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Abstract

Dynamic binary translation is an important area for
compiler research, because additional information
available at runtime can substantially improve the
effectiveness of optimizations. The difficulty lies in
creating a system capable of gathering runtime in-
formation without slowing down the running exe-
cutable. Several such systems have been created
(Dynamo, DynamoRIO, FX!32, etc.), but their use
presents several problems to the researcher. They
are either closed or proprietary, and are often tied
to a very specific platform. In this paper we dis-
cuss the design of a new, open, cross-platform dy-
namic binary translation system, SIND. Specifically
we discuss the design in general terms, and then fo-
cus on the specific implementation of a lightweight
interpreter for the SPARC architecture. We ex-
plore the many issues involved in building a self-
bootstrapping, efficient interpreter.

1 Introduction

In recent years, there has been increased interest
in the study of applying the historically static
methods of program analysis and optimization
to transformations at runtime. With a dynamic
profiling system and a lightweight set of opti-
mizations, it should be possible to transform a
program at runtime into a more efficient version.
Projects such as Dynamo [1] and JIT compila-
tion systems for dynamic languages such as Java
have demonstrated the effectiveness of dynamic
translation technology. However, research in
this field is hampered by a lack of convenient,
open tools for experimentation. The Dynamo
project itself is a proprietary, in-house system
for HP, and its offspring DynamoRIO is closed
for legal reasons. Even if DynamoRIO were
completely open, the system is so closely tied to
the x86 architecture that much of it would have
to be rewritten to function on another platform



[Personal Discussions with DynamoRIO main-
tainer].

SIND is a dynamic translation framework we
are implementing to fix some of these problems.
SIND aims to be a cross-platform system, by
which we mean that the interfaces and archi-
tecture will be consistent across platforms, even
though some things, of necessity, will be tied
to the specific platform. The whole system is
designed to be modular and portable with im-
plementations for multiple architectures. When
SIND is finished, it will be a useful and capa-
ble tool, furthering research into dynamic bi-
nary translation. This paper is a discussion
of the overall design of SIND, but is primar-
ily focused on the architecture and development
of the SIND profiling interpreter for the 64-bit
SPARC v9 architecture.

The SIND profiling interpreter itself pre-
sented an interesting challenge. It had to be a
fully functional interpretation system, but also
efficient enough that it didn’t slow down overall
execution (of the optimized program). Although
the SPARC architecture is RISC, which makes
writing an interpreter easier, the SPARC has
several idiosyncrasies that make interpreter im-
plementation non-trivial (register windows were
a particular problem).

2 Architectureof SIND

The SIND dynamic binary translation frame-
work [4] consists of a few main components: A
profiling interpreter gathers information about
the running binary and gathers ‘interesting’
traces from the binary’s execution. A set of
transformers take these interesting traces and

some machine context information and perform
analysis and transformations on the traces to
produce code fragments. Lastly, these code
fragments are passed into a caching system,
which links new fragments together with previ-
ously inserted ones and the fragments are then
executed directly on the processor. These are
the three main parts; additionally, a bootstrap-
per starts up a target binary and handles its li-
brary dependencies, a dispatcher handles inter-
module communication, a syscall manager han-
dles system call translation, and a memory ac-
cess system handles the separation of the SIND
system from the target binary.

The SIND system is intended to be modular
and was designed in an object-oriented fashion
to facilitate modular construction. Each compo-
nent of the SIND system is a class that imple-
ments a well-defined interface (specific to that
component). The profiling interpreter, for in-
stance, implements the CPU interface. As the
components become more platform-specific, the
interface is extended (through inheritance) to in-
clude platform information.

SIND is currently implemented as a self-
loading library, so that it enjoys inexpensive ac-
cess to the address space of the target process.
The library seizes control of the binary at load
time. Interpretation begins at the _st art sym-
bol of the target binary.

2.1 Comparison of SIND and Dy-
namo / DynamoRI O
The original work on SIND was inspired by

the Dynamo dynamic translation system from
HPLabs [1]. It is only natural to want to com-



pare the two systems. Both are dynamic opti-
mization systems and both have an interpreter
and a fragment cache. But as one gets deeper
into the design, more differences become ap-
parent. For instance, Dynamo was intended to
be a vehicle for research, not a production sys-
tem or a widely-used tool. As a consequence
much of the system was highly tied to the plat-
form it was developed on (HPPA running HP-
UX). Because so much of the Dynamo system
was hard-coded it was extremely non-portable
(the developers admitted as much). This is per-
haps the largest difference between SIND and
Dynamo. In SIND everything is meant to be
changeable. This is aided by its object-oriented
design and by its open-source status. Because
SIND is meant to be a research tool, its com-
ponents are meant to be replaceable. SIND is
also meant to be cross-platform tool, and as such
only at the bottom of the inheritance tree are
there platform-specific classes.

Because the original Dynamo code was so
non-portable, when HP wanted to create a dy-
namic optimizer for the x86 architecture, they
had to rewrite everything. The latest incar-
nation of this effort is the DynamoRIO sys-
tem. DynamoRIO itself differs considerably
from Dynamo. Firstly, because the x86 instruc-
tion set is complicated to decode and emulate,
DynamoRIO uses a basic block cache rather
than a straight interpreter. Secondly, the entire
optimization system was tailored to this basic
block cache. Lastly, however, the system was
engineered to be much more accessible than the
original Dynamo, and as a result has a sophisti-
cated API to allow people to write external pro-
grams that use the DynamoRIO engine. The
portability of the DynamoRIO system is evi-

denced by the fact that it runs on both Win32 and
Linux operating systems. However, SIND dif-
fers from DynamoRIO. DynamoRIO is a mono-
lithic system, and although the API is nicely fea-
tured, it only allows external programs to attach
to ‘hooks’ in the system, but not to augment
the system with new hooks. Because SIND
is open-source and internally modular, replac-
ing portions of SIND is completely possible (in
fact, that is how the system is extended). Dy-
namoRIO is also tied to the x86 architecture.
SIND, although currently only implemented for
the SPARC, is meant to be portable to any archi-
tecture.

3 Architecture of the SIND
SPARC Interpreter

The interpreter’s main function is to gather pro-
filing information and code execution traces.
These are passed to transformers, which use the
profiling information to guide specialized trans-
formations of the code traces. Because one of
the goals of the SIND system is to do runtime bi-
nary optimization, it is vital that the interpreter
should introduce as low an overhead as possi-
ble. As a consequence, the interpreter must be
very efficient and every reasonable effort must
be made to improve its speed.

The first interpreter to be fully designed and
implemented in SIND is for emulating the 64-
bit SPARC v9 architecture. The design was mo-
tivated by several factors: first, because SIND
runs in non-privileged mode, the interpreter
is primarily a non-privileged instruction inter-
preter; second, the interpreter only needs to be



functionally correct, therefore no complicated
hardware structure needs to be emulated in or-
der to produce accurate simulation. The inter-
preter’s job is then to replicate a user’s view of
the processor and discard any lower-level struc-
ture that interferes with the efficient execution
of code.

3.1 Registers

The interpreter itself replicates user-visible reg-
isters as an array of 64-bit quantities in mem-
ory. On a 64-bit host machine these are native
unsigned 64-bit integers, on 32-bit machines
they are two-element st r uct s. There are sev-
eral caveats, however. The SPARC architecture
supports register windows for integer registers.
This was emulated by allocating a large array of
64-bit quantities, setting the lowest 8 to be the
global registers, and having a sliding window
of 24 registers slide up and down the array as
procedure calls are made and registers are saved
and restored. It is important to be able to restore
the user stack in order to be able fully to emu-
late a system call. It is also important to keep
SIND’s own stack separate from the user stack,
because the interpreter runs in the address space
of the user process and so in principle the user
process’s stack entries might clobber the inter-
preter’s stack. We now examine these two re-
quirements.

To restore the user stack, the original stack
top (before control was passed to SIND) address
must be preserved. The simulated stack (in the
register windows array), must then be copied
over to the stack area before the system call can
be made. However, just copying the registers is
insufficient. Each stack frame may have an arbi-

trarily large spill area, and that must also be pre-
served and copied over for trap emulation. Each
time a save instruction is issued, it is remem-
bered so that the stack offset for each frame can
be properly reconstructed. However, the spilled
variables do not have to be remembered. Be-
cause the interpreter is executing in the same ad-
dress space as the target process, values written
to the spill area will be at the correct location
for the stack, so the stack frame and its corre-
sponding registers just need to be copied around
such spilled variables. However, even this is not
enough to completely recreate the user stack.
The register window state must also be repli-
cated in the underlying processor. Basically, this
means ‘rolling back’ the current stack to its state
when SIND took over and then pushing on all
the necessary frames. When rolling back the
stack, it is necessary to save the stack frames
as they are deallocated (because they will need
to be restored before normal execution can re-
sume). In practice, because the two stacks are
kept separate, this means npr ot ect -ing the
interpreter’s stack area and issuing the neces-
sary number of r est or e instructions. When
the stack has been rolled back to its starting
position, the simulated register windows need
to be copied to the processor and then explic-
itly saved to the stack. Although this is also
time-consuming, we get register saving around
spilled variables automatically.

Maintaining two separate execution stacks re-
quires a bit of hackery. The last ‘valid’ stack
frame is left alone, and its stack pointer (pointer
to the top of the frame) is saved for refer-
ence. A new page is allocated for the separate
stack, and its topmost address is recorded. This
topmost address is to become the new frame



pointer. Then an explicit save instruction is is-
sued; it creates a new register window, but with
the stack pointer pointing into the new page.
Then the frame pointer register can be man-
ually set. From that moment on, all further
calls should write their stack data to the alter-
nate stack page(s). Apart from protecting the
SIND call stack from manipulation by the inter-
preted program, this also means that when ex-
ecuting code directly on the processor (either
issuing traps or when in the fragment cache)
SIND’s stack can be npr ot ect -ed to safe-
guard its contents.

The floating point registers on the SPARC
consist of three overlapping sets of 32, 64, and
128-bit floating point registers. There are 32
32-bit, 32 64-bit registers, and 16 128-bit reg-
isters. The 128-bit and 64-bit registers overlap
completely (e.g., the first 128-bit register is the
same as the first two 64-bit registers), and the
32-bit registers overlap with the bottom half of
the other two. This was implemented as a con-
tiguous region of memory, accessed in differ-
ent ways depending upon the instruction used
(some checking had to be done to make sure no
accesses were attempted to non-existent 32-bit
registers).

3.2

Although the SPARC V9 architecture is 64-
bit, the instructions are still 32-bit, which al-
lows backward compatibility (consequently, the
software interpreter is also capable of running
SPARC v8 code). The SPARC has 30 differ-
ent instruction formats, grouped together into
4 major families. However, these formats are
all the same length (32 bits) and were designed

I nstructions

to be quickly parsed by hardware. This per-
mits streamlining the fetch and decode portions
of the interpreter. Each instruction format was
specified with its own bit-packed struct, and all
such structs were grouped together in a union
with a normal unsigned 32-bit integer. Each for-
mat family is distinguished from the others by
the two high order bits of the instruction. Thus
the interpreter has jump tables for each instruc-
tion format family (actually three jump tables
and one explicit function call), that are keyed by
the opcode (whose position depends upon the
format family). A case statement branches on
the two most significant bits to the correct jump
table, and then the correct function is called.

3.3 Exceptional Conditions

Occasionally during execution, an instruction
will cause an error. The SPARC v9 architec-
ture manual clearly defines these exceptions,
and, for each instruction, specifies which ex-
ceptions it can raise. Many of the exceptions
are caught by the operating system and used to
handle things like page faults and memory er-
rors. Non-recoverable exceptions usually cause
the operating system to send a signal to the exe-
cuting process. To mimic this, if the interpreter
thinks a given instruction would cause an ex-
ception (such as divide-by-zero), then a proce-
dure similar to that used for system calls can be
used. The running binary’s state is restored on
the stack, and then the interpreter executes the
offending instruction directly on the processor.

1To be precise, Format 3 and Format 4 both can have
thevalues 10 or 11 intheir upper bits, but in SIND Format
3ingtructionsareinstructionswith 10 in the upper bitsand
Format 4 instructions have 11 in the upper bits.



This generates the appropriate operating system
action (usually, killing the process).

3.4 Signalsand Asynchronous|/O

In the Solaris system there are really only two
ways of communication between user and su-
pervisor (kernel) code. One, the system call or
trap, has already been discussed. The other, sig-
nals, had to be dealt with differently. Because
the SIND system is guaranteed to be loaded be-
fore all other libraries, its definitions of func-
tions will take priority (if they’re exported). The
SIND interpreter interposes on the signal func-
tions, and registers a special handler for all
registerable signals. Thereafter, when the in-
terpreted program registers a signal, it will go
through SIND’s registration system, rather than
the system’s. This means that SIND has to
record the signal handlers registered by the pro-
gram (in order to execute them when a signal
is generated). When the OS sends the process
a signal, it will be first intercepted by SIND,
which will need to start interpreting the handler
registered for that signal. In this way a signal
cannot cause control to leave the SIND system.

4 Experiences from the De-
sign and | mplementation of
SIND

The current SIND system is several generations
removed from the first attempt. Initially, we at-
tempted to marry a pr ocf s-based bootstrapper
with the ISEM full-system emulator [5]. This
introduced many problems, because ISEM em-

ulated not just the full processor but an entire
system bus (with attached devices). ISEM also
was only a 32-bit SPARC v8 interpreter, and so
would have to be extended to accommodate 64-
bit operands. And lastly, ISEM emulated the
running binary’s memory system, and so had to
run in a separate address space. We were left
with two options. Either gut the ISEM system
to isolate the user-land portion, or try to cap-
ture the exact state of the machine and use it
to initialize ISEM. Neither option was partic-
ularly attractive, and the ISEM system was al-
most certainly going to be slower than a custom
lightweight interpreter. After getting nowhere
with this system for several months we decided
to write a new interpreter from scratch.

The design of the interpreter itself presented
several challenges. There are two main options
for an instruction set interpreter. It can be a
full-fledged software interpreter, emulating the
source instructions in software, or, if we are
planning on running it on the same architecture
as the instructions, we can do a ‘cut-and-paste’
interpreter. The cut-and-paste solution (other-
wise known as a basic block cache) works by
copying each instruction encountered to an area
in memory, remembering to rewrite control-
transfer instructions to jump to the correct new
locations and then executing these copied in-
structions directly on the processor. This is
a very lightweight interpretation system, and
because it requires a decoder only capable of
distinguishing control transfer instructions from
the rest, it is the preferred solution on x86 plat-
forms (systems such as Valgrind [6] and Dy-
namoRIO [2]). However, such cut-and-paste
systems have one major disadvantage. They can
only be run on the platform whose instructions



they are interpreting. This presented a disadvan-
tage for our work, because we not only wanted
to explore dynamic optimization, but also for-
eign binary execution (a la FX!32 [3]). If we
wanted to run this interpreter on another plat-
form, it would have to be a full-fledged instruc-
tion set emulator.

The core interpreter itself is not complicated:
emulating a compact RISC machine isn’t too
difficult. Most of the effort went into the boot-
strapper and system call subsystems. The boot-
strapper itself has gone through many permu-
tations. In the end there were two major op-
tions. Either the interpreter starts itself up in the
library initialization routine, or it causes con-
trol to transfer from the target binary’s st ar t
symbol into the interpreter. The problem with
the first option is that it halts the loading process
halfway through. Normally the binary and all its
dependencies are loaded and then, in the load-
ing order, all the dependencies have their ini-
tialization routines called. If SIND were to take
over in its initialization routine, then it would
have to act like the loader and finish process
loading. The second option, though it appeared
to be more complicated, actually turned out to
be the easier route. In SIND’s initialization
routine, the bootstrapper mprotects the loaded
. t ext segment to allow writes. The first two
words/instructions after _st art are saved to
a reserve area, and then are overwritten with
an explicit call instruction into the interpreter’s
code. This means that SIND will only be started
after the loader has finished. This system is
imperfect, however. If any loaded library pre-
vents control from transferring to the start sym-
bol (such as, for instance, by never exiting the
initialization routine), then SIND will never be

entered. This isn’t a big problem, however; be-
cause the SIND bootstrapper can easily be re-
placed without affecting the interpreter, a more
thorough system can be developed and inserted
without difficulty.

The syscall subsystem was discussed thor-
oughly in the design section above and took time
to develop simply because of its complexity (al-
most all owing to the use of register windows).
Development on the whole system was ham-
pered by several tool deficiencies. The debugger
we were using (gdb) has only limited support
for 64-bit objects, and this hampered diagnosis
severely. The debugger was also of limited use
because we were not, in fact, debugging the run-
ning program: we were debugging a library that
was loaded with the Unix LD_PREL QADfacility.
Trying to use gdb’s built-in facilities turned out
to be more trouble than it was worth. The best
method we discovered was to compile SIND
with debugging on (and explicit stabs support),
and cause an intentional segfault (by dereferenc-
ing NULL) near the suspect method. We could
then load the core into gdb, and it would often
give us enough information to help with debug-
ging. When we needed more control, we in-
serted an __asm._ block with an explicit debug-
ger trap (t a 5 on Solaris/SPARC).

The GCC compiler itself introduced prob-
lems. We were originally using the gcc 2.95
compiler collection which had somewhat shaky
64-bit support. But the biggest problems were
with C++ name mangling. In older versions of
gcc, symbols defined in .c files or header files
whose implementations were in .c files used
normal C linking. That is, a function defined
as voi d foo() was exported as the symbol
f 0o. In gcc3 and up, anything touched by a



C++ file was made to use C++ linking. C++
linking involves a technique known as ‘name-
mangling’, whereby the symbol name has char-
acters appended or prepended to it that the sys-
tem uses to extract type information. There-
fore a function f 0o in a class bar gets man-
gled to something like ZNKbar 1f ooEv. This
meant that many of the function interpositions
we had created were no longer working when
we upgraded to gcc 3.2, because their symbolic
names were mangled beyond recognition. The
way around this was to devise macros to enclose
C-style definitions in a way that tells the C++
compiler to leave them alone.

The GCC compiler also caused problems with
register usage. On Solaris/SPARC systems, a
shared object cannot write to the %g2 or %93
registers (which are dedicated to passing values
to syscalls). With gcc it is simple enough to
specify not to use either global register; how-
ever, it is not possible to tell it to only avoid
writes to those registers. This means that any
code we have that explicitly copies values from
%92 or %93 has to be compiled separately and
then linked in later, which is cumbersome. On
a load-store architecture, it should be trivial for
an assembler to determine whether an expres-
sion that references a register is writing to it or
just reading it!

5 Conclusions

Dynamic binary translation is an exciting area
of research that has been hindered by a lack of
convenient, open tools. SIND is an open-source
effort currently targeted at offering a convenient,
platform-independent tool-set for research into

dynamic binary translation. Central to this ef-
fort are lightweight profiling interpreters, which
have a peculiar set of design issues. Currently
SIND is being implemented for the SPARC v9
architecture, but the overall design of SIND is
such that other processors should be easy to sup-
port. SIND’s implementation consists of a func-
tional lightweight interpreter for the SPARC v9
instruction set, and will soon include trace gath-
ering and fragment caching.

The design issues encountered in the imple-
mentation of the SIND interpreter were very dif-
ferent from standard ‘application level’ design
questions. Correctly emulating register win-
dows provided no end of headaches, and tricks
such as separate stacks had to be employed to
avoid having the user application clobber SIND
data. Standard compiler chain tools and debug-
gers were inadequate for the task.
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