
SIND: A Framework for Binary Translation

Trek Palmer Dino Dai Zovi Darko Stefanovic

Department of Computer Science
University of New Mexico
Albuquerque, NM 87131

e-mail:
�
tpalmer,ghandi,darko � @cs.unm.edu

December, 2001

Abstract

Recent work with dynamic optimization in platform independent, virtual machine based
languages such as Java has sparked interest in the possibility of applying similar techniques
to arbitrary compiled binary programs. Systems such as Dynamo, DAISY, and FX � 32 exploit
dynamic optimization techniques to improve performance of native or foreign architecture bi-
naries. However, research in this area is complicated by the lack of openly licensed, freely
available, and platform-independent experimental frameworks. SIND aims to fill this void by
providing a easily-extensible and flexible framework for research and development of applica-
tions and techniques of binary translation. Current research focuses are dynamic optimization
of running binaries and dynamic security augmentation and integrity assurance.

1 Introduction
The ideas of program optimization and instruction translation are not new, however their primary
application has been in the static process of compilation. In recent years, efforts have been made to
adapt these concepts to a dynamic setting. Projects such as Dynamo [2] and the Java HotSpot [12]
system attempt to overcome (in a dynamic context) some of the barriers to static optimization such
as those that object-oriented languages can create. The basic idea is that while a compiler must
treat every code branch as equally possible, a dynamic translator can let the program itself tell the
translator which branches are important and likely. This information can be used to transform the
running program into a more efficient version. It can also be used to more intelligently monitor its
execution for potentially dangerous activity.

SIND is a modular framework for dynamic program profiling and transformation. SIND
emerged when we were searching for an existing dynamic optimizer and found either non-free
implementations or optimizers tied down to one specific architecture. We then decided that what
was needed was a free and platform independent dynamic translation framework that could be used
by everyone doing dynamic binary translation research. By examining other dynamic optimizers,

1



a basic structure was abstracted. This structure (detailed in the design section), would allow for
multiple underlying and target architectures to be supported, as well as for multiple translation and
profiling tasks. Specifically, the developers wanted to ensure that SIND supported both the SPARC
and PowerPC architectures and could be used for both dynamic optimization and runtime security
checking.

2 Design
The SIND framework is composed of a group of inter-operating modules. The bootstrapper loads
and halts the running binary just before execution of the mainline (but after library linking). Then
control is handed over to the dispatcher which is the central communications hub of the SIND
process. The dispatcher mediates inter-module communication, and provides interfaces to allow
seamless module-swapping. The dispatcher coordinates with the memory manager to allow trans-
parent and safe reads and writes between the running binary and the separate SIND process’ ad-
dress spaces. After initializing the memory manager the dispatcher starts up the interpreter which
begins software interpretation of the running executable. This allows non-invasive binary profil-
ing and allows the interpreter to gather statistics and track behavior without having to modify the
source binary at all. When an ‘interesting’ code trace is encountered, the interpreter can do one of
several things. It can immediately ‘bail out’ and halt execution (if, for instance, an unsafe operation
occurred while the binary was executing). It can start a code trace and fill an instruction buffer with
all subsequent instructions (until an end-of-trace condition is satisfied). It can also modify ‘unsafe’
input data to guarantee ‘safe’ behavior of the running binary (such as truncating a buffer to prevent
it from overwriting stack frame boundaries). If a code trace was generated, the interpreter can then
hand the instruction buffer (along with processor state information) to the dispatcher for transfor-
mation. The transformer module is a program that takes code traces as input, safely transforms
them into an equivalent piece of code and then requests that the dispatcher place them in a code
fragment cache. This cache is then later used in place of straight interpretation when that particular
code trace is encountered again. Such code fragments may then be persistently stored so that on
subsequent executions of the application, the cache can be pre-filled. Thus, we eliminate costly
re-transformations of the same code. The following diagram illustrates the module relationships:

DispatchInterp

Bootstrap

Transformer
Fragment Cache

Transformer

Memory
Manager

Running
Binary

2



2.1 Dispatcher and Bootstrapper
The system bootstraps by using the debugging facilities of the operating system to run the target
executable as an inferior process. The two current experimental implementations use the ptrace
[11] and procfs [10] facilities of the Solaris operating system. The inferior process is halted
at an appropriate point (usually the beginning of execution, start, or upon entering the main
function) and the process is resumed in a software interpreter.

The Dispatcher is primarily concerned with correctly initializing other SIND modules and in
mediating communication between them to remove unnecessary inter-dependence. After the boot-
strapper has successfully started and halted the executable process, the dispatcher will initialize
the memory manager to allow controlled reading and writing from the address space of the binary
to the SIND address space. It will then initialize the interpreter with references to the appropri-
ate memory manager. This memory manager will handle all the details of accessing the running
program’s memory and so will present the interpreter with a simple interface allowing reads and
writes. In the event that the interpreter generates a code trace that requires transformation the dis-
patcher will initialize an appropriate transformer and its cache, and create a link between them
through the memory manager. This link will then later be used when the interpreter encounters
a previously transformed code trace. A specific advantage of the dispatcher system is that it al-
lows multiple modules of the same type to co-exist without having to explicitly know about each
other. This can be advantageous in situations where the specific modules need to be swapped or
duplicated while SIND is running.

2.2 Interpreter
The SIND interpreter is a software Instruction Set interpreter. The interpreter maintains regis-
ter and processor state in SIND memory as well as further useful information about the running
binary. Because the interpreter is for a specific Instruction Set and not for any specific proces-
sor implementation, the interpreter doesn’t need to worry about low-level hardware issues such
as device control. However, the interpreter must be completely aware of instructions that may
transfer control out of SIND. The interpreter must guarantee consistency between its registers and
the underlying hardware state when control is restored. In current experimental implementations
the SPARC and PowerPC interpreters interpret only user-mode instructions and let the OS handle
supervisor code, updating registers after returning from system calls. This is not to suggest that su-
pervisor code could not also be interpreted, but such implementations would be considerably more
complicated [9] [7]. As the executable is interpreted, the interpreter gathers statistics and profiling
information. This information may simply be archived for later analysis; or, more interestingly,
may be used to trigger actions by the interpreter.

The Interpreter may simply halt the running binary based on the run-time statistics. This could
be useful for a number of applications (such as preventing a potentially unsafe code segment from
executing). The interpreter may also modify ‘unsafe’ input in order to prevent unsafe execution.
This could be used to stop an overflowing memory buffer from corrupting the stack (by trunca-
tion), among other things. The interpreter may also heuristically determine that a specific code
trace is ‘interesting’. This could, for instance, take the form of an often-executed function call or
branch (indicative of a loop). The interpreter may then start filling an instruction buffer with the
subsequently executed code. While the interpreter is in this trace mode it will associate auxiliary

3



information with specific instructions to aid any possible transformation (such as the destinations
of indirect branches or function calls). The trace is stopped when the interpreter encounters an
end-of-trace condition (such as another start-of-trace condition, or some constant maximum limit
on trace size). The interpreter can then hand the trace over to the dispatcher for transformation and
caching. Then, as long as the trace remains valid (determined by hit-or-miss statistics gathered by
the fragment cache) the interpreter will transfer control over to the cache the next time that trace is
encountered.

2.3 Memory Management
The memory manager module coordinates memory reads and writes between the SIND, Running
Executable, and Fragment cache address spaces. This should allow platform-independent interfac-
ing with multiple address spaces. This also permits utilization of more efficient platform-specific
optimizations without exposing the details of such optimizations to modules on the other side of the
interface. Debugging interfaces such as ptrace and procfs allow access to an inferior process’
address space (albeit with the expense of a system call for each operation). Future optimizations
include the use of shared memory pages and other forms of shared memory.

2.4 Transformers and Fragment Caches
A SIND transformer module is responsible for transforming a code trace gathered by the inter-
preter, and placing the transformed version in a cache for later use. Such a transformer could, for
instance, apply several linear-pass optimizers to the trace to speed-up subsequent executions. Or
it could place guard code around potentially unsafe code blocks to automatically perform safety
checking. The fully transformed trace is called a fragment, and is placed in the fragment cache for
direct execution by the Interpreter/Dispatch.

The fragment cache is responsible for maintaining an efficiently accessible list of fragments, as
well as guaranteeing that fragments correctly return control back to the SIND process. This is done
by adding entry and exit references to the fragment so that a prologue function is called before entry
of the fragment proper, and every exit point of the fragment jumps to an epilogue function which
correctly restores control and state to SIND. The fragment cache may further support ‘linking’,
by which fragments that branch to each other are linked together into a super-fragment, which
eliminates the overhead of having to leave the fragment cache and then immediately re-enter it.

2.5 Offline Processes and Persistence
Because SIND is likely to generate similar fragment caches from one execution of a given appli-
cation to the next, it makes sense to store the fragment cache in some persistent fashion so that
the next time the application is run through SIND, the fragment cache can be pre-filled to elim-
inate costly re-interpretation. Persistent code fragments also allow for offline processing of the
fragments. Such processing would normally be far too expensive to do at runtime and so could
be started at some later point to work on the persistent fragments. Examples include expensive
optimization routines, code verification, or generation of proof carrying code from the fragments.

4



3 Applications of the SIND Framework
The SIND Framework is meant to be a flexible binary translation software suite and so must ac-
commodate a variety of possible applications. Several such uses for the SIND framework are
presented below.

3.1 Dynamic Binary Optimization
A popular use for binary translation is to exploit run-time properties of programs to optimize
them even further that static compilation can. For instance untaken branches can be eliminated,
function calls can be inlined, and indirect branches can often be converted into direct branches.
In such a scenario the interpreter would be for the same architecture as the one the SIND process
was running on. It would collect traces of commonly executed ‘hot code’, and the transformer
would be a collection of simple linear-pass optimization routines to speed up the trace. The offline
processing of the fragments would then be much more intense optimization routines to generate
even more optimized code fragments.

This is the current focus of the experimental implementation for the SPARC architecture.
Building upon the work of the Dynamo and FX � 32 [4] projects, the SIND Dynamic Optimizer
hopes to combine efficient binary optimization with intelligent persistent storage without being
restriced to a specific platform.

3.2 Runtime Assertions of Process Integrity
The low-level interpretation and instrumentation offered by SIND makes possible the dynamic
instrumentation of the process to ensure integrity and security. In particular, it allows SIND to
protect the inferior process from many sorts of buffer overflows. By taking special precautions
with respect to the saved program counter in the stack frame, classic “stack-smashing” [13] attacks
can be detected and the process can be halted. This can be performed through the interpretation
and instrumentation of the code traces. Because this checking can happen “out-of-band” in the
SIND process, it is very difficult to bypass by an attacker. Similar protections can be extended
to all saved registers in the stack frames, limiting the effects of a stack buffer overflow to other
automatic variables on the stack.

3.3 Transparent Binary Instrumentation and Profiling
Because the SIND interpreter interface allows any profiling information to be gathered, it allows
for custom interpreters to be constructed that will gather statistics on running programs for research
purposes. Apart from the standard timing information SIND could gather information about spe-
cific segments of code. Certain chunks of the binary could be flagged as interesting or ignorable,
leading to a high-resolution timing system. For instance, GUI programs could have the wait portion
of their event loop ignored, thus allowing more accurate timing of the program’s logic sections. Or
more interactive benchmarks could be used to analyze program execution patterns.

5



3.4 Dynamic Binary Translation
Because the SIND dispatcher isolates modules from one another, a dynamic binary translator could
consist of an interpreter that translates code from one architecture into instructions on another, with
a transformer then used to optimize the translated fragments. In this way, code for two similar
platforms (Solaris/SPARC and Solaris/x86, for instance) could be executed on either platform,
with one interpreter and transformer being used for native code and another interpreter transformer
pair being used to translate foreign binaries.

4 Dynamic Binary Optimization
The SIND framework is designed to facilitate implementation of a dynamic optimizer, and thus
includes all the necessary parts for active transparent profiling and optimization. As in many binary
translators [2] [7] [9] [4], native code is executed in an interpreter for the purpose of transparently
gathering information. Specifically, a heuristic analyzes the current instruction and determine if
it is “interesting”, and if so it associates a counter with that particular instruction. Each time that
instruction is later encountered, that counter is incremented. When this counter exceedes a given
threshold, the interpreter will begin to gather a trace. A trace is a sequence of instructions from
one “interesting” instruction (the trace head) to the next “interesting” instruction encountered (the
trace tail). Note that it is possible for the head and tail to be the same (as in a loop). Also note that a
trace may include function invocations. Once a trace is identified, this trace is then combined with
some auxiliary information (such as the value of a given register at the time an indirect branch/call
was taken) and is then handed over to dispatch for processing by a transformer. The transformer
optimizes the trace and places the optimized version (now called a ‘fragment’ in Dynamo parlance)
in a cache. Then the next time the interpreter encounters that trace head instruction, control then
transfers to the cache and the optimized version is run on the processor directly. Based on the
idea that most of a program’s execution is confined to a minimal subset of the code, after an initial
warm-up period most of the execution will actually take place within the trace cache. This more
than makes up for the initial overhead of running an interpreter.

4.1 The Optimizing Interpreter
The interpreter does no actual optimizing itself, although pains should be taken to make it as
efficient as possible. Of primary concern in the interpreter is both choosing “interesting” instruc-
tions, and picking an appropriate threshold value. Currently most dynamic optimizers fixate upon
backwards-taken branches (because these are indicative of loops), and so consider any such fre-
quently taken branch “interesting”. This has the advantage of being both intuitive and simple to
implement. It is also a relatively fast heuristic. However, as SIND makes no requirements on what
internal profiling the interpreter performs, different heuristics could be easily tested and compared
on sample code, perhaps resulting in a superior heuristic.

Likewise, the threshold value can also be determined by experiment. Current dynamic opti-
mizers seem to pick values of about 15 [2] [1], but little has actually been written on why that
value seems best. With SIND it would be relatively simple to create a series of Interpreters with
different heuristics and thresholds, and to subject them all to a battery of tests to determine the

6



best heuristic/threshold pairing for a specific platform. Unlike Dynamo or DAISY, SIND’s flexible
module framework would allow several different interpreters to run independantly, each with their
own heuristics and thresholds.

4.2 The Optimizing Transformer and Trace Cache
The Transformer and Trace Cache are where most of the work takes place. The transformer must
take a trace and then transform it into a functionally equivalent, optimized version. Time con-
straints on the Dynamic Optimizer effectively restrict the sorts of transformations that can be done
to linear pass optimizations. Therefore the more complicated optimizations often found in com-
pilers cannot be used here. But, more hardware specific considerations can be used. For instance,
translating indirect branches into direct branches to eliminate an unnecessary memory reference.
Also, because the trace crosses function boundaries, one essentially gets inlining for free. Only
minimal translation needs to occur to remove the unnecessary function call and return.

The transformer also has the advantage that the trace’s scope is significantly narrowed from
that of the whole program. This means that certain optimizations that could not be performed on
the whole program may be valid in the trace’s restricted context. For instance, a variable that may
vary over the whole program’s execution may be locally constant in the context of the trace, and so
may be folded away. Once such transformations have been performed, the fragment is then handed
over to the fragment cache for future execution.

The fragment cache has two important responsibilities. It must guarantee that any executing
fragment will return control to the cache (and therefore SIND) after executing, the cache must also
monitor the usage of loaded fragments and be able to remove stale fragments. Control over the
fragments is maintained by examining each submitted fragment and cataloging each possible exit
point from the fragment. Special prologue and epilogue code blocks are then created to verify that
the fragment was called correctly and to initialize a context switch back to the fragment cache. The
target addresses of the fragment’s exiting branches is modified to point to the fragment epilogue.
Because a loaded fragment cannot be entered except through a call to its prologue, and cannot
be exited except by a call to the epilogue, the fragment cache guarantees that no fragment will
“break out” of SIND (this was a potential problem with Dynamo’s memory layout). The cache
has several options for monitoring hit-or-miss statistics. In the Dynamo project, a fairly course-
grained measure was used, and the whole cache flushed when its contents were deemed too cold.
In SIND, the thought is to have finer control by measuring statistics separately for each fragment.
This would then eliminate the costly dump-everything-and-reload-cache procedure, and spread the
cost over the whole execution in an incremental fashion. Although SIND is not yet in a state to
support such experiments, our goal is to develop SIND so that this measurement can be taken.
Optimizations to the basic fragment cache are possible, costly fragment cache exits and entrances
may be eliminated by internally linking together fragments. In practice, this has greatly increased
execution speed of the optimized binary [9] [2] [7] [12].

4.3 Persistence and Offline Processing
Unlike most other dynamic optimizers [2] [7] [9], the SIND framework facilitates the addition
of further components to the dynamic optimizer without having to rework pre-existing modules.

7



With this in mind, it should be easy to integrate a more permanent cache “archiver” module with the
existing runtime dynamic optimizer. This archiver would make persistent dumps of the fragment
cache to disk, allowing any future execution of the binary to pre-load the fragment cache, and thus
eliminate costly interpretation/optimization calls. Onto this system it should be simple to graft an
offline batch optimizer. Such an optimizer would run in the background and perform expensive
optimizations on the archived fragment caches. This would result in faster fragments [4], and
wouldn’t impact the running time of the dynamic optimizer.

4.4 The Memory Manager
The primary function of the memory manager is to maintain the integrity of the virtual memory
space of a process both when the process is executing within the software interpreter and when it is
executing natively on the processor. There are several approaches to this. Some include translating
memory references when running in the interpreter to access the values in the address space of a
process. Another approach involves mapping pages between the SIND process and the inferior
process such that the memory is accessible in both. A third approach is to run SIND and the target
process in one address space so that memory accesses do not need to be translated nor relayed
when the target process is being interpreted [2].

The goal of the memory manager is to maintain this consistency without further impacting per-
formance. Methods of accessing the address space of another process typically require a system
call. Although this may be mitigated through batch changes (when switching back to native exe-
cution, for example), the cost of a mode switch may be too high. Higher-performance but more
platform-specific options such as shared pages may exist and be preferred. Some platform-specific
methods may require specific operating system facilities or even modifications to the kernel image
through loadable modules. Through the abstractions provided by the SIND architecture, portable
and implementation-dependent memory managers will be written such that the fastest supported
method is used. This ability to dynamically select a memory manager provides a level of flexibility
lacking from many other dynamic optimizers.

5 Runtime Assertion of Process Integrity
The low-level control of a binary translation system makes it possible to externally augment the
security of an executable. In particular, process integrity can be asserted through defenses against
code injection attacks. Code injection attacks, such as buffer overflows and format string attacks,
subvert the vulnerable process by taking control of the process and directing it to execute injected
code. Typically, the first step in this is overwriting control structures such as function return ad-
dresses and Global Offset Table entries. Through software interpretation and code instrumentation,
many of these structures can be protected.

5.1 Protecting Return Addresses
The typical target of “stack-smashing” buffer overflow attacks is the function return address stored
in the stack frame. Controlling this value can cause the vulnerable program to return control into

8



dynamically injected code. Several protections against this involve the use of compiler extensions
to check the validity of a saved return address before jumping to it [5]. However, this can also be
done dynamically.

Some static stack protections like StackGuard alter the stack frame format to include a “canary”
value before the return address. These solutions require a special stack frame format and hence
require recompilations of the executable. In a StackGuard protected executable, before returning
from a function, this canary is checked to ensure that it hasn’t been overwritten (indicating that the
return address has been overwritten also). If the canary does not match its original, random value,
execution of the process is halted. With knowledge that such a system is in use, an attacker may
use other attack techniques to overwrite a saved return address exactly (without altering the canary
value) [3]. More recent versions of StackGuard XOR the return address with the canary to detect
if either has changed. SIND, however, is not vulnerable to this method of attack. Regardless of
whether an attacker knows that a system is running in SIND, special values such as return addresses
are verified with values in a separate address space, and are therefore inaccessible to an attacker.

When running in a software interpreter, the return address of a function can be duplicated out-
of-band in the interpreter. Upon returning from a function, this value can be checked against the
address stored in the function linkage. If there is a discrepancy, the process can be terminated,
or SIND may attempt to correct the return address so that the process may continue executing.
However, precautions must be taken so that the continued execution is safe. When running natively
on the processor, the code may be instrumented dynamically to add similar integrity checks. For
example, on the SPARC architecture, instead of restoring the registers in the branch-delay slot of
the ret instruction, SIND may translate the instructions into a sequence that restores the registers,
compares the return address to an immediate value, and then jumps to the calling function.

6 Transparent Binary Instrumentation and Profiling
SIND already includes the necessary components for transparent profiling and instrumentation
as these are needed for both dynamic optimization and process integrity assertion. So a pure
profiler would simply be a custom interpreter that would report on the behavior being profiled.
Instrumentation can be achieved with a custom transformer. Note that this instrumentation is not
directly added to the binary itself, and so is transparent. SIND’s flexibility allows for a combination
of optimization with instrumentation, which may result in instrumented running times close to
uninstrumented times.

7 Dynamic Binary Translation
Dynamic translation is the rewriting of a binary compiled for one platform to another target plat-
form. One can see that with a few modifications, the Dynamic Optimizer can be turned into a
translator. Simple translation of instructions and simple system call translation would easily allow
a binary compiled for Solaris/SPARC to run on Solaris/x86. Even different platforms could be
supported (as in FreeBSD [8] and Solaris Linux emulation [6]). As in dynamic optimization, bi-
naries would be translated on the fly, but offline persistence and optimization would become more
important. The persistently stored fragment cache dumps would then become the translated binary

9



on the target system. As in the FX � 32 project, offline processing of the cache dumps would mean
that after a few run-throughs, a foreign binary would be executing at near-native speeds.

8 Related Work
StackGuard [5] uses static compiler extensions to augment programs with increased stack pro-
tection. By placing “canary” values before return addresses in stack frames, stack overflows are
detected when the canary is altered. Later revisions correlate the return address with the canary so
that the alteration of the return address is detected even if the canary is not touched.

Dynamo [2] is an experimental dynamic optimization system for the HPPA architecture. It
used both interpretation and simple optimization to speed up the execution of native code. The
fragments were stored in a cache and internally linked, however the cache contents were never
stored persistently and using Dynamo required an HPPA workstation running a version of HP-UX
with a modified linker.

FX � 32 [4] is a program for running WinNT binaries compiled on an x86 on an Alpha running
the same operating system. FX � 32 translated the binaries into x86 instructions, and later “batch-
processed” the translated fragments into heavily optimized versions. FX � 32 achieved good runtime
performance exclusively through offline batch optimization.

Both the FreeBSD [8] and Solaris [6] operating systems have support for runtime Linux emula-
tion. No binary translation occurs, so this only works on x86 platforms. The emulation consists of
system call translation, and so only works on binaries that don’t rely upon Linux-specific features
(such as direct access to video hardware).

The Transmeta Crusoe [9] processor uses “code-morphing” techniques to translate foreign in-
structions into the Crusoe’s native VLIW instruction set. This “code-morphing” software exists
at a higher level than standard processor optimizations such as branch prediction. This software
relies upon dynamic optimization techniques in order to compensate for the Crusoe’s lower clock
speed.

The Java Hotspot VM [12] is a Java virtual machine that uses both JIT compilation and runtime
optimization to greatly speed execution of running Java bytecode. However, many of the HotSpot
optimizations are very specific to the Java language.

The DAISY binary translator [7] is a dynamic optimizer for the PowerPC architecture. Like
Crusoe, it sits above the bare processor but below the operating system. Although now open source,
DAISY requires extra hardware to effectively function.

9 Future Directions

9.1 OS Interfaces
Further development of the SIND Dynamic Optimizer might include moving SIND logic into
kernel-space (for instance, as a loadable module). This would allow for much more efficient access
to the running binaries’ address space, as well as more efficient transfer of control to other kernel
functions.

10



9.2 Hardware ‘Aware’ Transformers
Another direction for development might be the creation of very hardware specific interpreter/transformer
pairs. These would take into account the idiosyncrasies of a particular hardware platform and could
then accordingly optimize for things such as cache performance or memory performance. If these
interpreter/transformer pairs were keyed by a specific platform identifier, then it should be possi-
ble for the SIND dispatcher to instantiate a more highly optimized interpreter on those platforms,
rather than the more generic instruction set interpreter.

9.3 Advanced Security Assertions
Future applications of the SIND work related to security could include the protection of higher-
level operating system services, protecting against heap overflows, function pointer overwriting,
and other trespasses of process memory. Further applications could include work with proof car-
rying code and other formal security methods.

References
[1] Ole Agesen and David Detlefs. Mixed-mode bytecode execution. Technical report, Sun

Microsystems Labs, June 2000.

[2] Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia. Dynamo: a transparent dynamic
optimization system. In SIGPLAN Conference on Programming Language Design and Im-
plementation, pages 1–12, 2000.

[3] Bulba and Kil3r. Bypassing stackguard and stackshield. Phrack, 10(56), May 2000.

[4] A. Chernoff, M. Herdeg, R. Hookway, C. Reeve, N. Rubin, T. Tye, S. Yadavalli, and J. Yates.
Fx!32 a profile-directed binary translator, 1998.

[5] Crispin Cowan, Calton Pu, David Maier, Heather Hinton, Peat Bakke, Steve Beattie, Aaron
Grier, Perry Wagle, and Qian Zang. Automatic detection and prevention of buffer-overflow
attacks. 7th USENIX Security Symposium, 1998.

[6] Mike Davidson. Lxrun. http://www.ugcs.caltech.edu/˜steven/lxrun/.

[7] Kemal Ebcioğlu and Erik R. Altman. DAISY: Dynamic compilation for 100% architectural
compatibility. In ISCA, pages 26–37, 1997.

[8] Brian N. Handy, Rich Murphey, and Jim Mock. Linux binary compatibility. In FreeBSD
Handbook.

[9] A. Klaiber. The technology behind Crusoe processors, 2000.

[10] Sun Microsystems. proc - /proc, the process file system. In SunOS 5.8 Manual, chapter 4.

[11] Sun Microsystems. ptrace - allows a parent process to control the execution of a child process.
In SunOS 5.8 Manual, chapter 2.

11



[12] Sun Microsystems. The Java Hotspot performance engine architecture, 1999.

[13] Aleph One. Smashing the stack for fun and profit. Phrack, 7(49), 1996.

12


