
Supervisor-Mode Virtualization for x86 in VDebug

Prashanth P. Bungale, Swaroop Sridhar, and Jonathan S. Shapiro
{ prash, swaroop, shap } @ cs.jhu.edu

Systems Research Laboratory
The Johns Hopkins University
Baltimore, MD 21218, U. S. A.

March 10, 2004

Abstract

Machine virtualization techniques offer many ways to improve both debugging and performance
analysis facilities available to kernel developers. A minimal hardware interposition, exposing as much as
possible of the underlying hardware device model, would enable high-level debugging of almost all parts
of an operating system. Existing emulators either lack a debugging interface, impose excessive
performance penalties, or obscure details of machine-specific hardware, all of which impede their value
as debugging platforms. Because it is a paragon of complexity, techniques for emulating the protection
state of today's most popular processor – the Pentium – have not been widely published.

This paper presents the design of supervisor-mode virtualization in the VDebug kernel debugger
system, which uses dynamic translation and dynamic shadowing to provide translucent CPU emulation.
By running directly on the bare machine, VDebug is able to achieve an unusually low translation
overhead and is able to exploit the hardware protection mechanisms to provide interposition and
protection. We focus here on our design for supervisor-mode emulation. We also identify some of the
fundamental challenges posed by dynamic translation of supervisor-mode code, and propose new ways of
overcoming them. While the work described is not yet running fully, it is far enough along to have
confidence in the design presented here, and several of the techniques used have not previously been
published.

1. Introduction

Binary translation techniques have been used for application level debugging and performance
analysis. Static binary rewriting tools such as pixie [1] have been used as the basis for
comprehensive debugging and analysis tools such as SGI SpeedShop [2]. Valgrind [3] uses
dynamic translation for performance measurement, memory analysis, and execution profiling.
VMware uses supervisor-only dynamic translation for full machine emulation [4].

Regrettably, none of these techniques are available to kernel developers. An emulator suitable
for kernel debugging must simulate the protection state and supervisor mode execution model of
the machine in addition to its user-mode architecture, and must perform some amount of device
interposition in order to provide a user interface and to correctly simulate delivery of interrupts
and exceptions. The resulting emulator is equal parts binary translator, microkernel, and
hardware simulator. The processor for which all of this would be most pragmatically useful – the
Pentium – is a paragon of complexity that is decidedly not easy to simulate.

VDebug is a specialized emulator designed to provide a low-overhead emulation of the Pentium's
privileged execution architecture. VDebug runs directly on conventional Pentium-family
processors and uses the hardware protection mechanisms extensively to support its guest
environment. Because it is designed as a kernel debugging tool, it implements minimal hardware
interposition – one design goal is to enable debugging of kernel drivers. This differentiates
VDebug from Bochs [15] or Vmware [4], both of which provide full machine simulation.
Ultimately, VDebug will provide a hardware abstraction layer that can serve as a target of
operating system ports.

In this paper we describe an early stage implementation of the VDebug emulator. Section 2
reviews the Pentium protection architecture and the overall strategy for its emulation, primarily
to expose the interdependencies and assumptions of each portion of the emulator. Sections 3 and
4 describe how VDebug emulates the protection state of the processor. Section 5 describes our
strategy for binary translation, with particular attention to interrupt handling and branch
handling. Some early measurements appear in Section 6.

2. Overview

We have designed a full-fledged virtualization support for supervisor-mode code (in contrast to
paravirtualization support, as provided by Denali[10] and Xen[11]) for the Intel x86 architecture.

The foremost objective of VDebug is to always stay in control, i.e., the guest should never be
able to do something (i.e., something that is “interesting” to VDebug) without its knowledge.
This is primarily achieved using two techniques for interposition of control-flow:

• Dynamic translation, and

• Hardware trap (exception) mechanism through the protection arrangement of the hardware.

Note that we require dynamic translation in addition to the latter technique mainly because the
Intel x86 architecture does not lend itself well to straighforward virtualization, as there are a
number of “sensitive” instructions that fail silently when executed from a non-privileged mode
rather than generating a convenient trap [16].

The VDebug software (which comprises primarily of the “emulator” software) runs directly on
the bare hardware and hosts the guest in a virtual machine. The guest is subjected to dynamic
translation when “privileged” code (which we will define in the next section) is running, and is
allowed to pass through to the underlying hardware, i.e., allowed to directly execute on the bare
hardware, at all other times.

The basic translation mechanism of our system is similar to that of Dynamo [8], Mojo [9], or a
number of other dynamic binary translators. VDebug proceeds by alternating its execution
between "translation mode" and "target mode." During target mode, instructions are executed out
of a region of memory known as the basic block cache. This region contains translated basic
blocks (xBBs) resulting from the on-demand translation of guest basic blocks (gBBs). When the
desired basic block cannot be found in the cache, execution switches to translation mode and the
missing basic block is appended to the cache.

Further details about the translation mechanism (and its associated optimizations) used in
VDebug can be obtained from [13], which describes the design of a low-complexity dynamic
translator for the Intel x86 architecture.

VDebug maintains the invariant that either (a) guest access to protection state will yield correct
and safe results, or (b) guest access to such state will result in a trap to the emulator. By
“correct,” we mean results whose observable effect conforms to the processor specification. By
“safe,” we mean results whose effect does not deprive VDebug of control or violate the state of
the emulator.

VDebug performs much of its management of privileged state lazily by performing shadowing in
the emulator's trap handlers. In cases where such a “fix up” would require disassembly to
implement, the code translator generates “hints” to the emulator describing the intended
operation so that disassembly can be avoided. Because these hints impact protection state, it is
necessary for translated code to be trusted by the emulator.

3. Design

The following sub-sections discuss the virtualization of various aspects of the Pentium protection
state and the challenges for VDebug associated with each. A complete presentation of the
Pentium protection architecture can be found in Intel's processor architecture documentation
[14].

3.1. Privileged Code

VDebug is primarily concerned with the execution of privileged guest code. For our purposes,
“privileged” means code that has the authority to examine or modify the privileged state of the
machine. Such “privileged code” includes:

• Code running in ring 0, because such code is permitted direct access to the privileged state
of the machine,

• Code executing in rings 1, and 2, because these rings are considered “system” rings for
purposes of address translation, and

• Ring 3 (application) code when running with interrupts disabled or having I/O privileges.

VDebug translates privileged code in units of basic blocks, producing output translations that
execute as non-privileged (ring 3) code. Where necessary, these sequences perform trap
instructions into the emulator to perform privileged operations.

Non-privileged guest code (ring 3, interrupts enabled, no I/O permissions) is executed directly on
the hardware without interposition. This causes a small number of instructions – those that store
the TR, GDTR, LDTR, and IDTR registers – to execute incorrectly. While we could clearly translate
user mode instructions, we are unaware of any user-mode programs that actually use these
instructions.

The majority of instructions executed in privileged mode are innocuous. The purpose of
translation is to ensure that those few exceptional instructions that modify or detect privileged

state are handled correctly. An excellent discussion of privileged and sensitive instructions on the
Pentium can be found in [7]. Subsequent changes to the architecture have expanded the list of
problematic instructions to include instructions that manipulate the model-specific registers.
From a performance perspective, the privileged instructions that matter most are the segment
manipulation instructions and some instructions that manipulate the eflags register (cli, sti,
pushf, popf).

3.2. Privileged / Sensitive State Tables

Most of the Pentium protection state is stored in tables that are maintained in memory. These
tables include the task state table, the global descriptor table, the local descriptor table, and the
interrupt descriptor table.

VDebug intercepts all interrupts and exceptions and either processes them itself or reflects them
to the guest by simulating the effect of the hardware on the guest stack. As a result, neither the
IDT nor the TSS state of the guest needs (or wants) to be reflected to the real hardware. When the
emulator must relocate itself in virtual memory the registers naming these tables are reloaded.
There is no need to honor IDT entries even for guest system call support. All entries in the IDT
are simply rendered inaccessible to the guest and the general protection fault handler is used to
decode the referenced IDT entry number. The local and global descriptor tables require a more
extensive management protocol.

The local and global descriptor tables present three challenges for emulation:

• Guest segment load and store instructions may reference entries in ways that are correct, but
will not succeed in ring 3. Shadowing techniques are used to render the necessary segments
accessible to the guest, while careful code generation is used to restore privilege bits when
segment selector values become exposed.

• A small number of dynamically infrequent instructions perform control or privilege
transitions via the descriptor tables. These must be translated carefully by the instruction
translator so that their effects can be correctly simulated.

• VDebug must borrow a small number of entries in the global descriptor table (GDT) to
describe the emulator itself. These entries must not be visible to the guest.

We discuss the issue of how to virtualize segmentation support to the guest in further detail in
Section x.x.

The task state table and interrupt descriptor table are referenced primarily by the hardware
interrupt and exception handling logic. VDebug captures all interrupts and exceptions and
reflects them to the guest in software. Only the software interrupt instruction and the interprocess
gate jump mechanisms permit the guest to implicitly reference these tables. The first is handled
by the instruction translator. The second is handled by restricting permissions in the shadows of
the global and local descriptor tables.

3.3. Privileged / Sensitive Register State

VDebug maintains the virtual state of privileged / sensitive registers in a data structure called the
MState.

Two types of registers cannot be mapped transparently onto the hardware registers: EFLAGS and
segment registers. The EFLAGS register exposes privileged state such as whether interrupts are
enabled or disabled and the current I/O privilege level. When the EFLAGS register is stored to
memory, these bits must be faithfully reproduced. Regrettably, the EFLAGS register also stores
non-privileged state that is frequently used: most notably the hardware condition codes.
Therefore, we must pick the (prvileged) portion that is being virtualized from the EFLAGS value
stored in the MState area, and the rest of the bits from the hardware’s EFLAGS register (as these
bits are not kept up-to-date in the MState area), and mix them and provide the view to the guest.
Fortunately, the privileged portions of the EFLAGS register are exposed only by the pushf and
popf instructions, and these insructions are dynamically rare.

Segment register selector values must be recorded in the MState area because the guest runs in
ring 3. The %cs and %ss segment selectors encode the current privilege level in their low-order
bits, which means that they always contain the value 11b when running translated guest code.
Correct emulation of selector save requires that these bits be replaced by the ring number in
which the guest is logically running when segment registers are moved to integer registers or
pushed onto the guest stack. To preserve these bits, the true selector values for %cs and %ss are
preserved in the MState area. Also, as explained in Section 3.5.2, the descriptor table index
values present within the segment registers in the hardware would not be the same as the index
values according to the guest. Therefore, the segment registers in the guest’s terms are preserved
in the MState area.

The need to multiplex bits from the EFLAGS and segment registers has cascading consequences:
the MState region must supply a small region to support temporary register spills, about which
we will discuss further in Section 3.5.6.

EFLAGS and segment registers together form the performance-intensive portion of the MState
structure. In addition to these, other virtual state of privileged registers such as that of control
registers is also maintained in the MState, whose access is dynamically rare.

3.4. Physical Memory

The physical memory requirement derives from the fact that VDebug provides the guest with
direct access to hardware, and most modern hardware is capable of bus mastering DMA. VDebug
needs to ensure that the guest does not erroneously program the hardware device in a way that
might lead to VDebug getting overwritten. To discourage this, VDebug relocates itself into high
physical memory at startup time and interposes on the guest's attempts to probe physical memory
(either directly or through the BIOS). Using this interposition, VDebug contrives to report to the
guest a slightly reduced amount of available physical memory.

As a rule, guest operating systems to not request DMA to non-existent memory, so this
effectively discourages the guest from performing physical DMA operations into the memory
occupied by VDebug. This approach is not robust, but there is no clear way to improve on it short

of virtualizing the device hardware. The current strategy is an acceptable compromise for a
debugger, but would not be suitable for an emulator supporting multiple guests.

3.5. Memory Management Support

A VDebug guest believes that it has control over the hardware virtual memory map. In order for
VDebug to hide itself, implement watchpoints, and retain control, it is necessary for VDebug to
virtualize the hardware mapping mechanism.

The VDebug emulator itself is mapped in a way that renders it inaccessible to the guest. VDebug
is prepared to relocate either the emulator or the basic-block cache on demand if it is referenced
by the guest. i.e., VDebug does not demand any a priori arrangement with the guest for any kind
of reservation of the address space.

3.5.1. “Virtual-Physical” Memory

In order to reliably notice changes to guest mapping tables, and to implement physical address
watch points, VDebug interposes a logical memory layer called “Virtual-Physical” layer between
the real physical memory and the guest's view of physical memory. This layer is essentially a
mapping filter used to maintain access restrictions on a per physical page basis. The necessary
information is stored in a per-page emulator data structure.

In addition to any outstanding permission restrictions on the page, this data structure records the
physical locations of page table entries that currently reference this physical page. That is,
VDebug maintains a full inverted mapping table. The number of simultaneous mappings for a
given frame is restricted by the number of inverse mapping entries available in the per-frame
structure. Our experience as operating system designers is that the number of simultaneously
active mappings for a given physical frame is typically small.

3.5.2. Segmentation Support Virtualization

When executing user-mode guest code, the local and global descriptor tables must hold entries
corresponding to the currently loaded segment register selectors. In general, entries that do not
involve a protection transition to an inner ring can be directly exposed for use in guest user-mode
execution. The main problem is to determine when these entries need to be re-examined.

For privileged guest code, matters are slightly more delicate. The guest code may issue a
sequence such as

guest store into current DS descriptor
instruction whose emulation traps
mov $10, %ax
mov %ax, %ds

Because of the intervening trap instruction between the descriptor revision and the selector load,
the update to the shadow GDT must not be performed too aggressively lest the wrong value end
up in the %ds register. This is because the on return from the trap into emulator, the emulator
would perform restoration of the context of the guest, which would include loading segment
registers with their corresponding descriptor value from the table. Note that this register load is

not a load that has been explicitly instructed by the guest; rather, it is a gratuitous load performed
by the emulator.

In essence, the problem is that an application can modify the global descriptor table and
encounter a trap-into-emulator or a real hardware interrupt before the segment would normally
be reloaded. Between the modification of the descriptor and the explicit reload of the register, the
old (cached) value of the descriptor must be used. Otherwise, precise virtualization of the
hardware’s behavior would not be achieved.

Therefore, VDebug uses a small, dedicated global descriptor table containing the six currently
live descriptor values (in addition to the segment descriptors for the use of the emulator itself).
Every time the guest performs a load into a segment register, the emulator loads a "tamed" copy
of the descriptor table entry into the appropriate slot of the shadow descriptor table. This
"descriptor caching" strategy resembles exactly what the hardware does when it loads a segment
register (i.e., the hardware actually updates the descriptor cache corresponsing to the register
only when it loads a segment register).

This mechanism sharply contrasts with the exisiting "descriptor table shadowing" approaches, as
done by Vmware [4], which require write-protecting the guest's GDT/LDT in order to catch
updates to the descriptors that have currently been shadowed. Also, as per our understanding of
the Vmware system, it involves a decision subsystem that decides from where the descriptor
value should be loaded during a segment register load,

(i) From Shadow table

a. If the guest is loading the register
b. If the emulator is loading the register with an un-reshadowed entry

(ii) From Descriptor Cache

- If the emulator is loading the register with a reshadowed (i.e., already modified but
not yet reloaded) entry

VDebug does not need to get involved in such decision making as it always loads (shadows) an
entry only upon encountering the corresponding segment register load. Our mechanism is
simpler to implement and would incur lesser overhead, as we need not even bother about
catching updates to the tables by the guest through the technique of write-protecting the guest’s
descriptor tables. An illustration of our mechanism, as well as a comparison with the technique
used by Vmware, is shown in Figure 1.

CS
DS
SS
ES
FS
GS

Hardware Segment Registers

X:

Shadow
GDT/LDT

Desc. for CS
Old Value X: Desc. for DS of Entry X

Desc. for SS
Shadow for Desc. for ESCopy old

the first time / value on a Desc. for FS
Reshadow on Reshadow

Desc. for GSModification
Segment

Descriptor

Guest
GDT/LDT

Keep policing writes into
the Guest GDT/LDT!

Decision Subsystem

Figure 1(a): Virtualization of Segmentation Support in VMware

CS
DS
SS
ES
FS
GS

Hardware Segment Registers

Hardware accessible
GDT/LDT

Desc. for CS

X:

Guest GDT/LDT

Desc. for DS

Bring in on
every Segment
Register load

On every segment register load, simply
load the newly brought in descriptor.

Desc. for SS
Desc. for ES
Desc. for FS
Desc. for GS

Some stealth
entries of VDebug

Keep policing writes
into

Desc. for CS
Desc. for DS
Desc. for SS
Desc. for ES
Desc. for FS
Desc. for GS

Segment Descriptor
Cache

Figure 1(b): Virtualization of Segmentation Support in VDebug

3.5.3. Paging Support Virtualization

The Pentium implements a hierarchical page mapping table providing read/write protection and
user/supervisor protection. Because VDebug needs an undetectable location in the mapping
tables, we chose to have all guest code run in user mode. VDebug maps its nucleus using a
supervisor-only mapping, and uses page table shadowing to implement guest mapipngs. The
shadowing technique is similar to the one used in [17]. The code translator relies on the
assumption that unsafe guest references will take a page fault.

We first describe the mechanism by which mappings are shadowed and then describe how
VDebug itself is mapped.

VDebug handles guest mappings using a shadow mapping system. The emulator has a fixed
supply of physical pages that are reserved for use in mapping emulation. These are reused in
ring-like fashion, and should be thought of as a second level translation cache that is
implemented in software. As each guest page table (or page directory) is referenced by the
emulated TLB, an associated page is allocated in the translation cache. A given guest page table
(or page directory) may have up to two associated pages in the mapping translation cache: once
for user-mode mappings and a second time for supervisor-mode mappings (mappings with the
“system” bit set). That is, the guest “system” protection bit is implemented by partitioning in the
shadow mapping cache. The native “system” protection bit is used to protect VDebug itself. An
illustration of the shadow paging technique is shown in Figure 2.

Note that the shadow mapping is performed on a frame by frame basis. User-mode mapping
tables that are mapped shared in the guest are shared in the translation cache. More importantly,
the implicit sharing of mappings between the guest kernel and its current application (which
depends on the system protection bit) is preserved in most cases. Specifically, the sharing is not
preserved as a result of “splitting” of page tables in the mapping cache. In order for a page table
or page directory to become “split” in the mapping cache it must contain at least one system-only
mapping and must be referenced from both user and supervisor mode.

Whenever a guest mapping entry is shadowed into the mapping cache, the containing guest page
table is marked “read-only.” Subsequent changes to the guest page table will induce a page fault,
giving VDebug an opportunity to invalidate the corresponding entries in the translation cache.
Fortunately, mapping changes are rare and are often performed in batches. Further, there tends to
be a large number of instructions between the modification of the mapping table and the first
instruction that references the new mapping entry. This usually has the effect of amortizing the
extra page fault over several mapping updates.

Initially, the guest system is started with no valid mappings in the translation cache. As page
faults occur, VDebug proceeds as follows:

• It first checks whether the faulting location has been “hijacked” by VDebug (see below). If
so, VDebug relocates itself and restarts the faulting instruction.

• Next, VDebug walks the guest page table, simulating the traversal performed by the
hardware. If no valid mapping exists, the page fault is reflected to the guest operating system.

• Finally, if a valid guest mapping exists, VDebug copies this mapping into the translation
cache. If the “system” bit in the guest mapping is set, this may require allocation of a new
translation cache frame.

Another important aspect of the shadowing technique we use is that the guest mappings are
shadowed in a staged manner in order to precisely virtualize the support for ‘Accessed’ and
‘Dirty’ bits available in the mapping entry:

• While a mapping entry is being shadowed, the entry is shadowed with the ‘Accessed’ bit
set, but with read-only attribute first.

Shadow on First Access of
PTE & Write-protect the

containing Guest Page Table

Unshadow PTE when the write-
protected containing Guest Page Table
is caught being modified, and then un-
write-protect that table and continue

Page Base Address in terms
of “Virtual-Physical” Address

P

R
/

W

U
/
S

P
W
T

P
C
D

A

D

P
A
T

G

Avail

Virtual (Guest)
PDBR

Guest Page Table

“Tamed”
Appropriately

Shadow Page Table

(i) “Accessed” bit set on shadowing
(ii) “Dirty” bit set on first write after shadowing

Page Base Address in terms
of “Virtual-Physical” Address

P

R
/

W

U
/
S

P
W
T

P
C
D

A

D

P
A
T

G

Avail

PDBR
Hardware accessible

Figure 2: Shadow Paging in VDebug

• Later, when a write to that page is attempted by the guest, the mapping entry is “promoted”
to R/W (both reads and writes permitted), but this time, with the ‘Dirty’ bit set.

3.5.4. VDebug Mappings

The Pentium mapping mechanism is a two-layer system allowing page mappings to appear at
both the lower and upper (large page) layers. VDebug “borrows” two page directory mappings
from the top level map at arbitrarily chosen locations.

These mappings are marked using the “system” protection bit. In the event that the guest
references a virtual address in either area, VDebug will relocate the offending region out of the
way. If the emulator code region is relocated, the corresponding entries in the global descriptor
table and task state structure must be updated. Model specific registers describing the syscall
entry point are updated to reflect the new location. Finally, the GDT, IDT, LDT, TSS, and address
space registers are reloaded to reflect the new locations.

3.5.5. Basic-Block Cache Visibility

The basic-block cache presents a unique challenge among all the parts of the emulator’s
belongings. The problem is that the basic-block cache area must be accessible to the guest
because it is where the guest will execute out of; At the same time, the guest should not be
allowed to inspect/modify the basic-block cache itself. In other words, the basic-block cache
must be I-space accessible to the guest, but must not be D-space accessible.

To ensure this invariant, VDebug exploits the separation of instruction(I) and data(D) translation
look-aside buffer caches (TLBs) in the hardware. Each page of the basic block cache begins with
a distinguished basic block consisting solely of a ret (procedure return) instruction. When an
instruction fetch page fault occurs within the basic block cache, VDebug proceeds as follows:

• The “system” bit of the mapping entry corresponding to the basic block cache is temporarily
turned off.

• VDebug performs a call to the distinguished basic block. The purpose of this call is to reload
the missing TLB entry corresponding to this part of the basic block cache.

• The “system” bit of the mapping entry corresponding to the basic block cache is now turned
on again.

Note that this sequence of actions is performed whenever a location within the basic block cache
is accessed. The access may be a data access or an instruction fetch access. If it was an
instruction fetch access, execution would continue without any problem once this sequence is
performed. However, if it was a data access, a page fault would again occur with the same
faulting address, at which point we can check if the fault occurred as a result of a data access or
not by some means (e.g., by decoding the faulting instruction), and take steps accordingly.

In all, this sequence ensures that data references into the basic block cache area by the guest will
induce a page fault if they are performed by the translated code. The emulator itself retains full
access to the basic block cache. In effect, we use software TLB management techniques to
explicitly establish an instruction cache mapping that is not available in the data cache.

The mechanism described does not work reliably on processors prior to the Pentium III. A few
early mobile versions of the Pentium III do not implement split TLBs. For these processors we
know of no efficient means to guard the translation cache. Later updates to the Pentium
specification effectively require the hardware to implement split TLBs for architectural
compliance.

Regrettably, some Pentium family processors implement large pages only in the data TLB. Such
processors behave correctly using the scheme outlined, but may incur an unnecessarily high page
fault rate.

3.5.6. MState Visibility

The translated code sequences would sometimes need to spill a register or two in order to
perform their computations. VDebug cannot rely on the guest stack as a valid spill area because it
may not be valid.

Also, as the interposition at some “sensitive” instructions is achieved through dynamic
translation, the translated code sequences would sometimes need access to the guest’s virtual
state maintained by VDebug (also called MState), which would not be directly hardware
accessible.

The virtualization of segment registers and the condition codes register (EFLAGS) requires the
translated instruction sequences (i.e., xBB's) to have access to the virtual registers. If a trap into
the emulator is to be avoided for this purpose, the xBB's should somehow have access to these
virtual registers directly, but at the same time, the virtual register state must be protected from
explicit tampering by the guest. Unfortunately, a memory-based MState data structure is
detectable by the guest as a read-write "hole" in their address space. For this purpose, the
existing systems reserve a part of the guest's virtual address space for holding the virtual
registers, among other similar state that needs to be accessible to the guest directly. But, we want
to avoid this kind of reservation.

We have now identified the requirements to be met by a functional unit in the processor that
would host the (performance-intensive portion of) MState. Specifically, we are looking for
something that:

a) is accessible in user mode
b) isn't used by operating systems
c) has direct move instructions between integer and <functional unit> registers.

Supervisor-mode VDebug therefore exploits a fortunate circumstance of operating system code:
operating systems do not generally use the SSE functional unit. The supervisor-mode "guest"
does not normally include the SSE instructions or register set. Thus, VDebug uses the SSE
register set to hold the performance-intensive portion of MState (which would mainly include
EFLAGS and the segment registers). Also, the necessary temporary registers are "spilled" by
transferring them temporarily to the SSE functional unit registers. If needed by the guest OS, the
SSE register set can be enabled and disabled through inserted traps to the emulator. This method
allows the majority of guest execution to occur within the basic block cache even when a small
number of "spills" are required. In essence, we use multiplexing of the SSE register set to solve
the above problem.

3.6. Input / Output Instructions

Since the IOPL flag in the EFLAGS register controls access to the I/O address space by
restricting use of the CLI and STI instructions along with the IN, INS, OUT and OUTS
instructions, VDebug never set the IOPL of the real machine to 3 while running any ring of the
guest. This is for two reasons:

1. To prevent the guest from disabling interrupts on the real machine. Otherwise, the debugger's
interrupts would also get disabled.

2. To facilitate interposition of the use of certain I/O ports for the debugger's purpose, e.g. those
related to the ethernet card.

Therefore, the IOPL on the real machine will always be set to 0, while running the guest (be it
supervisor-mode or user-mode). However, to prevent a trap on each I/O instruction (especially in
the case of I/O-intensive programs), we make use of the I/O permissions bitmap (situated within
the TSS) provided by the hardware to selectively execute the I/O instructions natively. To
achieve this, we do the following:

1. For all rings of the guest that have full I/O privilege (i.e., having CPL <= IOPL), we use an
I/O permissions bitmap having all the bits marked "grant", except for the bits corresponding
to the I/O ports interposed by VDebug (for which the I/O instructions will trap into the
emulator, giving it a chance to interpose).

2. For all the other guest's rings (i.e., having CPL > IOPL), we use a copy of the I/O
permissions bitmap found in the guest's current TSS, modified for the purpose of
interposition.

The following are the desirable consequences achieved by this approach:

1. All the I/O instructions that need to be interposed by VDebug (i.e., the ones that access the
interposed I/O ports) are now in fact interposed as a result of a trap. However, we are
achieving this interposition without using translation.

2. All the other I/O instructions that are allowed in the guest will be allowed to execute natively
on the hardware as well.

Thus, it turns out that atleast the I/O support part of the Intel processor is easily virtualizable, as
the I/O virtualization is being achieved quite naturally.

3.7. Device State

VDebug is designed as a debugger rather than a simulator. As a result, it tries to avoid
interposing between the hardware device layer and the guest operating system. In order to retain
control of the machine, VDebug interposes between the guest and the CPU, the peripheral
interrupt controller and timer hardware. For interface purposes, VDebug also interposes between
the ethernet hardware and the guest, presenting an entirely fake ethernet card to the guest system.
To support this illusion, VDebug must also interpose between the guest and the PCI enumeration
registers. All other hardware is exposed to the guest operating system directly.

Interposition of the ethernet hardware for user interface purposes is a temporary inconvenience.
Our original plan was to interpose the keyboard and display so that the VDebug user could
switch back and forth between the debugger and the guest. The difficulty of simulating display
hardware proved challenging enough that we elected to do the simpler ethernet interposition first
for testing purposes.

3.8. Precise Interrupt / Exception Delivery
Dynamic translation has some major implications on interrupt/exception delivery to the guest.
Specifically, a complication arises because of pseudo-instruction-boundaries being present in the
translated instruction sequences, that were not present in the original (guest) instruction
sequences. When a gBB instruction is translated into a sequence of multiple xBB instructions,
new instruction boundaries have been introduced as far as the underlying hardware is concerned.
When delivering an interrupt or an exception to the guest, it is imperative that we preserve the
atomicity corresponding to guest instruction boundaries, and subsequently report the correct
instruction boundary at which the interrupt or exception was delivered.

Consider the consequences of a hardware interrupt arriving at such a pseudo-instruction-
boundary point in a sequence. When the hardware interrupt arrives, execution should logically
be interrupted at the start of this instruction sequence. Unfortunately, because of the side-effects
of the instructions within this sequence that have already been executed, we cannot simply report
the start of the sequence as the point of interrupting and get away.

Interrupt arrival is inherently imprecise. A permissible implementation would be to delay the
handling of interrupts until the end of the current basic block and explicitly issue some form of
probe instruction to check for pending interrupts at the end of each basic block. We rejected this
design for two reasons:

• Interrupts are low-frequency events. We did not wish to carry the cost of interrupt probes in
every basic block.

• There are other exception scenarios that require precise delivery of exceptions. Handling
these situations requires the ability to roll translated instructions back to the beginning of the
interrupted guest instruction boundary.

We have thus taken the approach of rolling back to the start of the instruction sequence and
reporting that point as the boundary at which the interrupt arrived.

Towards this, we have designed a framework that lays out the format of a translated instruction
sequence corresponding to a given guest instruction, as follows:

1. Each individual instruction translation consists of a preamble, an “active” instruction, and a
postamble.

2. Preamble and postamble are typically empty. If needed, a typical preamble contains register
spill instructions to provide available temporary registers for use in instruction execution, or
a push instruction (in the case of translating call), or a pop instruction (in the case of
translating return), etc. The postamble restores the expected register values into the hardware
registers for use by the following instruction. The important point to note about the
requirements of a preamble and postamble is that a preamble can result in side-effects as long
as its effects can be rolled back (i.e., can be safely undone); and, a postamble must not result
in any side-effects as visible to the guest, but may result in effects visible to the emulator.

3. Most importantly, side-effects that are visible to the guest and are non-undoable, if any, can
occur as a result of the execution of only one instruction (as seen by the underlying
hardware), which we call the "active" instruction. Then, an interrupt or exception can occur
only before or after that instruction, but not in between that instruction.

We now describe the exception delivery mechanism that uses the above framework: When an
interrupt or exception occurs while the preamble part of a translation sequence (including the
point just before the "active" instruction) is being executed, we roll back the execution up to the
most recent instruction boundary. If it occurs after the execution of the "active" instruction, i.e.,
while the postamble is being executed, we report the next guest instruction boundary to the
guest. Note that postamble operations invariably restore register values that will be restored
anyway on return from supervisor mode, so postamble instructions do not need to be honored
when a trap occurs.

In order to facilitate the rollback of the preamble's execution, the instruction generator generates
two instruction streams in parallel. The first is a sequence of instructions that simulate the input
basic block instructions. The second is a sequence of bytecodes that describe how to undo the
effects of the preambles.

When an exception occurs in the preamble phase, these bytecodes are interpreted to determine
which registers have been spilled and what modifications have been performed to the stack
pointer during the preamble. These changes are undone, and execution will resume at the
beginning of the preamble.

When an exception occurs during the postamble, the preamble bytecodes are consulted to
determine which registers have already been spilled and what modifications to the stack may
need to be undone. The trap handler is going to spill the registers anyway; it merely skips the
spills of the registers that have already been spilled. The bytecodes encode sufficient information
to know what stack operations must be undone.

Collectively, the bytecode system provides a form of instruction-level "reverse execution" that is
sufficient to enable the appearance of instruction atomicity to be preserved. See Figure 3 for an
illustration of our framework.

“Active” Instruction

Translated Code Undo Codes

Spill %eax
movw %ax, M.%ds

movw <Destn> %ax
Restore %eax

movl %ds, <Destn>
call <imm>

pushl <current-eip>
jmp <bb-imm>

Preamble

“Active” Instruction
Postamble
Preamble

Rollback
so far

Restore %eax
-

-
popl <trash>

Original
Guest Code

*

*
Point where we find out that
an interrupt/exception is to

be delivered to the guest

Figure 3: Precise Delivery of Interrupts/Exceptions in VDebug

4. Applications

Some things that can be achieved with the virtualization support presented thus far are:

 Kernel Debugging
This is the application that motivated us to build the virtualization that has been presented.
Our contention is that the most natural direction of providing software support for debugging
operating system kernels would be to run the kernel on a hypervisor that is implemented
using virtual machine technology, because there is no other way of having a run-time
software entity running below an operating system kernel, that would help monitor and
debug the kernel. Although kernel debugging has been alluded to as a possible application of
virtual machine technology, we know of no work that has pursued this direction.

When we use the machine virtualization approach to kernel debugging, we, as the debugger,
get many interesting points to interpose between the kernel and the hardware, so that we
could exploit our interposition for monitoring and debugging the kernel. For example, we
could use a shadow page-table approach to virtualizing the paging support for implementing
a watch-point facility. Another more interesting example is that we could interpose at the
interrupt delivery mechanism of the hardware, so that we could provide some facilities while
debugging the kernel such as inducing artificial interrupts at some points or deferring
interrupts up to a pre-specified point, which could be used to create certain situations in the
kernel's execution to help catch bugs.

 Static-Analysis-Driven-Dynamic-Analysis
-> e.g. To see if a data structure is locked whenever it is accessed

 Exploratory questioning
The ability to pause the kernel at some point and ask some exploratory questions using a
scripting language (e.g. The question asked could be: "If this procedure has an active stack
frame, see if a local variable's value matched some local variable in another stack frame,"
etc.).

 Simulating the execute-bit for paging support
As the virtualization design we have presented incorporates shadowing of page tables, it is in
a position to interpose at the paging support presented to the guest, so that we can present a
modified architecture to the guest that actually supports the execute-bit on a per-page basis.
With this, further, we could incorporate checks in order to prevent stack smashing and other
such attacks which exploit the possibility of executing from a data area that is accessible to
the attacker.

References

[1] M.D. Smith. Tracing with pixie. Technical Report No. CSL-TR-91497, Computer Systems
Laboratory, Stanford University, Stanford, CA. L.K. John et al. / Microprocessors and Microsystems
23 (1999) 537--551 550.

[2] Silicon Graphics. SpeedShop User's Guide. Silicon Graphics Inc., 1998.

[3] Julian Seward. The Design and Implementation of Valgrind. March 2003.

[4] Scott W. Devine, Edouard Bugnion, Mendel Rosenblum. Virtualization system including a virtual
machine monitor for a computer with a segmented architecture. United States Patent # 6,397,242,
May 28, 2002.

[5] V. Kiriansky, D. Bruening, and S. Amarasinghe. Secure execution via program shepherding. In 11th
USENIX Security Symposium, Aug. 2002.

[6] Derek Bruening, Timothy Garnett, and Saman Amarasinghe. An infrastructure for adaptive dynamic
optimization. In 1st International Symposium on Code Generation and Optimization (CGO-03),
March 2003.

[7] John Scott Robin, Cynthia E. Irvine. Analysis of the Intel Pentium's Ability to Support a Secure
Virtual Machine Monitor. Proceedings of the 2000 USENIX Security Symposium, August 2000.

[8] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: A transparent runtime optimization system. In
Proceedings of the ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI '00), June 2000.

[9] W.-K. Chen, S. Lerner, R. Chaiken, and D. M. Gillies. Mojo: A dynamic optimization system. In 3rd
ACM Workshop on Feedback-Directed and Dynamic Optimization (FDDO-3), December 2000.

[10] Andrew Whitaker, Marianne Shaw, Steven D. Gribble. Scale and Performance in the Denali
Isolation Kernel. Proceedings of the 2002 Symposium on Operating Systems Design and
Implementation, December 2002.

[11] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf Neugebauer,
Ian Pratt, Andrew Warfield. Xen and the Art of Virtualization. Proceedings of the 2003 Symposium
on Operating Systems Principles, October 2003.

[12] Prashanth P. Bungale, Swaroop Sridhar, and Jonathan S. Shapiro. A Low-Complexity Dynamic
Translator for x86. Systems Research Laboratory Technical Report #SRL-2004-02, The Johns
Hopkins University, Baltimore MD, USA, March 2004.

[13] IA-32 Intel Architecture Software Developer’s Manual - Volumes 1, 2, and 3. 2003.

[14] Bochs IA-32 Emulator Project, http://bochs.sourceforge.net.

[15] Kevin P. Lawton. Running Multiple Operating Systems Concurrently on an IA32 PC using
Virtualization Techniques. November 29th 1999.

[16] P.A. Karger, M.E. Zurko, D.W. Bonin, A.H. Mason, and C.E. Kahn. A retrospective on the VAX
VMM security kernel. IEEE Transactions on Software Engineering, 17(11):1147-1165,
November 1991.

	Abstract
	Introduction
	Overview
	Design
	Privileged Code
	Privileged / Sensitive State Tables
	Privileged / Sensitive Register State
	Physical Memory
	Memory Management Support
	“Virtual-Physical” Memory
	Segmentation Support Virtualization
	Paging Support Virtualization
	VDebug Mappings
	Basic-Block Cache Visibility
	MState Visibility

	Input / Output Instructions
	Device State
	Precise Interrupt / Exception Delivery

	Applications
	Kernel Debugging
	Static-Analysis-Driven-Dynamic-Analysis
	Exploratory questioning
	Simulating the execute-bit for paging support

	References

