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Abstract 

Machine-level dynamic binary translation has been used in applications ranging from debugging, 
performance analysis, and security policy enforcement to full machine virtualization. Most 
implementations are optimized for performance rather that simplicity: they translate to an internal 
intermediate form before generating target code. While an intermediate form greatly assists certain types 
of code monitoring transformations, many applications do not require these transformations, and the 
performance arguments for an intermediate form appear questionable. In some applications, the need for 
translator simplicity outweighs the desire for translator generality. 

VDebug is an x86 to x86 dynamic translation system designed to achieve least complexity rather than 
maximal performance. Originally designed as a supervisor-mode, bare-metal translator, Vdebug makes 
minimal assumptions about the supporting runtime environment, and makes no attempt to optimize guest 
code during translation. The resulting implementation exposes the overheads that are intrinsic to all 
binary translation mechanisms rather than specific to one or another set of optimizations. Surprisingly, 
VDebug yields performance comparable to more aggressive translation strategies. This paper focuses 
presents the key implementation techniques used in the user-mode and supervisor-mode translators. 

1. Introduction 

Binary translation techniques have been used for application level debugging and performance 
analysis, for security policy enforcement, and for full machine virtualization. Static binary 
rewriting tools such as pixie [1] have been used as the basis for comprehensive debugging and 
analysis tools such as SGI SpeedShop [2]. Valgrind [3] uses dynamic translation for performance 
measurement, memory analysis, and execution profiling. VMware uses supervisor-only dynamic 
translation for full machine emulation [4]. Work on "program shepherding" has been proposed as 
a techinque for enforcing security policies [5]. Modern dynamic translation techniques generally 
offers overheads in the general range of 5%. The DynamoRio system [6] is a reasonable current 
"gold standard" for dynamic translation. 

While performance is an important goal for dynamic translators, it is not the only important goal. 
Run-time optimization comes with three significant costs: 

• The dynamic translation system becomes intrinsically harder to maintain. 

• The runtime cost of optimization offers diminishing returns as the cost of translation rises. 



• The instruction cache footprint of the translator rises, leading to significant cost from cache 
residency competition. Simultaneously, the effective reuse rate of translator code falls as the 
specialization of the dynamic optimizer rises. 

All of these points suggest that it is useful to have a reference dynamic translation system 
designed for least complexity. Such a design nominally accepts lower runtime performance for 
lower translation overhead, but the resulting performance may compare favorably with more 
complicated systems in practice – especially so when significant amounts of one-time startup 
code must be translated during application startup. A simpler translation system can serve as a 
reference implementation for use in validating more sophisticated implementations. VDebug is 
simple enough to be suitable for robust supervisor-mode implementation. 

The VDebug translator is predicated on several observations: 
 

• The majority of translated instructions are innocuous, meaning that they can be translated 
verbatim without any modification at all. This is true in the same way that most instructions are 
neither sensitive nor privileged in virtual machine emulators [7]. 

 

• Nearly all of the remaining instructions relate to management of control flow. Careful 
translation of these instructions is performance-critical, and the techniques for doing so have 
been underexplored in the existing literature. 

 

• The few instructions that truly need non-trivial translations are (statistically speaking) never 
used. While gratuitous overhead should be avoided, the translated performance of these 
instructions isn't critical. 

 

• The need for optimization is self-fulfilling. If aggressive optimization is eliminated, the entire 
guest register set can (with care) be preserved in the actual hardware registers. Any significant 
alteration of data references soon introduces a need to reserve a register for use by the 
translation system itself. 

Based on these observations, we have implemented a simple dynamic translation system, and 
report on its results here. 

2. Basic Mechanism 

The basic translation mechanism of our system is similar to that of Dynamo [8], Mojo [9], or a 
number of other dynamic binary translators. VDebug proceeds by alternating its execution 
between "translation mode" and "target mode." During target mode, instructions are executed out 
of a region of memory known as the basic block cache. This region contains translated basic 
blocks (xBBs) resulting from the on-demand translation of guest basic blocks (gBBs). When the 
desired basic block cannot be found in the cache, execution switches to translation mode and the 
missing basic block is appended to the cache. 

The switch from translation mode to target mode can be viewed as a specialized form of context 
switch: target state is unloaded from the processor into a temporary save area, the translator 
performs some translation, and execution resumes somewhere in the basic block cache. The 
defining issues in a translator of this form are: 

1. Where does the definitive version of guest register state reside? 



2. How is the term "basic block" defined? That is, what is the real unit of translation? 

3. How are direct jumps managed? 

4. How are indirect jumps (register, memory) handled? 

5. How are call and return implemented? 

2.1. Register State 
The first issue in the design of a dynamic translator is to determine where the definitive copy of 
guest register state will be kept. Does guest register state generally reside in the hardware 
registers, or does it reside in some memory data structure to be loaded and spilled at need? On 
the Pentium, where registers are few, there is considerable incentive to preserve all available 
hardware registers for application use. If guest registers can be kept entirely in the hardware 
register set, the translator can eliminate the need for load and spill operations during basic block 
translation. This in turn eliminates the need to examine the registers used by normal instructions 
during translation. If guest registers cannot be preserved within the hardware register set, then a 
translator with intermediate code is effectively mandated. 

Actually, there are two distinct cases that need to be considered for register management: 

• Context switching from guest translated code to/from the translator. 

• Spilling register state in order to look up indirect branch destinations. 

The second is discussed below in Section 2.4. We address the first here. 

In abstract, a dynamic translator requires a small amount of state to be shared between the guest 
and the translator – or more precisely, between the translated code and the translator. This state 
records the next guest PC (NPC) and the guest register save area. The save area is used to spill 
the guest register set when transferring control to the translator. The NPC value is used to tell the 
translator where translation (and therefore execution) should resume in the next execution phase. 
As a practical matter, these can be combined by generalizing the save area into a machine state 
(or Mstate) region that contains a reserved NPC slot in addition to the register save area. 

VDebug uses two different implementations of MState depending on whether we are executing 
in user mode or supervisor mode. In user mode, we assume that the guest has a valid stack that is 
backed by a general-purpose page fault handler. When necessary, register values are spilled to 
this stack before control is transferred to the translator. The design rule is that VDebug cannot be 
observed to have changed the stack during execution of guest instructions. We assume implicitly 
that two threads of control in the same application address space do not examine each other's 
stacks. 

When executing supervisor code, a memory-based MState area can unfortunately be detected by 
the guest code. For reasons discussed in Section 3, we are attempting to minimize the visibility 
of such state. We have chosen to implement register save for supervisor translation using the trap 
mechanism. To support this, we run guest supervisor code in non-privileged mode, simulating 
the "supervisor" bit of the page tables using shadow translation. 



2.2. Unit of Translation 
Compiler texts typically define a basic block (BB) as a sequence of code that is "bracketed" by 
branches. Every target of a control flow instruction (jump, branch, call, or return) is the 
beginning of a basic block, and every control flow instruction (jump, branch, call, or return) 
marks the end of a basic block. Dynamic translators and sophisticated optimizers also build on 
the notion of a trace, which is a sequence of instructions that (with high likelihood) will be 
executed in sequence. A basic block that is terminated by an unconditional jump to some other 
basic block is a single trace, because the two basic blocks are necessarily executed in sequence. 

In a dynamic translator, there is a tension between two considerations: 

• Space in the basic block cache is limited. While it is generally correct to translate a given basic 
block multiple times, it is desirable to avoid doing so where possible. This motivates a pure 
basic-block oriented approach in the interests of instruction cache reuse. 

• Dynamic branch frequency is the defining characteristic in instruction performance. Where 
possible, it is desirable to assemble traces sequentially in the basic block cache, eliminating the 
intervening branches. This motivates translating traces wherever possible. 

VDebug begins a new translation phase whenever it discovers that some instruction has not been 
translated. It proceeds with translation until it reaches any sort of control flow instruction. When 
a control flow instruction is encountered, an attempt is made to "continue the current trace" as 
described below in Section 2.3. That is, VDebug may translate several basic blocks during a 
single translation phase, doing its best to construct a trace sequentially in the basic block cache. 

A key enabler of this optimization is that VDebug avoids adding preamble or postamble code to 
translated basic blocks. While such preambles and postambles are sometimes required, their use 
is rare. VDebug "outlines" them (places them outside the sequential control flow). In many cases 
this lets us entirely eliminate unconditional branches. 

The VDebug instruction decoder is table-driven. After decode, the majority of instructions are 
"translated" by appending them unmodified into the basic block cache. If the basic block cache 
becomes full, VDebug discards the entire content of the basic block cache and resumes 
translation from nothing. While draconian, this policy allows branches to be patched within the 
basic block cache without maintaining the relocation infor-mation that would be required to 
unlink them selectively. 

2.3. Direct Jumps 
Direct jumps may be either simple or conditional. Where possible, VDebug eliminates simple 
jumps entirely. A check is made to determine whether the destination of the simple jump has 
already been translated (goal: basic block reuse). If so, then there is an existing xBB in the basic 
block cache; a jump to this xBB is emitted. Otherwise, the jump instruction is elided, a new xBB 
is started at corresponding to the gBB that is the destination of the original branch, and the target 
xBB is simply appended to the initial xBB in the basic block cache (the branch is elided). This 
forms a trace that is linearized on the assumption that mandatory branches are always taken. 

Conditional jumps are somewhat trickier. The present VDebug implementation implicitly 
assumes that conditional branches are not taken, and that traces should be linearized on the 



assumption that execution will proceed in a straight line. If the destination xBB of the 
conditional branch already exists in the trace cache, VDebug emits a conditional branch to that 
xBB directly. Otherwise, it begins a new xBB (because the next instruction might be a branch 
target), emits a conditional branch to a "fixup trampoline", and continues. This requires a 
temporary relocation record; fixup trampolines are not emitted until the current translation phase 
terminates. Once emitted, the conditional jump is patched to jump to the fixup trampoline. 

The goal of the fixup trampoline is to allow the conditional branch to be patched in place once 
the destination xBB is translated. The fixup trampoline hand-saves some guest register state, 
performs a lookup for the target xBB, patches the original branch if the target xBB is found, or 
enters the translator if it is not. Note a general pattern here: the VDebug implementation prefers, 
when possible, to implement fixup-like mechanisms in code space rather than data space to avoid 
polluting the guest data cache. The mechanism used to discover the target address is shared in 
common with the indirect jump mechanism, described below. 

It is unlikely that the current implementation is optimal; it is known, for example, that backward 
conditional jumps are likely-taken. We plan to examine the impact of changing this policy in 
future work; the goal in this generation is simplicity. 

2.4. Indirect Jumps 
Indirect jumps are those that proceed through either a register or a memory location. These are 
necessarily harder to translate than direct jumps, because the destination address cannot be 
known at dynamic translation time. The most common solution is to perform some form of hash-
based lookup in a side data structure maintained by the translator. This solution requires a series 
of loads, compares, and conditional jumps that demand at least two registers (a data structure 
pointer and the NPC value) and the condition codes (which will be clobbered by the 
comparisons). Some scratchpad region is required. In user mode, VDebug exploits the stack to 
save the necessary temporaries. 

Like Dynamo [8], VDebug uses a hash-based lookup scheme to translate indirect addresses. In 
contrast to Dynamo, the hash table entries are implemented in code rather than data. To perform 
an address resolution using this mechanism, VDebug first saves the condition code register 
(EFLAGS) and two scratch registers (%eax,%ebx) to the stack, computes a hash of the 
destination address, and performs a computed branch to the first entry in the hash chain: 

pushf 
push %eax 
push %ebx 
movl %eax, %rdest 
movl %ebx, %rdest 
andl $mask, %eax 
addl $hash_base,%eax 
jmp (%eax) 

The hash chain itself performs a series of constant comparisons against known destination 
addresses and implements a conditional branch to the final destination basic block: 

cmpl %ebx,$candidate-gNPC 
je $xNPC-entry-trampoline 
cmpl %ebx,%next-candidate-gNPC 



je $next-xNPC-entry-trampoline 
# fall-through: 
jmp $need-translation-trampoline 

The candidate trampoline restores the saved EAX, EBX, and flags registers and jumps to the 
target basic block. The main advantage of this code-based scheme is that it can be constructed in 
a way that guarantees effective I-cache utilization. It is also executed entirely using instruction 
stream references, and therefore does not consult the DTLB. While this is not a compelling 
advantage for user-mode code, it is important in the supervisor mode VDebug implementation. 

We are considering a variant implementation in which each register jump instruction has a 
dedicated branch chain that is implemented as a binary tree. This would eliminate the need for 
both register saves and restores. 

2.5. Call and Return 
As in Dynamo, the call instruction is translated as a push (of the constant guest PC following 
the call instruction) followed by a jmp instruction. If the call is a register-based call instruction, 
the register jump trampoline is used as described above. This approach is sufficient, but it is not 
fast. The full description will make greater sense after we explain the translation of the return 
instruction. 

The return instruction is a form of indirect branch that uses a value on the stack as its destination 
address. While the stack pointer must be modified as a side effect, this modification does not 
introduce significant new complexity. The problem is that call and return are much more 
frequent than register jumps, and we would dearly like to avoid the complex series of 
instructions that are needed to support the full register jump sequence. The full sequence is 
required to avoid exposing mutable state to a hostile guest, but we can do much better than this 
in the user-mode translator. For clarity, we will describe two schemes below: the naive scheme 
because it provides a sense of the technique, and the improved scheme that we will shortly be 
implementing. 

The key constraint is that we must leave the original return address on the stack. There are a few 
rare programs (notably garbage collectors) that will behave erratically if the return address stored 
on the stack is not a valid user code address. 

2.5.1. Naive Return Scheme 
While we will need a hashed lookup scheme, we would like to ensure that the most recent return 
address appears first. VDebug accomplishes this by using a D-space hash table that is modified 
by every translated call instruction. The call instruction computes (at translation time) the guest 
address of the guest instruction after the call, computes the hash of this address, and stores the 
address of the xBB instruction after the call into this hash slot. The return instruction will 
recompute this hash at run time and branch blindly and optimistically to this address. 

After translating the call instruction VDebug emits sanity check code that validates whether this 
destination is in fact the correct destination of the return instruction. This is done by comparing 
the guest return address value to the constant guest instruction address of the instruction 



following the call. Should this compare fail, the jump register trampoline is invoked to transfer 
control the correct destination procedure. 

The net effect of this hash table scheme is to serve as a form of stack cache in which the most 
recent call address for a given procedure is cached. This tends, in practice, to capture recursive 
calls well. 

Note that perverse code is okay under this scheme. While the return instruction may not initially 
return to the correct destination, it is guaranteed to return to some destination consisting of code 
that checks whether the destination is correct. Any call-postamble will cause the right thing to 
happen eventually. 

However, the naive scheme involves some unnecessary costs that we can eliminate: the scratch 
register save, the condition code save, and the hash computation at the return site. 

2.5.2. Return Scheme NG 
Our next generation return scheme relies on the fact that most calls are direct. Instead of 
smashing a hash location that is based on the return address, we smash a hash location that is 
based on the destination procedure start address. We then propagate the current procedure start 
address through the translator logic. The net effect is that we know the entry point of the current 
procedure at the time we translate the return instruction. This allows us to compute the hash 
lookup of the blind return address at compile time, replacing the return instruction with a jump 
instruction requiring no temporaries and no condition code save. The "pop" is performed at the 
return site after determining whether the condition codes remain live. 

We then do more work in a per-call postamble. The most common instruction following a call is 
an add instruction (to pop the stack arguments). This instruction clobbers the condition codes, 
which tells us whether or not they need to be saved. The postable does a constant comparison 
against the value still resident on the stack and branches to recovery code if the return has 
transpired to the wrong address. 

3. Virtualization of Supervisor-mode Code 

When virtualizing the privileged state and instruction set of the x86 architecture, dynamic 
translation provides an effective way to simulate the behavior of sensitive and privileged 
instructions. An excellent discussion of privileged and sensitive instructions on the Pentium can 
be found in [7]. In VDebug, translation is performed by the emulator running in supervisor mode. 
Both guest supervisor and guest user code run in user mode on the underlying hardware; the 
supervisor protection bit in the page table is implemented by shadow page tables. Execution is 
initiated by a supervisor to user privilege transition, following which some number of basic 
blocks are executed before voluntarily trapping or otherwise faulting back into the emulator for 
some purpose. Though we have designed a full-fledged virtualization support for supervisor-
mode code (in contrast to paravirtualization support, as provided by Denali[10] and Xen[11]), in 
this paper, we focus on three issues that proved particularly challenging. 



3.1. Precise Interrupt / Exception Delivery 
Dynamic translation has some major implications on interrupt/exception delivery to the guest. 
Specifically, a complication arises because of pseudo-instruction-boundaries being present in the 
translated instruction sequences, that were not present in the original (guest) instruction 
sequences. When a gBB instruction is translated into a sequence of multiple xBB instructions, 
new instruction boundaries have been introduced as far as the underlying hardware is concerned. 
When delivering an interrupt or an exception to the guest, it is imperative that we preserve the 
atomicity corresponding to guest instruction boundaries, and subsequently report the correct 
instruction boundary at which the interrupt or exception was delivered. Towards this, we have 
designed a framework that lays out the format of a translated instruction sequence corresponding 
to a given guest instruction, as follows: 

1. Each individual instruction translation consists of a preamble, an “active” instruction, and a 
postamble. 

2. Preamble and postamble are typically empty. If needed, a typical preamble contains register 
spill instructions to provide available temporary registers for use in instruction execution, or 
a push instruction (in the case of translating call), or a pop instruction (in the case of 
translating return), etc. The postamble restores the expected register values into the hardware 
registers for use by the following instruction. The important point to note about the 
requirements of a preamble and postamble is that a preamble can result in side-effects as long 
as its effects can be rolled back (i.e., can be safely undone); and, a postamble must not result 
in any side-effects as visible to the guest, but may result in effects visible to the emulator. 

3. Most importantly, side-effects that are visible to the guest and are non-undoable, if any, can 
occur as a result of the execution of only one instruction (as seen by the underlying 
hardware), which we call the "active" instruction. Then, an interrupt or exception can occur 
only before or after that instruction, but not in between that instruction. 

We now describe the exception delivery mechanism that uses the above framework: When an 
interrupt or exception occurs while the preamble part of a translation sequence (including the 
point just before the "active" instruction) is being executed, we roll back the execution up to the 
most recent instruction boundary. If it occurs after the execution of the "active" instruction, i.e., 
while the postamble is being executed, we report the next guest instruction boundary to the 
guest. Note that postamble operations invariably restore register values that will be restored 
anyway on return from supervisor mode, so postamble instructions do not need to be honored 
when a trap occurs. 

In order to facilitate the rollback of the preamble's execution, the instruction generator generates 
two instruction streams in parallel. The first is a sequence of instructions that simulate the input 
basic block instructions. The second is a sequence of bytecodes that describe how to undo the 
effects of the preambles. 

When an exception occurs in the preamble phase, these bytecodes are interpreted to determine 
which registers have been spilled and what modifications have been performed to the stack 
pointer during the preamble. These changes are undone, and execution will resume at the 
beginning of the preamble. 



When an exception occurs during the postamble, the preamble bytecodes are consulted to 
determine which registers have already been spilled and what modifications to the stack may 
need to be undone. The trap handler is going to spill the registers anyway; it merely skips the 
spills of the registers that have already been spilled. The bytecodes encode sufficient information 
to know what stack operations must be undone. 

Collectively, the bytecode system provides a form of instruction-level "reverse execution" that is 
sufficient to enable the appearance of instruction atomicity to be preserved. 

3.2. Avoiding the occupation of guest's virtual address space for the  emulator's 
use 

One of the original VDebug goals was to be suitable for use in a virtual machine implementation. 
A desirable goal in a virtual machine is to implement a mechanism that cannot be detected 
overtly by the guest operating system. Modern processors generally implement split instructoin 
and data translation lookaside buffers (TLBs). With care, it is possible to ensure that the basic 
block cache never appears as a guest-accessable address by exploiting the fact that these two 
TLBs need not be consistent. A supervisor-mode implementation cannot rely on the guest stack 
as a valid spill area because it may not be valid. Unfortunately, a memory-based MState data 
structure is detectable by the guest as a read-write "hole" in their address space. 

The virtualization of segment registers and the condition codes register (EFLAGS) requires the 
translated instruction sequences (i.e., xBB's) to have access to the virtual registers. If a trap into 
the emulator is to be avoided for this purpose, the xBB's should somehow have access to these 
virtual registers directly, but at the same time, the virtual register state must be protected from 
explicit tampering by the guest. For this purpose, the existing systems reserve a part of the 
guest's virtual address space for holding the virtual registers, among other similar state that needs 
to be accessible to the guest directly. 

Supervisor-mode VDebug therefore exploits a fortunate circumstance of operating system code: 
operating systems do not generally use the SSE functional unit. The supervisor-mode "guest" 
does not normally include the SSE instructions or register set. When a register-indirect branch 
must be resolved, the necessary temporary registers are "spilled" by transferring them 
temporarily to the SSE functional unit registers. If needed by the guest OS, the SSE register set 
can be enabled and disabled through inserted traps to the emulator. This method allows the 
majority of guest execution to occur within the basic block cache even when a small number of 
"spills" are required. 

3.3. Virtualization of Segmentation support 

A final key issue arises in the management of segmentation. The problem is that an application 
can modify the global descriptor table and encounter a real hardware interrupt before the 
segment would normally be reloaded. VDebug uses a small, dedicated global descriptor table 
containing the six currently live descriptor values (in addition to the segment descriptors for the 
use of the emulator itself). Every time the guest performs a load into a segment register, the 
emulator loads a "tamed" copy of the descriptor table entry into the appropriate slot of the 
shadow descriptor table. This "descriptor caching" strategy resembles exactly what the hardware 



does when it loads a segment register (i.e., the hardware actually updates the descriptor cache 
corresponsing to the register when it loads a segment register). This mechanism sharply contrasts 
with the exisiting "descriptor table shadowing" approaches, as done by Vmware [4], which 
require write-protecting the guest's GDT/LDT in order to catch updates to the descriptors that 
have currently been shadowed. Our mechanism is simpler to implement and also incurs lesser 
overhead (as we need not bother about catching updates to the tables by the guest). 
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