
SIND: Sind Is Not Dynamo

Dino Dai Zovi <ghandi@cs.unm.edu>

Trek Palmer <tpalmer@cs.unm.edu>

May 9, 2001

1 Introduction

As programs grow in both complexity and modularity, the difficulty of static optimizations
increases as the benefits of such static analysis decrease. However, as programs are run their
paths of execution lend themselves to optimization at runtime. SIND seeks to dynamically
optimize running programs by isolating important segments of code and optimizing them in
their runtime context without having to modify the statically optimized program text.

2 Design

SIND was inspired by the Dynamo project at HP and is based on the same ideas. SIND
essentially attaches itself to a running process and transparently profiles its execution to
identify critical or “hot” segments of the code (a trace). These hot segments are then
optimized by a linear pass optimizer which exploits optimizations available only at runtime
(see [6] section 8.1). The optimized trace, or fragment, is then placed inside the fragment
cache which holds all the fragments for the currently running process. Control is returned
to the transparent profiler which will cause execution of the fragment when that point in
the code is encountered again. The theory is that, after enough time, the majority of the
executed program text will have been converted into fragments, and so the execution will
occur mainly in the fragment cache. Execution within the cache will be faster than the
execution of the statically optimized binary and will eventually offset the initial cost of the
profiler and optimizer.

SIND is a transparent optimization package and so has to fullfill several design goals.
First, it must seamlessly and transparently interrupt the execution of a loaded binary, and
then hand over control to the transparent profiling and optimizing modules. The transparent
profiler must monitor the executing binary without modifying the binary text segment in
memory. SIND uses an interpreter for this task. This interpreter must also be able to reliably
identify “hot” code segments for optimization and then hand the identified “hot” trace off
to the optimizer. SIND accomplished trace identification using a slightly modified form of
the speculative trace identification technique described in [5] [6]. Once a trace is created the
SIND interpreter invokes the Dispatcher object which handles the communication between

1



Figure 1: SIND Architecture

DispatchInterp

Bootstrap

Fragment
Cache

Trace
Optimizer

the profiling interpreter, the dynamic optimizer (see 2), and fragment cache. The dispatcher
takes the trace and hands it to the optimizer which will convert it to a faster running
code segment called a “fragment”. This fragment is then handed to the Dispatcher for
insertion into the fragment cache. The fragment cache holds all the fragments and is called
by the Dispatcher to add, remove, and execute fragments. The Dispatcher forms a level of
indirection within SIND that guarantees a high level of modularity for the subsystems.

3 Bootstrapper

The system is initially entered through a bootstrapping program. The bootstrapper is given
the path to the target executable and any arguments to pass along to it. The primary func-
tion of the bootstrapper is to launch the inferior child process, letting it run to a certain
point, and then begin running the target in the machine code interpreter. In the implemen-
tation of this module, several approaches were investigated using the ptrace and procfs

facilities to control the child process as a breakpoint debugger would.

3.1 Initial Break Point

There were three obvious points in the child process’ execution where it would make sense to
cut over to the interpereter: just after the exec system call returns (as done by the ptrace

facility), start, and main. Several factors influence the decision. For example, after exec

the execution of userspace code begins in the dynamic linker. Because the dynamic resolution
of references and shared library loading happens only once, it would not benefit from the
“hot” fragment detection in the interpreter. The same argument could be used for the actions

2



in libcrt0 (text beginning at start). Therefore, it makes the most sense to switch over to
interpretation upon entering the main function.

To accomplish this, the address of the main symbol is located in located in the ELF
executable image. On the Solaris implementation this is done through the nlist(3E) API.
The instruction is replaced with one that executes a “trace trap” that will be caught by the
parent process. This effectively passes control to the parent process (the bootstrapper) that
will resume the child process under interpretation.

3.2 ptrace

Initially, the Berkeley ptrace facility for breakpoint debuggers was used. Of the facilities
investigated, ptrace is the most portable. However, the system has serious performance
limitations. All memory accesses must be done one word at a time through a kernel sys-
tem call. In addition, in [1], the kernel implementation of ptrace is criticized for its poor
performance. Instead, the faster and more flexible procfs system was used.

3.3 procfs

procfs is a virtual filesystem that provides a window into the kernel structures controlling a
process as well as the process’ address space. The various structures and the address space
are read from virtual files in the /proc/pid directories.

The facility provided analogues to the commands available via ptrace (under Solaris,
ptrace is implemented in terms of procfs in libc). These were used to set the signals,
faults, and system calls that stopped the child process and passed control to the parent. The
address space virtual file was used to write the breakpoint instruction into the child’s text
segment and proxy memory read and write requests from the interpreter.

4 Interpretation and Optimization

SIND is based on the concept of transparent optimization, and so must transparently instru-
ment the running binary. SIND uses an interpreter to monitor the executing code without
modifying the loaded binary. SIND incorporates an extended version of the ISEM SPARC
emulator for this purpose. Upon initial invocation by the dispatcher the interpreter is handed
a memory which contains the binary image. The interpreter executes the instructions con-
tained within this memory, profiling very specific types of instructions. The interpreter makes
special note of branches and considers backwards taken branches to be potential starting
points for hot traces. This stems from the fact that many backwards taken branches are
in fact looping statements. The interpreter also flags instructions targeted by fragment exit
points as potential hot trace starts.

When the interpreter has identified a hot trace it records the instructions into a buffer
until an end-of-trace condition is met. An end of trace is signalled by either: a backwards
taken branch or if the trace length exceeds some preset threshold. The interpreter just copies
non-branch instructions straight into the buffer, and records target information for branches
as well as the instruction itself. This information is later used by the optimizer to eliminate

3



branches. When the trace collection is finished, the trace is passed to the dispatcher which
then relays it to the optimizer.

The optimizer will generate a fragment from the trace by performing several linear time
optimizations. This proto-fragment is returned to the dispatcher which hands it off to the
fragment cache manager which adds prologue and epilogue segments to the fragment (for
linking purposes).

Currently, this is implemented by inheriting from the ISEM base classes. Both the integer
unit and the MMU have been extended to accomadate the profiling additions. Currently
only the interpreter and the Dispatcher have been implemented.

5 Conclusion

Runtime optimization offers an interesting solution to the problem of increased static opti-
mization overhead. Unfortunatly, the SIND code is still in development and we were unable
to run any meaningful experiments. However, several other projects (notably Dynamo) have
demonstrated the efficacy of runtime optimization, and we are encouraged by this.

6 Related Work

We, of course, owe a great debt to the HP Dynamo project. We also examined several other
dynamic optimization projects, however we found none that were fully free (i.e. GPL). Also
the Shade project at Sun Microsystems involved the transparent profiling of SPARC binaries,
and offered some insight to the modification of the ISEM interpreter.

7 References

References

[1] Marshall Kirk McKusick et al. The Design and Implementation of the 4.4BSD Operating
System. Addison-Wesley, 1996.

[2] Eric Feigin. A Case for Automatic Run-Time Code Optimization. PhD thesis.

[3] David Keppel Robert F. Cmelik. Shade: A fast instruction set simulator for execution
profiling.

[4] Smith Traub, Schechter. Ephemeral instrumentation for lightweight program profiling.

[5] Sanjeev Banerjia Vasanth Bala, Evelyn Duesterwald. Dynamo: A transparent dynamic
optimization system.

[6] Sanjeev Banerjia Vasanth Bala, Evelyn Duesterwald. Transparent dynamic optimization:
The design and implementation of dynamo.

4


