirect free kick taken by CMDragons

fit within a cylinder of diameter 180 mm and height

150 mm, most teams have converged toward very similar

designs; Figure 1 demonstrates a typical design6, and

Figure 2 shows a typical SSL match at the RoboCup

tournament. The robot has an omnidirectional drive sys-

tem based on four omniwheels. For ball manipulation,

it has a dribbler, a horizontal rubber-coated bar which

rotates to put backspin on the ball, allowing the robot

to hold the ball for some time while driving around.

Finally, the robot has both a flat kicker, which kicks the

ball straight forward at high speed, and a chip kicker,

which kicks the ball at an angle of about 45◦ above

horizontal. Use of the chip kicker enables robots to pass

or clear the ball even when there are opponents in front

of them.

The ball is a typical golf ball, except that it is colored

bright orange for ease of detection by the vision sys-

tem. According to the rules, it should be approximately

43 mm in diameter and have a mass of approximately

46 g.

The overhead cameras are mounted on scaffolding

constructed around and above the field. The league has

standardized on FireWire 800 cameras. All of the cam-

6 We thank Mike Licitra for the mechanical design of the
robots and for the design and fabrication of the robot elec-
tronics.

http://www.robocup.org/about-robocup/objective/
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Fig. 3 A schematic diagram of the components of an SSL
game. The two teams, their robots, and the neutral cameras
together make up one largely autonomous system

eras are connected to a neutral computer running the

SSL Vision System (SSL-Vision) (Zickler et al 2009),

which processes the images from the cameras to ex-

tract the positions of the robots and ball on the field.

Each camera transmits sixty frames per second to SSL-

Vision; each time a frame is received from any camera,

SSL-Vision broadcasts the detected positions from that

camera to the team computers.

The referee’s decisions are transmitted to the teams

via another computer running a specialized program,

which is further described below.

To ensure low latency and avoid bandwidth con-

straints between the team computers, referee computer,

and vision computer, all of them are connected via a

wired Ethernet network specific to the playing field.

Figure 3 shows a simplified overview of the overall

connections between the components.

3.3 Simulation

The separation enforced by the network means that

individual components can be switched out without dis-

rupting the rest. Of course, this ability is used in playing

different pairs of teams against one another; it doesn’t

matter to one team if the other team is replaced by a

different one. But SSL-Vision itself can also be replaced

by something else. CMDragons, and many other teams,

often use a soccer simulator to fill in that place. Our

simulator uses Nvidia’s PhysX engine7 to realistically

simulate physical robots and a ball reacting to soccer

commands (Zickler 2010).

7 https://developer.nvidia.com/physx

3.4 Human refereeing

Currently, the rules of the game are enforced much as

they are in FIFA soccer: a human referee and assistant

referee watch the game, constantly checking whether

any rule has come into effect. The referee signals for a

stoppage by blowing a whistle, and verbally calls out

the subsequent state of the game (e.g. “indirect free kick

for yellow”); a human at a referee computer near the

field then enters the commands into a specialized referee

box program (refbox), which transmits them to both

teams. Figure 4 depicts the refbox interface. The com-

mands and their meanings are defined by the league’s

technical committee8; some of the most commonly used

ones are described in Table 1. If TEAM appears in the

name of an entry there, it actually corresponds to two

commands, one for the blue team and one for the yellow

team. The refbox and the predefined commands make

up the primary interface between humans and robots in

the game, and provide a powerful and efficient way to

transfer the necessary judgments to the teams.

Apart from announcing the calls, the most important

job of the human referees is to position the ball for each

kick. The rules specify a point from which each free kick

must be taken; the referees use sticks to position the

ball appropriately while the game is stopped.

3.5 Game structure

Like in human soccer, the period of normal gameplay

consists of two halves; in the SSL, each half consists

of ten minutes of play. Game time is broken up into

episodes of active gameplay punctuated by times when
the game is temporarily stopped.

During an episode, the players may interact with

the ball, more or less at will, and they attempt to do

so in order to get it into the opponent team’s goal. An

episode ends, and play stops, when the ball exits the

field or a player commits a foul.

When play stops, the rules specify the type of kick

with which to start the next episode and a point from

which the kick should be taken. While play is stopped,

the robots must move at less than 1.5 m/s and remain
at least 500 mm away from the ball, so that the referee

may position the ball. Once the ball is in place, the

referee will typically wait up to a few seconds for the

robots to reach a steady state, and then call out the

appropriate signal to the human at the refbox. (Waiting

for the robots in this way is not specified in the rules,

but is, in our experience, done to some degree by every

human referee.)

8 http://robocupssl.cpe.ku.ac.th/referee:protocol

https://developer.nvidia.com/physx
http://robocupssl.cpe.ku.ac.th/referee:protocol
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Fig. 4 The interface displayed by the refbox when it starts
up. Most of it is taken up by buttons corresponding to all
the possible commands, which are automatically activated
when it might be appropriate to transmit them; the refbox
also keeps track of timing and game state information to act
as an aid to the human user

Most kinds of kicks are to be taken by a specific

team; until a member of that team takes the kick, all

members of the other team must continue to remain

500 mm away from the ball. Once the kick is taken, the

next episode begins.

If the appropriate team has not taken the kick 10

seconds after the command indicating the kick is sent,
the referee calls for another stop, followed by a neutral

start ; when the neutral start is called, active gameplay

starts immediately.

This structure means that any point in a game nat-

urally falls into one of a few states, and that transitions

between these states occur in a predictable fashion: the

game might be actively running, or it might be stopped,

or it might be waiting for a kick to be taken. In each

of these cases, what the robots are doing and what the

referee is looking for are qualitatively different from

what it is in the other cases. This leads into the idea of

representing the game as a hybrid automaton, which is

discussed in Section 6.1.

Name Description

HALT all robots must stop moving immedi-
ately; game time stops counting

STOP play temporarily stops to set up a
kick; robots must move slowly and
stay away from the ball

INDIRECT(TEAM) TEAM must take an indirect free kick
within 10 seconds

DIRECT(TEAM) TEAM must take a direct free kick
within 10 seconds

KICKOFF(TEAM) TEAM should prepare to take a kickoff

GOAL(TEAM) a goal has just been scored by TEAM;
also, teams must behave as if the STOP

command had been given

READY given after KICKOFF TEAM; TEAM must
take kickoff within 10 seconds

START play starts immediately and any robot
may touch the ball

Table 1 The referee commands used in the SSL

3.6 The referee interface: inputs and outputs

The goal of an autoref is to algorithmically replace the

human referees. In order to produce a system to achieve

that goal, it helps to understand the external interface

that an autoref — or, in some sense, a human referee

operating a refbox — presents to the other programs

on the network.

Viewed from the outside, the autoref receives up-

dates from SSL-Vision in the same way that the teams
themselves do, interprets them according to the rules of

the game, and outputs commands back to the teams at

the appropriate times.

Accordingly, sixty times per second, the autoref re-

ceives as input the values in Table 2, which are collec-

tively referred to as a world state; we denote by W the

set of all possible world states.

The time is given in seconds since the Unix epoch,

and all physical coordinates are given in millimeters, in

a coordinate system with its origin at the center of the

field, positive x-axis pointing toward a goal, and positive

y-axis pointing 90◦ counterclockwise of the positive x-

axis.

As output, an autoref provides two forms of primi-

tives, corresponding to the actions of the human referees:

referee commands and ball reset positions. The referee

commands are the same as those transmitted by the

refbox used by the human referees. The ball reset posi-

tions are the replacement for a human referee’s ability to

physically place the ball on the field: whenever a human

referee would be placing the ball somewhere on the field,

the autoref outputs a position, and assumes that some
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Name Description

t the current time
n the number of robots on the field
T i team of the ith robot (BLUE or YELLOW)
pi
r position of the ith robot

pb position of the ball

Table 2 The values used as input by the autoref

means exists for the commands to be interpreted and

carried out. This means may consist of, for example, a

human watching the output of the autoref, a specialized

robot, or, with the cooperation of the teams, the players

themselves.

The definition of this interface allows an autoref

system like the one we describe here to interact with

other structurally similar games, not only the SSL. With

the appropriate vision input, translation of commands

and coordinates, the system could conceivably be used

to referee, for example, a game of the MSL instead,

using the SSL rules. Of course, the autoref relies upon

global ground truth data on the positions of the robots

and ball, which would not be generally available in the

MSL without additional equipment.

4 Rules of the RoboCup SSL

The rules of the SSL, as described by the technical com-

mittee’s official rules document (SSL Technical Commit-

tee 2015), fall into a few main categories, some of which

are easier than others to handle with the autoref.

4.1 Time-based rules

The conceptually simplest and easiest-to-enforce rules

are those relating to game time. Each half of the game

lasts ten minutes, with a five-minute half time in be-
tween. Time starts counting when the READY command

is sent to teams at the beginning of a half. Teams may

also call for a timeout while play is stopped, which halts

the countdown of time and allows team members to

handle robots and use their computers; per game, each

team may take up to four timeouts with a total duration

of up to five minutes.

4.2 Robot-based rules

There are a number of rules that are triggered by the

interactions between robots themselves. Vision of the

robots is lost relatively rarely compared to that of the

ball, which helps make these rules easier to check, but

this is countered by an element of subjectivity in the

first of these rules as listed below.

– If a robot is found guilty of “unsporting behaviour”

or “serious and violent contact,” (typically, colliding

with a slower-moving opponent) an indirect free kick

is awarded to the opposing team from the point

where it happened.

– If a robot touches the opponent goalie with the point

of contact inside the goalie’s team’s defense area, an

indirect free kick is awarded to the opposing team

from the nearest legal free kick point.

4.3 Ball-based rules

Finally, some rules are based on the behavior of the ball,

or on the interaction between the ball and the robots;

there are several limitations on how robots may interact
with the ball. Although these rules are straightforward

in description, checking them is complicated by the fact

that vision of the ball is often lost while it is near a

robot, just when these rules might need to be be invoked,

and that chip kicks interfere with knowledge of the true
position of the ball (see Section 6.6). These rules tend to

be the most relevant in real games, so we have focused

our efforts here.

– When the ball exits the field without entering a goal,

a free kick is awarded to the team which touched the

ball less recently. When the exit point is on a touch

line (a side of the field not containing a goal), an

indirect free kick is awarded from the point 100 mm

from the touch line that is nearest to the exit point.

When the exit point is on a goal line (a side of the

field containing a goal), a direct free kick is awarded;

depending on whether the defending or attacking

team touched the ball more recently, the kick is taken

from the point 100 mm from the nearest touch line

and 100 mm or 500 mm, respectively, from the goal

line that was crossed.

– When the ball enters one of the goals, a goal is

awarded to the appropriate team, the ball is placed

in the center of the field, and the team that was

scored on takes a kickoff.

– If the ball is kicked into the air (above the maxi-

mum height of a robot) and enters the goal without

touching a teammate or transitioning from bouncing

to rolling, an indirect free kick is awarded to the

opposing team from the point where the kick was

taken.

– If a robot kicks the ball at over 8 m/s, an indirect

free kick is awarded to the opposing team from the

point where the kick was taken.
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– If a robot drives more than 1000 mm with the ball

on its dribbler the whole time, an indirect free kick

is awarded to the opposing team.

– If a robot is the first to touch the ball after it takes a

free kick (a “double touch”), an indirect free kick is

awarded to the opposing team from where the touch

occurred.

– If a robot touches the ball while partially inside its

own team’s defense area, a yellow card is given to

its team; if it touches the ball while entirely inside

the defense area, a penalty kick is awarded to the
opposing team.

A team may also be shown yellow or red cards for

a variety of other offenses, such as if it “is guilty of

unsporting behaviour,” “is guilty of serious and violent

contact,” “persistently infringes the Laws of the Game,”

or several others.

Red and yellow cards both decrease by one the num-

ber of robots that the receiving team is allowed to have

on the field; a red card remains in effect for the remain-

der of the game, while each yellow card remains in effect

for two minutes of game time. (Multiple yellow cards

may be in effect for a team at the same time; their

effects are cumulative, and each one expires two minutes

after it is issued.)

5 Data acquisition

There is a great deal of technical machinery that is

needed to bring the data about the physical robots in a

game to the software. Although this machinery is not

part of the autoref itself, understanding it is helpful for

providing context for how the whole SSL ecosystem fits

together. In this section, we describe the components

that allow an autoref — and game-playing teams in the

league — to follow along with the state of the world,

as they are a critical part of the flow of information

through an SSL system.

5.1 SSL-Vision

In this section, we will give a brief description of how

SSL-Vision computes robot and ball positions based

on camera input (Zickler et al 2009; Bruce and Veloso
2003; Bruce et al 2000). SSL-Vision processes data from

four overhead cameras, each operating at 60Hz, and

transmits data from every frame to the teams as soon

as it is available.

One part of the setup of SSL-Vision is geometry cal-

ibration. Since it would be impractical to require that

the cameras be precisely placed in particular positions

relative to the field, it is necessary to place them ap-

proximately first and determine their positions after the

fact. For each camera, a human user must first input:

– the height of the camera above the ground;

– the image coordinates of several points on the field

with known physical coordinates, which are typically

the intersections of field markings; and

– descriptions of the field markings (described as line

segments or arcs) within the field of view of the

camera.

From the first two of these inputs, SSL-Vision con-

structs an initial guess at the transformation between

field and image coordinates by finding the camera param-

eters that minimize the sum of squared errors between

the given image coordinates and the projections of the

world coordinates. Next, it alternates between (a) apply-

ing edge detection to the image to extract points which

may be on the field markings and (b) refining the guess,

assuming that the points are actually on the markings.

The edge detection is performed only within a neigh-
borhood of the projected coordinates of the described

field markings, and each detected point is associated

with the edge in whose neighborhood it was found. The

refinement is then done by adding another term to the

error function for each detected point, consisting of the

minimum squared error between the detected point and

the projection of any point on the marking.

The other part of setup is color calibration. For

each camera and each relevant color, a human uses a

graphical interface to select a set of bins in YUV color

space that should be classified as that color when seen
by that camera. The relevant colors are orange, for the

ball, along with blue, yellow, pink, and green, for the

tops of the robots. SSL-Vision also allows classification

of a separate green for the field surface and white for

the field lines, but those colors are not currently used

during the detection process.

After geometry and color calibration, SSL-Vision is

ready to begin working. Each frame received from a

camera goes through three main stages of processing:

color thresholding, blob detection, and pattern detection.

In color thresholding, each pixel is classified according

to the bins defined in the color calibration step. In blob

detection, contiguous regions (“blobs”) of pixels that

have been classified as the same color are identified, and

their bounding boxes are computed. At this point, any

sufficiently large blobs of orange pixels are identified

as balls. Finally, in pattern detection, SSL-Vision finds

nearby blobs that are arranged in a way that matches

the shape of the standard robot pattern, and combines

the positions of the blobs to compute an overall position

and orientation of the detected pattern. The “butterfly”
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(a) (b) (c) (d)

Fig. 5 An example of the stages of SSL-Vision processing.
From left to right: (a) a raw image from a camera, (b) the
result of per-pixel color thresholding, (c) the result of blob
detection, and (d) the result of pattern detection (symbolically
representing the computed coordinates of the ball and the
coordinates and orientation of the robot)

shape of the pattern was chosen to minimize the final

position error after combining the detected blobs.

See Figure 5 for a visual demonstration of the stages

of processing.

5.2 State filtering

Although the inputs to the autoref from the physical

game field consist solely of time and the positions of

game objects, certain derived values are useful; namely,

velocities of the objects and estimates of their positions

with reduced error, based on the history of observations.

Additionally, SSL-Vision reports data from each camera

independently; cameras may be out of sync, or multiple

cameras may be able to see the same object, and it is

preferable to have a fused view where each update in-

cludes new information from every camera and multiple

views of an object are combined.

To provide this additional information, we apply a

discrete-time extended Kalman filter (Simon 2006, p.

407) to the raw SSL-Vision values. A (plain) Kalman fil-

ter takes in a sequence of noisy observations of a system

whose state vector evolves over time with known linear

dynamics, and with a linear mapping from states to ob-

servations (along with additive noise). It combines the

observations to produce estimates of the state with lower

error than the individual observations. Essentially, it

functions by performing Bayesian updates on a Gaussian

belief state according to the dynamics and observations.

An extended Kalman filter generalizes a Kalman

filter to use nonlinear dynamics by linearizing the dy-

namics around the current state; discrete-time refers to

the property that the dynamics are a discretization of

some underlying continuous-time dynamics.

The dynamics of the filter used by our team and

our current autoref implementation take into account

factors specific to the SSL, including the commands sent

to the robots, when available, and collisions between

objects. We denote the final derived velocities of the

ball and ith robot as vb and vi
r, respectively.

6 Autoref

In this section, we discuss the autoref itself. First, we

describe a formalization, as a hybrid automaton, of the

structure of an SSL game, and hence of any referee’s

internal model of the game, and then move on to our

implementation of a means of updating the model ac-

cording to external input.

We formalized the structure of an SSL game by

taking the natural-language rules document of the SSL

and creating a hybrid automaton that describes the

structure of the game. A hybrid automaton is a means

of representing a system which contains both discrete

and continuous elements that can change over time. We

give a brief overview of the hybrid automaton formalism

in general (Alur et al 1993), and then of the automaton

which specifically describes a game in the RoboCup SSL.

6.1 Hybrid automaton formalism

In its most general form, a hybrid automaton consists

of the following components (Henzinger 2000):

– VD: A finite set of real-valued variables. A valuation

is a map from each variable to a value, and ΣD is

the set of all valuations.

– Q: A finite set of locations.

– µ1: A map from Q to sets of activities, which are

C∞ functions from R≥0, the set of nonnegative real

numbers, to ΣD.

– µ2: A map from Q to exception sets, which are sub-

sets of ΣD.

– µ3: A map from Q2 to transition relations, which

are subsets of Σ2
D. We describe µ3(q1, q2) as the

transition from q1 to q2.

For an interval I in R≥0, denote its left and right

endpoints by lI and rI respectively. An interval may be

either closed or open at each of its endpoints.

A trajectory of a hybrid system is a sequence of

tuples (σi, `i, Ii, fi, σ
′
i) such that

– For every i ≥ 0, `i is a location, σi is a valuation,

and (`i+1, σi+1) is a successor of (`′i, σ
′
i); that is,

(σ′i, σi+1) ∈ µ3(`i, `i+1).

– The Ii are intervals that partition R≥0 and are in

increasing order by index.

– For every i ≥ 0, (a) fi is in µ1(`i), (b) fi(0) = σi,

(c) fi(rIi−lIi) = σ′i, and (d) for all t ∈ Ii, fi(t−lIi) 6∈
µ2(`i).
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In effect, a trajectory describes a possible evolution

of the automaton over time, where the state may evolve

continuously according to the trajectories or discretely

according to the transition relations. The exception sets

define conditions which force the automaton to undergo

a transition out of a location. A common scheme, which

we will use here, is to express the sets of activities as

the solution sets of differential equations. Additionally,

an automaton may effectively include discrete variables

if those variables are constant in all allowed activities

and change only in transitions.

Hybrid automata are mostly used in the context of

formal verification, and so authors are typically con-

cerned with characterizing the set of all possible trajec-

tories of an automaton over time. Instead, we think of

and describe an automaton as a machine which follows

a specific trajectory in any given instantiation.

Accordingly, we may replace the transition relations

with transition functions, so that the range of µ3 is

instead the partial functions ΣD → ΣD. Then we are

concerned with trajectories such that for each i, σi+1 =

µ3(`i, `i+1)(σ′i).

We also define the exception sets implicitly by asso-

ciating a guard condition (a predicate over valuations)

with each transition; the exception set for each location

will then consist of all valuations which satisfy the guard

condition for some transition, and the domain of each

transition function will be the set of valuations satis-

fying the associated guard condition. This forces the

automaton to transition as soon as the current valuation

satisfies the guard condition for some transition.

6.2 SSL automaton

For the automaton describing an SSL game specifically,

the locations, which are described in Table 3, capture the

idea that, roughly, the game is either running or stopped,

and each of those entails a distinct set of conditions

that are relevant to refereeing. The auxiliary variables

required to represent the state of the game are described

in Table 6, and the differential equations describing the

continuous evolution of the variables is described in

Table 4. One of the variables, the current stage, describes

what overall part of the game is currently happening:

either one of the halves, halftime, or the time before

or after the whole game; these values are described in

Table 5.

We describe the occurrence of a transition in the

automaton as an event ; the continuous evolution of

the automaton is interrupted whenever an event occurs.

For the implementation, events are triggered by detec-

tor objects that examine the current world state and

check whether any relevant rule applies to the current

situation.

We also define some notation and functions operating

on the values of these variables, for convenience.

– team(R): the team of robot R

– stage-end-cmd(s): the command that is given to

end stage s (KICKOFF(T) for halftime, HALT for game
halves)

– stage-length(s): the length in seconds of stage s

– next-stage(s): the stage that comes after stage s

– !T: the opponents of team T

In this presentation, most of the predicates are de-

scribed in plain text, with the details of how to receive

inputs and evaluate them left abstracted away. It should

be possible to incorporate a more detailed model of
their computation into the automaton without drastic

changes, by adding some additional variables and self-

loops. Similarly, the change over time of the variables

describing the world state can be considered to evolve
according to complex equations which are part of the

automaton but unspecified. It may also make sense to

actually model the event detection as a separate au-

tomaton; the hybrid automaton model allows for the

composition of two automata, which can communicate

by emitting and receiving events, and the generation of

the primitive events can be thought of as coming from

another unspecified automaton.

Figure 6 shows a simplified representation of the au-

tomaton, with only the set of locations and which pairs

have edges between them; each edge there corresponds

to multiple possible transitions, with the transitions

between each pair of locations given a high-level descrip-

tion of what kinds of rules form it. The details of the

transitions are specified in the appendix. For simplicity,

we have omitted the detailed rules for penalty kicks

and penalty shootouts, as well as the calculations for

kick reset positions. (A detailed example of the position

calculation is given in Algorithm 2 in Section 6.5.) In

each table, the first column represents the preconditions

on the world state for the transition to occur, the sec-

ond represents the referee command component of the

action that is transmitted when the transition occurs,

and the third column represents the changes made to

the internal state variables.

The overall locations correspond to those in men-

tioned in Section 3.5. When the game is in the GAME ON

location, the ball is in play and the robots are actively

trying to score goals; during GAME OFF, the ball is

being placed for the next restart of play; during SETUP,

the ball has been placed and the robots may set up for

a kick.

We have described this automaton as abstractly rep-

resenting the structure and state of a game, as defined
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Name Domain Description

time R (seconds) the current time

stage-end R (seconds) the time at which the current stage will end

timeout-time(T) R≥0 (seconds) remaining timeout time for team T

timeout-num(T) N the number of remaining times that team T may call a timeout

reset-position R2 (meters) the position where the ball should be placed for the next kick

kick-deadline R (seconds) the time at which the game will be reset to a forced start if the
current kick is not taken yet

call referee commands (Table 1) the command that should be transmitted next (used while the
game is stopped)

stage game stages (Table 5) the current coarse stage of the game

touch-team {blue, yellow} the last team to touch the ball while the game was running

kick-team {blue, yellow} the team currently permitted to kick the ball

goal-allowed {true, false} whether a direct goal is currently allowed (true except immediately
after indirect free kicks)

kicker {robots on the field} ∪ {null} the robot which just took a free kick

r-cards(T) N number of red cards for team T

y-times(T) lists of elements of R≥0 time remaining for each yellow card for team T

Table 6 The auxiliary variables of the automaton representing an SSL game

by the rulebook, but there is a direct correspondence to

what human referees and autorefs must do while they

observe the game. They are also essentially modeling the

same automaton: they must use their observations to es-

timate when the true state of the game ought to change,
so that they can issue the appropriate commands.

6.3 Automaton evolution and the rules

In this section, we discuss some examples of how the

changes in game state combine with the rules of the

game to produce the transitions that the automaton

encodes.

Imagine that the game is actively being played, but

then the ball goes out after being touched by the blue

team; play must stop so that the referee may retrieve

and place the ball, then signal the next kick. However,

suppose the team has a software problem and does

not take the kick before 10 seconds have passed, so

the referee stops the game again and then calls for a

neutral restart. In order, the individual components of

the changes in the automaton state are as follows:

– The location is GAME ON.

– The blue team touches the ball. The touch event

sets the touch-team variable to BLUE.

– The ball goes out. The STOP command is transmitted,

which tells teams that the game is stopped and that

they should prepare for some kick to come next; in-

GAME
OFF

start

SETUP

GAME
ON

BREAK

ball out or
foul committed

ball touched
by robot

robots ready
for next state

robots
ready
to kick

kick taken
incorrectly

kick taken
correctly

timeout called or
period over

timeout/break
over

Fig. 6 A simplified representation of the automaton repre-
senting a game of the SSL

ternally, the location changes to GAME OFF, call

is set to INDIRECT, and kick-team is set to YELLOW.

– Once the ball is positioned and the robots settle, the

INDIRECT(YELLOW) command is transmitted, which
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Location Description

GAME ON The game is actively being played. This
location typically ends when a robot com-
mits a foul or the ball leaves the field.

GAME OFF The game has been stopped for one of the
preceding reasons, and the robots must
not come near the ball while the referee is
positioning it. This location ends once the
robots are ready to kick, which is usually
taken to be when they stop moving or after
some time has passed.

SETUP The command to take a kick has been
given, but the kick has not been taken yet.
This location ends once the kick is taken,
or too much time has passed without a
kick.

BREAK One team has called a timeout or the game
is in a break between periods. This location
only ends if the team ends the timeout or
time in the break period runs out.

Table 3 The high-level automaton locations of an SSL game

Locations Equations

all d
dt
time = 1

BREAK d
dt
timeout-time(timeout-team) = −1

all but BREAK d
dt
x = −1 for all

x ∈ y-times(BLUE) ∪ y-times(YELLOW)

Table 4 The differential equations for the continuous variables
of an SSL game; see Table 6 for descriptions of the variables.
Most of the continuous evolution of the game is under the
direct control of the team agents, rather than the referee, so
these equations are minimal. By a slight abuse of notation, the
third equation indicates that all the elements of y-times(BLUE)
and y-times(YELLOW) have derivative −1

Name Description

PRE-FIRST the READY command for the first kickoff of
the first half has hasn’t been given yet

FIRST the initial READY command for the first half
has been given, and the first half hasn’t ended

HALFTIME the first half has ended and the robots are
halted

PRE-SECOND the first half has ended and the initial READY
command of the second half hasn’t been
given yet

SECOND like FIRST, but for the second half

POST the second half has ended

Table 5 The coarse stages of an SSL game

tells the yellow team that it is to take a kick within

10 seconds. Accordingly, the location changes to

SETUP and kick-deadline is set to time + 10.

– Once time becomes greater than kick-deadline

(i.e., 10 seconds pass and the team does not take

the kick), the STOP command is transmitted, since

there is about to be a new restart of the game; the

location changes back to GAME OFF and call is

set to START.

– Once the robots settle again, the START command is

transmitted to indicate that gameplay has resumed
and either team may touch the ball, and the location

changes to GAME ON.

As another example, consider the sequence of events

that occurs when a goal is scored by the yellow team.

According to the definition of the commands as given

by the SSL, after the game is stopped there must be a

KICKOFF command for the appropriate team, which is

then followed by a READY command, and only then is

the team allowed to actually kick the ball — as opposed

to a free kick, where only a single command is given

after the game is stopped.

– The location is GAME ON.

– The ball enters the blue goal, so the GOAL(YELLOW)

command is transmitted to indicate to the teams

that the yellow team has scored. The game must

now stop to set up for a kickoff by the blue team, so

the location changes to GAME OFF, call is set to

KICKOFF, and kick-team is set to BLUE.

– Once the ball is positioned and the robots settle, the

transition from GAME OFF to itself is taken; the

KICKOFF(BLUE) command is transmitted, but the

location remains equal to GAME OFF.

– Once the robots settle again, now knowing that it will

be a kickoff for the blue team, the location becomes

SETUP and the READY command is transmitted,

indicating that the blue team may take the kick

now.

– Once the blue team takes the kick, gameplay has

started again, so the location becomes GAME ON.

Figure 7 graphically demonstrates the sequence of

transitions that occurs at the beginning of a typical

game, with a kickoff given, a brief period of play, and

then a ball exit leading to an indirect free kick.

Finally, we briefly discuss the use of the kicker

and goal-allowed variables, which are used for two

intertwined rules. First, if a robot takes a free kick and

is the first robot to touch the ball afterward, play stops

and the other team receives an indirect free kick. Second,

a goal may not be scored directly from an indirect free

kick; that is, a goal is not allowed if the current episode

was started by an indirect free kick and the last robot
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to touch the ball is the robot that took the kick. (If

the ball enters a goal, it is treated as simply having

left the field over the goal line.) Accordingly, when an

indirect free kick is signaled, goal-allowed is set to

false; for any other kick, it is set to true. When a kick

is actually taken, kicker is set to the robot which took

it. As long as the ball is in play and no robots touch

it, neither variable changes. When a robot touches the

ball, what happens next depends on whether that robot

is the same as kicker. If it is, this is a double touch

and the game stops. Otherwise, kicker is set to null
(i.e., some sentinel value that is equal to no robot), since

a double touch is no longer possible. Simultaneously,

goal-allowed is set to true, since a second touch means

a goal is now allowed.

6.4 Event loop algorithm

We implemented a program to approximately track the

evolution of the automaton described above in terms of

a set of separate event detectors, each of which receives

the sequence of world states and outputs an object

describing how the state of the automaton should be
updated. The algorithm implements a sort of discrete

approximation of the true continuous-time automaton,

since it can only receive discrete updates of the world

state. It operates at the full frame rate of SSL-Vision

The architecture described here is based on that of

CMCast (Veloso et al 2008); however, we emphasize that

the overall algorithm can implement a general hybrid

automaton, with a suitable set of event detectors plugged

in.

In this kind of architecture, an event is any of the

conditions associated with an edge in the automaton.

The events we have currently implemented are:

– the ball’s speed goes above the maximum limit de-

fined in the rules,

– the ball enters a goal,

– the ball exits the field without entering a goal,

– the robots are ready for a free kick to be taken,

– a robot touches the ball,

– a robot takes a free kick,

– a robot dribbles the ball over a linear distance of

greater than 1000 mm,

– a team is taking too long to take a free kick,

– progress gets stuck during play, and

– the end of the first or second half is reached.

Each time a new world state is available, the autoref

algorithm checks whether any event has occurred; if so,

it updates its state variables and may issue a command

accordingly.

The state and values of the auxiliary variables of

the automaton are described by v ∈ V. We also make

use of a set of action objects, each representing an

externally visible action that the program can take. The

contents of A may vary depending on the application.

For the RoboCup SSL, any particular action consists

of the outputs described in Section 3.6: signaling that

the ball should be positioned at a particular point or

transmitting a new referee command to teams (and

possibly both or neither).

In general, an event may conceptually be thought of
as depending on the full history of world states; however,

we expect that events in practice will not need to truly

operate on the whole history, but can instead rely on

a small fixed set of variables calculated from each new

world state and the previous values of those variables.

For the purpose of fitting within the hybrid automa-

ton framework, it is also required to limit the system

to a fixed number of variables. Therefore, with each

event e we associate a set Se which contains possible

“summaries” of the world state as relevant to the event.

Then the event can be defined as a function of type

W ×Se × V → (Se × V ×A) ∪ {null}: each time a new

world state is received, the function is provided with

that state, its own summary of previous world states,

and the current internal variables, and it returns either

null, indicating that the event did not fire, or the new

summary, variables, and an action to take.

The main action selection algorithm is given in Al-

gorithm 1, where E denotes the list of relevant events

and se denotes the summary for an event e ∈ E. This

algorithm first updates the variables according to the

differential equations of the current location (denoted
by the call to ContinuousUpdate), then handles the

discrete transitions. It finds the first event that is firing,

executes the action, and updates its variables; then it

returns the beginning of the list and repeats until no

events fire. This allows multiple transitions to occur due
to the same input, which is occasionally necessary, as

discussed by Mosterman (1999). Since the continuously

updated global variables for the autoref are particu-

larly simple, we will not further discuss the continuous

update.

6.5 Event detector implementations

Now we provide concrete examples of the implementa-

tions of events to demonstrate the detection algorithms

and how the event loop corresponds to the hybrid au-

tomaton. Note that for this specific automaton, the only

variables which update continuously are the current time

and, during a team’s timeout, the amount of timeout

time remaining to that team.
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GAME
OFF

SETUP

GAME
ON

BREAK

(a) The robots are in their starting posi-
tions when the autoref first begins exe-
cution and transmits the STOP command

GAME
OFF

SETUP

GAME
ON

BREAK

(b) The robots have begun moving to
new positions in response to the STOP

command

GAME
OFF

SETUP

GAME
ON

BREAK

(c) The robots have settled, so the au-
toref now transmits KICKOFF and waits
for them to settle again

GAME
OFF

SETUP

GAME
ON

BREAK

(d) The robots have settled again; the
autoref now transmits READY, so the blue
team may take the kick

GAME
OFF

SETUP

GAME
ON

BREAK

(e) The blue robot has just taken
the kick, so the location becomes
GAME ON

GAME
OFF

SETUP

GAME
ON

BREAK

(f) The ball has gone out of the field; the
location becomes GAME OFF so that
the ball may be positioned for a free kick

GAME
OFF

SETUP

GAME
ON

BREAK

(g) The referee robot (here, the blue
goalie) pushes the ball to its reset lo-
cation

GAME
OFF

SETUP

GAME
ON

BREAK

(h) The robots have settled, so the blue
team is free to take the kick

GAME
OFF

SETUP

GAME
ON

BREAK

(i) The blue team has taken the kick
and the location returns to GAME ON
again

Fig. 7 A demonstration of the evolution of the autoref over time in response to a typical sequence of motions of the robots and
ball. Each subfigure shows the field at some moment, with the corresponding automaton location highlighted below
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Algorithm 1 The overall event-handling loop algorithm
w: world state
v: values of the autoref variables

1: function RunEvents(w, v)
2: ContinuousUpdate(w, v)
3: fired← true
4: while fired = true do

5: fired← false
6: for e ∈ E do
7: ret← e(w, se, v)
8: if ret 6= null then
9: v, se, a← ret

10: fired← true
11: execute a
12: break

13: end if

14: end for
15: end while

16: end function

In the pseudocode listings below, v and a refer to ele-

ments of V and A. Construction of v and a are expressed

by assignments to subscripted components of them, cor-

responding to the variables described in Table 6 and

actions described in Section 3.6:

– vcall: the command that should be transmitted next.

– vloc: the new location of the referee automaton.

– vlast touch: the last team to touch the ball.

– acmd: the command to be sent to the teams immedi-

ately.

– areset: the point at which to place the ball for the

next kick.

Additionally, assignment to s is used in a similar fash-

ion to indicate the current event-specific state summary,

a member of Se.
Each event may also refer to the positions of the

objects, pb and pi
r, and their velocities, vb and vi

r.

6.5.1 Ball exit

Most episodes end with the ball exiting the field, making

it one of the most common events in a game. Algorithm 2

shows a simplified version of the code used to detect

when the ball has left the field and determine the ap-

propriate response.

Lines 2–11 determine whether the ball exit event

should be considered to be happening in the current

frame. It uses slast as a counter, so that it only makes

the call if the observed position of the ball is outside

the field for 3 consecutive frames, in order to reduce

the incidence of false positives due to incorrect data.

The remaining lines determine the appropriate response

if the event is happening. Lines 13–14 indicate that,

in any case, the game should be stopped; lines 15–19

assign the kick to the appropriate team. Finally, lines

21–30 compute where the ball should be placed for

the subsequent free kick, according to whether the ball

passed over the touch line and should be a throw-in, or

passed over the goal line and, depending on which team

touched it last, should be a goal kick or corner kick.

Algorithm 2 The algorithm for determining whether

a the ball has left the field and how to respond if so.

CrossBoundaryPoint returns the intersection of the

line segment between its two arguments with the bound-

ary of the field. Although w is symbolically passed as

a parameter to avoid clutter, the algorithm uses the

variables defined in Table 2, which are considered to be

part of w
w: world state
s0: initial value of the world summary for this event
v0: initial values of the autoref variables
s: updated value of the world summary for this event
v: updated values of the autoref variables
a: action to take if this event fires

1: function BallExitEvent(w, s0, v0)
2: s← copy(s0)
3: v ← copy(v0)
4: a← empty action
5: if InsideField(pb) then

6: slast ← pb

7: scount ← 0
8: return null

9: else
10: scount ← scount + 1
11: end if

12: if scount < 3 then
13: return null

14: end if

15:
16: acmd ← STOP

17: vloc ← GAME OFF
18: if vlast touch = YELLOW then

19: vcall ← INDIRECT(BLUE)

20: else
21: vcall ← INDIRECT(YELLOW)

22: end if

23:
24: cx, cy ← CrossBoundaryPoint(slast,pb)
25: if OnTouchLine(c) then
26: areset ← 〈cx, cy − 100 · sgn(cy)〉
27: else
28: if vtouch team = DefenseTeam(sgn(cx)) then
29: areset ← 〈sgn(cx) ·(L−100), sgn(cy) ·(W −100)〉
30: else

31: areset ← 〈sgn(cx) ·(L−500), sgn(cy) ·(W −100)〉
32: end if

33: end if

34: return s, v, a
35: end function
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6.5.2 Ball touching

Detecting when a robot has touched the ball is crucial

to accurate refereeing, and is one of the most difficult

individual events to detect.

We started off with the touch detector that was al-

ready present in the CMDragons codebase, which we

will call the accel algorithm. Each frame, it estimates

the acceleration of the ball by computing the difference

between the last ball position and the average of the

current and second-to-last positions. When this acceler-

ation is above a certain threshold, the frame is treated

as a potential collision. If any robot is within a certain

distance of the ball, the closest robot is considered to

have just touched the ball.

We implemented two additional algorithms for de-

tection, line and backtrack, to improve the overall per-

formance of touch detection. We found that all of these

algorithms have fairly low false positive rates, so we

combine them simply by reporting a touch when any

individual algorithm does so.

Both of the new algorithms are based on, for each
robot, the history of positions of the ball relative to that

robot; that is, pb−pi
r for each i for every frame. Let dn

represent this difference in the nth world state before

the current one (dropping the i index, since each robot

is processed independently and identically).

The line algorithm checks whether the recent history

of relative positions match a two-part broken line, with

the intersection point near a robot at the appropriate

time; the idea is that the trajectory of the ball consists
mostly of straight segments, separated by times when

it collides with a robot. Let R be the radius of the

robot and r be the radius of the ball. Then, according

to this algorithm, a robot has touched the ball when

the following conditions are true:

– d1 is “between” d0 and d2, meaning
∣∣d1 − d0+d2

2

∣∣ <
.1 · |d0 − d2|;

– d4 is between d3 and d5;

– the intersection of the lines d0d2 and d3d5 has mag-

nitude less than R+ r + 30 mm;

– d2−d0

|d2−d0| ·
d5−d3

|d5−d3| < .99 (which checks, roughly, whether

the points are not all part of the same line).

The backtracking algorithm checks whether tracing

the current trajectories of the ball and each robot back-

wards in time results in a projected collision. The idea

is that the changes from straight-line trajectories are

usually caused by collisions with robots, so if the most

recent trajectory looks like it came from inside a robot,

it must be the result of a collision.

The algorithm starts by examining d0, d1, d2, and

d3; if the line segment between any consecutive two of

them contains a point with magnitude less than R+ r,

then it aborts. This is an attempt to filter out false

positives caused by chip kicks passing over robots. If

the ball does not appear to have just passed over the

robot, the algorithm fits a constant-velocity trajectory

to d0, d1, d2, and d3 using linear least-squares, and

extrapolates that trajectory 2 frames further into the

past; if either extrapolated vector has a magnitude less

than R + r − 10 mm, the robot is considered to have

touched the ball.

6.5.3 Robots settled

Another important event to detect involves deciding

when the robots are ready to resume play by taking

a kick. Waiting for the robots to settle down is not

mentioned in the rules, and so there is no standard

description of how to make the decision or, strictly

speaking, any need to wait at all. However, this behavior

is so common among human referees that we decided

that it made sense to emulate it.

After examining the usual behavior of human refer-

ees, we decided to base this event on the speed of the

robots. Each frame, the algorithm examines the speed

of the robots and the ball. If all the speeds are below

particular thresholds (possibly different for robots and

the ball) continuously for a period of time, then the algo-
rithm decides that the robots are ready. This algorithm

is shown in Algorithm 3. The variable sstart represents

the last time that the robots or ball were moving too

fast. Lines 9–16 check whether all the speeds are below

the appropriate thresholds; if not, they reset the sstart
variable to the current time. Lines 17–19 check whether

it has been sufficiently long since sstart was last reset,

i.e., whether the speeds have been low enough for long

enough. If execution continues past that point, then

the robots are deemed to be ready; the remaining code

determines how to respond.

The following code examines vcall, which should have

been used by a previous event to remember what call

should be made next. If it indicates a free kick or the

ready signal (for a kickoff or penalty), then a kick can

now be taken, so the new automaton location should

be SETUP. If vcall indicates a neutral restart, that

means both teams are free to manipulate the ball and

the location is GAME ON. Finally, if vcall indicates a

kickoff or a penalty, then there still needs to be a READY

command sent, so the location is still GAME OFF, but

the next command to be sent is READY. Note that sstart
is reset here, because we are waiting for a new transition

period and settling. If it were not reset, then the event

would fire again immediately on the next evaluation.
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Algorithm 3 The algorithm to check whether the

robots are ready to take a kick to restart the game
w: world state
s0: initial value of the world summary for this event
v0: initial values of the autoref variables
s: updated value of the world summary for this event
v: updated values of the autoref variables
a: action to take if this event fires

1: function KickReadyEvent(w, s0, v0)
2: s← copy(s0)
3: v ← copy(v0)
4: a← empty action
5: if vloc 6= GAME OFF then
6: return null;
7: end if

8: ready ← true
9: if |vb| > Vb then

10: sstart ← t

11: end if
12: for i = 1, . . . , n do

13: if |vi
r| > Vr then

14: sstart ← t
15: end if

16: end for
17: if t− sstart < 1 then

18: return null

19: end if
20: acmd ← vcall
21: if vcall = INDIRECT

22: or vcall = DIRECT

23: or vcall = READY then

24: vloc ← SETUP
25: else if vcall = START then
26: vloc ← GAME ON
27: else if vcall = KICKOFF

28: or vcall = PENALTY then

29: sstart ← t

30: vcall ← READY

31: end if

32: return s, v, a
33: end function

6.6 Obstacles

The domain-specific logic is contained entirely within

the detection of individual events, so it is critical that

the event detection be reliable. In the RoboCup SSL,

the primary obstacles are unreliable data and chip kick

detection.

Although SSL-Vision returns precise and complete

position data with high reliability, occlusion of the ball

and the brittleness of the color calibration scheme mean

that robots or the ball can be lost from vision for many

frames at a time. This is particularly a problem for

judgments which involve contact between robots and

the ball (mainly, touching the ball or dribbling it for too

great a distance); vision of the ball is often completely

lost during those situations, just when we need it the

most.

The other main problem relates to chip kicks. Be-

cause SSL-Vision returns a ball position assuming that

the ball is on the ground, the values it gives are not

correct when the ball is in the air; they instead give

the intersection of the ground plane with the line con-

taining the camera and the ball. There are methods to

detect when this is happening and determine the true

trajectory of the ball, but we have yet to come up with

an implementation that is sufficiently sensitive to be of

use without giving too many false positives. As a result,

many judgments based on the position of the ball may
be evaluated incorrectly in the presence of chip kicks,

especially checking whether the ball has left the field:

due to the typical positioning of the cameras above the

center of each half of the field, most chip kicks near the

edges of the field appear to take the ball outside the

field at their peaks.

7 Results

In order to test the abilities of the autoref, we performed

two types of evaluation. First, to test the overall stability

and rule adherence of a game as judged by the autoref,

we set the autoref up to run repeated simulated games,

with two copies of the CMDragons team playing, and

collected statistics about the results of those games. Sec-

ond, to test the ability of the individual event detectors

to operate on real data, we ran some of the detectors

on data from games of RoboCup 2014 and compared

the results to the calls made by the human referees at

those games.

7.1 Running games

Although not all of the rules of the SSL are currently im-

plemented, the ones that are make up the great majority

of rules that come into effect during games in practice.

With the currently implemented events, it is possible to

run an essentially full game in simulation, with kickoffs,

appropriately awarded free kicks for ball exits and some

fouls, and checks to ensure that the progress of the game

is not delayed by a slow team or stuck ball. As a result,

the autoref makes it feasible to run and gather informa-

tion from a far greater number of rules-compliant games

than would be feasible to monitor by hand.

As a simple demonstration of this capability, we ran

many simulated games comparing two slightly different

versions of our own CMDragons soccer team. In some

tests, we enabled or disabled some new feature of the

team, so that we could check whether having that feature

gave the team an advantage. In others, one version of the

team was handicapped, either by having fewer robots
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or by having the speed and acceleration of its robots

restricted to a fraction of their normal values. Overall,

we have run thousands of games, and can run well over

one thousand games continuously without supervision.

We found that, when one team is simply handi-

capped, the other has a noticeable advantage; while

this is no surprise, the ability to verify this through

experiment is made possible only by the presence of an

autoref. The average scores as functions of the degree of

handicap are shown in Figure 8; the error bars indicate

the standard error of the mean after 100 games. We

demonstrated similar results in Zhu et al (2015), but

the version of the autoref being used here implements a

more complete subset of the rules of the game.

We also ran some tests to determine the effect of

software features on performance. One of the features

we tested was a zone-based attack strategy we devel-

oped and used in the RoboCup tournament last year;

the other was a method for a robot to quickly turn

while dribbling the ball, which we used for only part

of the tournament because it was unreliable on real

robots (Veloso et al 2015). The results are shown in

Table 7; both features provided an advantage, as we

hoped. However, this is one case where the limitations

of the simulation environment must be kept in mind:

the fast turning behavior worked very well in simulation,

but we disabled it in reality because it did not work

as well. The zone-based attack seems less likely to be

dependent on the specifics of the simulation.

The modularity and common network interfaces of

the various components of the SSL ecosystem also mean

that the same autoref code is compatible with live games

played on the physical robots. Of course, there are other

concerns, such as robot batteries needing to be changed

and the ball getting stuck outside the view of SSL-Vision.

Even more important is the ability to position the ball

for a kick. In simulation, we simply command the ball

to be at a certain location, and it is there, but if we are

to avoid requiring a human to position the ball every

time there is a kick, we need some real-world analogy;

using a ball-positioning robot is the natural choice.

For technical ease, we chose to implement the abil-

ity for the soccer teams themselves to listen to ball-

positioning requests and use their own robots to fulfill

them. When the ball needs to be placed, the goalie of

one of the teams drives out to place the ball on its

dribbler and pushes it to the desired location. Although

the current positioning procedure is not quite fast or

reliable enough for practical use, the essential capabil-

ities are already in place to run full games with little

human intervention. We have also developed hardware

for a specialized referee robot, which has improved the

situation; it has an arm that can completely encircle
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Fig. 8 Comparisons of two versions of our team, one handi-
capped by having either fewer robots or reduced speed and
acceleration. Each data point depicts the mean score and
standard error of the mean of the two teams across 100 full
games

Zone-based attack Turn & dribble

Win % Goals Win % Goals

feature on 38.00 0.58± 0.05 42.00 0.70± 0.05
feature off 12.67 0.18± 0.02 10.67 0.22± 0.03

Table 7 Comparisons of two versions of our team, differing
by the presence or absence of a new feature. “Win %” indi-
cates the percentage of games won by that team, and “Goals”
indicates the mean number of goals per game, as well as the
standard error of the mean. Each comparison is based on 300
games

the ball, holding it solidly in place in front of the robot.

The main advantage of such a robot is that, by the

rules, player robots may not be designed to surround

the ball or remove all of its degrees of freedom, but such

capabilities are of great use precisely for the task of

quickly and repeatably positioning the ball on the field.
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7.2 Comparison to human refereeing

To further test the accuracy of the autoref implementa-

tion, we compared its performance against the human

referees of games from RoboCup 2014. For each of the

quarterfinal (QF), semifinal (SF), and final (F) games,

we manually reviewed our log files of those games, de-

termined the times that a rule that the autoref can

currently detect should have been applied, and recorded

whether the referee actually made each call during the

game. We then ran the autoref as if it were receiving

the log data as real input, and compared the set of calls
made by the autoref to the set of calls that were made.

We also noted which calls were made incorrectly by

the human referee. In manually reviewing the logs, we

have the advantage of being able to stop and examine

the input from vision frame by frame, which we believe

gives us enough certainty in most cases to tell whether

a call was correct, even when our call differs from the

referee’s. Some cases remained ambiguous, usually when

two or more robots obscured the ball while it exited the

field; these were counted separately.

7.2.1 Ball exit calls

By far the most common call in a typical game is to
stop the game when the ball exits the field and award a

free kick to the opponents of the team which touched

the ball most recently.

The results of both the manual annotation and the

automatic detection by the autoref consist of a list of

〈time, team〉 pairs. A pair on one list is considered to

match one on the other if their times are within 0.3 s of
each other; each event can match at most one event on

the other list. The results of this comparison are shown

in Figure 9. Annotated events which don’t match to

any detected events are described as missed, and extra

events are the reverse.

There were no calls that were missed, and most of

the extra calls made are due to chip kicks near the edge

of the field; as discussed in Section 6.6, such kicks can

cause the ball to appear as though it is outside the

field when it is not. If the ball actually does leave the

boundaries of the field during a chip kick, this could

result in both a missed call and an extra call, as the call

is made well in advance of the true exit, although that

did not occur in any of these games. The only other

extra calls were two during the final game that resulted

from some brief span of spurious data from SSL-Vision,

in which the ball rapidly flickered in and out of view

and, for a few frames, appeared to be outside the field.

(It may have gotten on top of a robot, which would

both interfere with detection and, even when it was

QF SF F

last touch clear 47 59 52
last touch ambiguous 1 3 6

human referee
correct 43 55 52
last touch incorrect 4 4 0

autoref
correct 37 52 43
last touch incorrect 10 7 9
extra 0 0 2
chip extra 3 1 6

Fig. 9 Performance of the autoref for ball exit events as
compared to human referees at RoboCup 2014. The correct

lines refer to calls which were made at an appropriate time,
with the subsequent kick awarded to the correct team; last
touch incorrect refers to a call made at an appropriate time,
with the kick going to the wrong team. The extra line for the
autoref refers to calls made by the autoref that did not result
from actual ball exits, except for those caused by chip kicks
near the edge of the field, which are counted under chip extra

being detected, caused it to appear further out from the

camera than it actually was, just as chip kicks do.)

Among the calls that whose presence was correctly

identified, the proportion of team misidentifications by

the autoref is larger than would be desired for the final

version of the program, at about 15% of all ball exit calls.

The touch detection algorithm is still incomplete and

under development. Many of the incorrect identifications

are also due to chip kicks; the ball may appear to pass

very near or through a robot, registering as a touch,

when in fact it passed over the robot.

We also compared the results of the different combi-

nations of touch detection algorithms; this is shown in

Table 8. We show the performance of the previous base-

line algorithm (in the first line) with the results of the

human refereeing during the actual games (in the last

line) and the various combinations of improvements (in

between). The new algorithms we developed improved

on what was previously available in our codebase, and it

was promising to see that combining the different algo-

rithms yielded the greatest improvement overall, though

we have yet to equal the performance of a live human

referee.

7.2.2 Maximum ball speed calls

The rule stipulating that the ball cannot be kicked above

8 m/s often goes uncalled when it is violated, since it

is difficult for a human referee to accurately determine

the speed of the ball. By contrast, the ball tracker used

by the autoref already has accurate quantitative infor-

mation about the ball, and so checking for violations of

this rule is straightforward.
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Algorithm QF SF F

accel .66 .66 .73
accel + line .68 .73 .77
accel + backtrack .79 .85 .83
accel + backtrack + line .79 .88 .83
human .89 .93 1.00

Table 8 The fraction of times that the autoref or human
referee correctly identified the last team to touch the ball
before it exited the field, among the times when it correctly
called an out

QF SF F

true goals 3 2 2
false chip goals 1 3 1

Table 9 The counts of detected goals from the games. The
only errors were false positives due to chip kicks

The autoref detected several occasions in the games

where the maximum ball speed rule was violated, none

of which resulted in corresponding calls by the human

referee. In the quarterfinal game, our opponents violated

the rule three times in the first half, kicking the ball

in excess of 9 m/s, well above the stated limit; in the

second half, we ourselves kicked a ball slightly too fast.

There was also one spurious identification in each half,

caused by false vision reports of a ball when a human

stepped onto the field. (In practice, these would not be

likely to cause any issues, since there will be humans

only on the field while the game is stopped. Of course,

it is also possible to improve the detector to filter out

such detections to begin with.)

7.2.3 Goals scored

Finally, we tested the detection of goals scored. Chip

kicks are a major confounding factor here as well; many

kickoffs are taken by simply chip kicking the ball directly

over the opponent goal, which looks rather like the ball

going into the goal.

The detector correctly identified all of the goals that

actually occurred in the games we examined, and there

were no false positives apart from the ones caused by

chip kicks.

8 Future work

The autoref in its current state can run a game from start

to end while making the majority of the calls that should

be made. However, there are still many important rules

that need to be implemented for a reasonably complete

game. Probably the most important of these are the

rules regarding collisions between robots and touching

the ball while inside the defense area. The rules that

are concerned with the “intentions” of teams, while less

essential, will probably present a bigger challenge.

At a lower level, the obstacles mentioned in Sec-

tion 6.6 will need to be overcome for a truly satisfactory

autoref; solutions to these problems would be helpful

for both the autoref and our competitive team code, so

we will continue to focus efforts in their direction. The

chip kick detection (and, more generally, state estima-

tion of the ball) especially would provide a benefit to

performance. Even the event detectors that work could

be put onto a more principled footing, e.g., by implicitly

incorporating a further probabilistic model or explicitly

reasoning about the belief state of the Kalman filter.

There are also human interface concerns that will

also be important to address if an autoref is to become

widely adopted; namely, that the autoref should be

capable of both providing explanations for its calls and
also gracefully allowing humans to override incorrect

calls. As long as humans are still involved, it is important

to ensure that they do not feel left out of the proceedings,
and displaying explanations of its calls will make the

autoref is a helpful tool rather than an inscrutable black

box. The form of explanations that we envision is a

sort of instant replay; the autoref could use an attached

display to show animations of the parts of the preceding

gameplay that led to the call in question.

Although we have striven to make sure that the

autoref can handle situations correctly as often as pos-

sible, there may always be cases where it gets stuck or

consistently handles something incorrectly, and in those

cases, it will be necessary to have a human in the loop

to bring it back on track. Even if the autoref is made

as correct as it can be, the restricted input data avail-

able from SSL-Vision still make it impossible to detect,

e.g., a robot which has broken and is leaving parts on

the field. This is like the “Puppet Master” in CMCast

(Veloso et al 2008), but it will probably be necessary to
provide a more extensive interface, to account for the

more detailed state that the autoref maintains.

We have performed extensive testing of our autoref

within its domain, but we currently lack an objective

comparison of our framework with others designed for

similar tasks. In order to better understand the strengths

and limitations of the approach described here, we would

like to use other frameworks to implement the rules

of the RoboCup SSL, and then compare the resulting

referee systems in areas such as stability, adherence to

the rules, and implementation clarity.

Finally, apart from the processing concerns, there is

the issue of ball placement. We have used both team

robots and a specialized robot to automatically place
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the ball, but both methods have shortcomings: for the

first case, the inability to solidly hold the ball in the first

case, and, for the second case, given software limitations

and the design of the current version of the robot, low

speed and difficulty of control.

9 Conclusion

This paper describes a formalization of the RoboCup

SSL, a complex, dynamic game, as a hybrid automaton

based on its rules, as well as an algorithm for using

observations from robots to estimate the evolution of

such automata over time. The algorithm is based on a

domain-specific set of event detectors which cooperate

to advance the state of the automaton; although we

studied and described the set of events appropriate to

refereeing for the SSL, the main algorithm could apply

to any such hybrid automaton.

To demonstrate the viability of the algorithm and

event detectors, we implemented all of the necessary

algorithms and applied them to the task of refereeing

hundreds of simulated full SSL games. This allowed our

team to perform new qualitative evaluations of soccer

performance.

A Source code

Source code for our implementation of the system described
here may be found at https://github.com/dzhu/ssl-autoref.

B Transition tables

Tables 10 to 18 include the full details of the transitions
between the locations shown in Figure 6. Each table describes
the set of transitions associated with one of the pairs of
locations (i.e., one of the edges in the diagram). The first
column of each table describes the conditions under which
that transition occurs; the second indicates the command that
is transmitted when it occurs; the third indicates the changes
that are made to the variables of the hybrid automaton when
the transition occurs. A dash in the first column indicates
that the transition is always immediately taken when the
automaton is in the originating location of the edge (this only
occurs for the transition out of the INIT location).
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Condition Command Effect

— STOP call := KICKOFF

is-kickoff := true

stage := PRE-FIRST

Table 10 INIT to GAME OFF transition. This transition simply sets up the initial values of the variables and sends an initial
STOP command to make the robots get in position.

Condition Command Effect

ball enters goal of team T

goal-allowed == true

GOAL(!T) kick-team := T

call := KICKOFF

ball gets stuck during play STOP call := START

robot R commits a minor foul STOP kick-team := !team(R)

call := INDIRECT

robot R commits a serious foul STOP kick-team := !team(R)

call := DIRECT

robot R commits a serious foul in its own
defense area

STOP kick-team := !team(R)

call := PENALTY

kicker touches ball STOP kick-team := !team(kicker)

call := INDIRECT

ball exits field STOP kick-team := !touch-team

call := INDIRECT

Table 11 GAME ON to GAME OFF transitions. These are the transitions that cause active play to be temporarily stopped
so a kick can be set up.

Condition Command Effect

robots settle
call == START

stage ∈ {PRE-FIRST,PRE-SECOND}

call(kick-team) stage := next-stage(stage)

stage-end := time + stage-length(stage)

goal-allowed := true

kick-deadline := time + 10

robots settle
call == START

stage 6∈ {PRE-FIRST,PRE-SECOND}

call(kick-team) goal-allowed := true

kick-deadline := time + 10

robots settle
call == DIRECT

call(kick-team) goal-allowed := true

kick-deadline := time + 10

robots settle
call == INDIRECT

call(kick-team) goal-allowed := false

kick-deadline := time + 10

Table 12 GAME OFF to SETUP transitions. These are the transitions that occur when the robots are ready to take a kick;
the autoref’s response varies somewhat depending on what kind of kick is to be taken.

Condition Command Effect

kick is taken by robot R with no infractions
occurring

— kicker := R

touch-team := team(R)

is-kickoff := false

Table 13 SETUP to GAME ON transition. This transition represents the return to active gameplay after a free kick is correctly
taken.
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Condition Command Effect

robot R touches ball
R != kicker

— kicker := null

touch-team := team(R)

goal-allowed := true

Table 14 GAME ON to GAME ON transition. When a robot besides the taker of the last free kick touches the ball, this
transition updates the variable representing which robot was the last to touch the ball and forgets the taker of the kick, since it
is no longer relevant.

Condition Command Effect

robots settle
call ∈ {KICKOFF, PENALTY}

call(kick-team) call := START

min(y-times(T)) < 0 — remove minimum element of y-times(T)

Table 15 GAME OFF to GAME OFF transitions. The first transition sends the next command to prepare for a kickoff or
penalty kick. The second checks whether the oldest yellow card for a team has expired, and removes it from the list of cards if
so.

Condition Command Effect

time > stage-end

stage ∈ {FIRST,SECOND}
stage-end-cmd(stage) stage := next-stage(stage)

stage-end := time + stage-length(stage)

timeout requested by team T

timeouts-left(T) > 0

TIMEOUT timeouts-left(T) := timeouts-left(T) - 1

timeout-team := T

Table 16 GAME OFF to BREAK transitions. The first transition checks whether the time for a half has run out, and the
next stage should therefore begin; the second occurs when a team signals for a timeout (a request which can only be granted
while the game is stopped). In either case, the robots afterward are totally halted.

Condition Command Effect

time > stage-end stage-end-cmd(stage) stage := next-stage(stage)

stage-end := time + stage-length(stage)

timeout-time(timeout-team) = 0 STOP —

timeout end requested by timeout-team STOP —

Table 17 BREAK to GAME OFF transitions. These transitions occur when the game resumes from being totally halted,
either because the current stage has ended, the timeout team called an end to the timeout, or the timeout team ran out of time.

Condition Command Effect

time > kick-deadline STOP call := START

kick is taken
kicker’s teammate is near opponent defense
area

STOP kick-team := !kick-team

call := INDIRECT

kick is taken
opponent is near ball

STOP call := INDIRECT

kick is taken
is-kickoff == true

some robot is on the wrong side of the field

STOP —

Table 18 SETUP to GAME OFF transitions. These correspond to the rules that restrict the conditions on the field when a
kick is taken; if one of these conditions is violated when the kick is taken, the game stops rather than restarting.
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