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Abstract 

Machine virtualization techniques offer many ways to improve both debugging and performance 
analysis facilities available to kernel developers. A minimal hardware interposition, exposing as much as 
possible of the underlying hardware device model, would enable high-level debugging of almost all parts 
of an operating system. Existing emulators either lack a debugging interface, impose excessive 
performance penalties, or obscure details of machine-specific hardware, all of which impede their value 
as debugging platforms. Because it is a paragon of complexity, techniques for emulating the protection 
state of today's most popular processor – the Pentium – have not been widely published. 

This paper presents the design of supervisor-mode virtualization in the VDebug kernel debugger 
system, which uses dynamic translation and dynamic shadowing to provide translucent CPU emulation. 
By running directly on the bare machine, VDebug is able to achieve an unusually low translation 
overhead and is able to exploit the hardware protection mechanisms to provide interposition and 
protection. We focus here on our design for supervisor-mode emulation. We also identify some of the 
fundamental challenges posed by dynamic translation of supervisor-mode code, and propose new ways of 
overcoming them. While the work described is not yet running fully, it is far enough along to have 
confidence in the design presented here, and several of the techniques used have not previously been 
published. 

1. Introduction 

Binary translation techniques have been used for application level debugging and performance 
analysis. Static binary rewriting tools such as pixie [1] have been used as the basis for 
comprehensive debugging and analysis tools such as SGI SpeedShop [2]. Valgrind [3] uses 
dynamic translation for performance measurement, memory analysis, and execution profiling. 
VMware uses supervisor-only dynamic translation for full machine emulation [4].  

Regrettably, none of these techniques are available to kernel developers. An emulator suitable 
for kernel debugging must simulate the protection state and supervisor mode execution model of 
the machine in addition to its user-mode architecture, and must perform some amount of device 
interposition in order to provide a user interface and to correctly simulate delivery of interrupts 
and exceptions. The resulting emulator is equal parts binary translator, microkernel, and 
hardware simulator. The processor for which all of this would be most pragmatically useful – the 
Pentium – is a paragon of complexity that is decidedly not easy to simulate. 



VDebug is a specialized emulator designed to provide a low-overhead emulation of the Pentium's 
privileged execution architecture. VDebug runs directly on conventional Pentium-family 
processors and uses the hardware protection mechanisms extensively to support its guest 
environment. Because it is designed as a kernel debugging tool, it implements minimal hardware 
interposition – one design goal is to enable debugging of kernel drivers. This differentiates 
VDebug from Bochs [15] or Vmware [4], both of which provide full machine simulation. 
Ultimately, VDebug will provide a hardware abstraction layer that can serve as a target of 
operating system ports. 

In this paper we describe an early stage implementation of the VDebug emulator. Section 2 
reviews the Pentium protection architecture and the overall strategy for its emulation, primarily 
to expose the interdependencies and assumptions of each portion of the emulator. Sections 3 and 
4 describe how VDebug emulates the protection state of the processor. Section 5 describes our 
strategy for binary translation, with particular attention to interrupt handling and branch 
handling. Some early measurements appear in Section 6. 

2. Overview 

We have designed a full-fledged virtualization support for supervisor-mode code (in contrast to 
paravirtualization support, as provided by Denali[10] and Xen[11]) for the Intel x86 architecture. 

The foremost objective of VDebug is to always stay in control, i.e., the guest should never be 
able to do something (i.e., something that is “interesting” to VDebug) without its knowledge. 
This is primarily achieved using two techniques for interposition of control-flow:  

• Dynamic translation, and  

• Hardware trap (exception) mechanism through the protection arrangement of the hardware. 

Note that we require dynamic translation in addition to the latter technique mainly because the 
Intel x86 architecture does not lend itself well to straighforward virtualization, as there are a 
number of “sensitive” instructions that fail silently when executed from a non-privileged mode 
rather than generating a convenient trap [16]. 

The VDebug software (which comprises primarily of the “emulator” software) runs directly on 
the bare hardware and hosts the guest in a virtual machine. The guest is subjected to dynamic 
translation when “privileged” code (which we will define in the next section) is running, and is 
allowed to pass through to the underlying hardware, i.e., allowed to directly execute on the bare 
hardware, at all other times.  

The basic translation mechanism of our system is similar to that of Dynamo [8], Mojo [9], or a 
number of other dynamic binary translators. VDebug proceeds by alternating its execution 
between "translation mode" and "target mode." During target mode, instructions are executed out 
of a region of memory known as the basic block cache. This region contains translated basic 
blocks (xBBs) resulting from the on-demand translation of guest basic blocks (gBBs). When the 
desired basic block cannot be found in the cache, execution switches to translation mode and the 
missing basic block is appended to the cache. 



Further details about the translation mechanism (and its associated optimizations) used in 
VDebug can be obtained from [13], which describes the design of a low-complexity dynamic 
translator for the Intel x86 architecture. 

VDebug maintains the invariant that either (a) guest access to protection state will yield correct 
and safe results, or (b) guest access to such state will result in a trap to the emulator. By 
“correct,” we mean results whose observable effect conforms to the processor specification. By 
“safe,” we mean results whose effect does not deprive VDebug of control or violate the state of 
the emulator. 

VDebug performs much of its management of privileged state lazily by performing shadowing in 
the emulator's trap handlers. In cases where such a “fix up” would require disassembly to 
implement, the code translator generates “hints” to the emulator describing the intended 
operation so that disassembly can be avoided. Because these hints impact protection state, it is 
necessary for translated code to be trusted by the emulator. 

3. Design 

The following sub-sections discuss the virtualization of various aspects of the Pentium protection 
state and the challenges for VDebug associated with each. A complete presentation of the 
Pentium protection architecture can be found in Intel's processor architecture documentation 
[14]. 

3.1. Privileged Code 

VDebug is primarily concerned with the execution of privileged guest code. For our purposes, 
“privileged” means code that has the authority to examine or modify the privileged state of the 
machine. Such “privileged code” includes: 

• Code running in ring 0, because such code is permitted direct access to the privileged state 
of the machine, 

• Code executing in rings 1, and 2, because these rings are considered “system” rings for 
purposes of address translation, and 

• Ring 3 (application) code when running with interrupts disabled or having I/O privileges. 

VDebug translates privileged code in units of basic blocks, producing output translations that 
execute as non-privileged (ring 3) code. Where necessary, these sequences perform trap 
instructions into the emulator to perform privileged operations. 

Non-privileged guest code (ring 3, interrupts enabled, no I/O permissions) is executed directly on 
the hardware without interposition. This causes a small number of instructions – those that store 
the TR, GDTR, LDTR, and IDTR registers – to execute incorrectly. While we could clearly translate 
user mode instructions, we are unaware of any user-mode programs that actually use these 
instructions. 

The majority of instructions executed in privileged mode are innocuous. The purpose of 
translation is to ensure that those few exceptional instructions that modify or detect privileged 



state are handled correctly. An excellent discussion of privileged and sensitive instructions on the 
Pentium can be found in [7]. Subsequent changes to the architecture have expanded the list of 
problematic instructions to include instructions that manipulate the model-specific registers. 
From a performance perspective, the privileged instructions that matter most are the segment 
manipulation instructions and some instructions that manipulate the eflags register (cli, sti, 
pushf, popf). 

3.2. Privileged / Sensitive State Tables 

Most of the Pentium protection state is stored in tables that are maintained in memory. These 
tables include the task state table, the global descriptor table, the local descriptor table, and the 
interrupt descriptor table. 

VDebug intercepts all interrupts and exceptions and either processes them itself or reflects them 
to the guest by simulating the effect of the hardware on the guest stack. As a result, neither the 
IDT nor the TSS state of the guest needs (or wants) to be reflected to the real hardware. When the 
emulator must relocate itself in virtual memory the registers naming these tables are reloaded. 
There is no need to honor IDT entries even for guest system call support. All entries in the IDT 
are simply rendered inaccessible to the guest and the general protection fault handler is used to 
decode the referenced IDT entry number. The local and global descriptor tables require a more 
extensive management protocol. 

The local and global descriptor tables present three challenges for emulation: 

• Guest segment load and store instructions may reference entries in ways that are correct, but 
will not succeed in ring 3. Shadowing techniques are used to render the necessary segments 
accessible to the guest, while careful code generation is used to restore privilege bits when 
segment selector values become exposed. 

• A small number of dynamically infrequent instructions perform control or privilege 
transitions via the descriptor tables. These must be translated carefully by the instruction 
translator so that their effects can be correctly simulated. 

• VDebug must borrow a small number of entries in the global descriptor table (GDT) to 
describe the emulator itself. These entries must not be visible to the guest. 

We discuss the issue of how to virtualize segmentation support to the guest in further detail in 
Section x.x. 

The task state table and interrupt descriptor table are referenced primarily by the hardware 
interrupt and exception handling logic. VDebug captures all interrupts and exceptions and 
reflects them to the guest in software. Only the software interrupt instruction and the interprocess 
gate jump mechanisms permit the guest to implicitly reference these tables. The first is handled 
by the instruction translator. The second is handled by restricting permissions in the shadows of 
the global and local descriptor tables. 

 



3.3. Privileged / Sensitive Register State 

VDebug maintains the virtual state of privileged / sensitive registers in a data structure called the 
MState.  

Two types of registers cannot be mapped transparently onto the hardware registers: EFLAGS and 
segment registers. The EFLAGS register exposes privileged state such as whether interrupts are 
enabled or disabled and the current I/O privilege level. When the EFLAGS register is stored to 
memory, these bits must be faithfully reproduced. Regrettably, the EFLAGS register also stores 
non-privileged state that is frequently used: most notably the hardware condition codes. 
Therefore, we must pick the (prvileged) portion that is being virtualized from the EFLAGS value 
stored in the MState area, and the rest of the bits from the hardware’s EFLAGS register (as these 
bits are not kept up-to-date in the MState area), and mix them and provide the view to the guest. 
Fortunately, the privileged portions of the EFLAGS register are exposed only by the pushf and 
popf instructions, and these insructions are dynamically rare. 

Segment register selector values must be recorded in the MState area because the guest runs in 
ring 3. The %cs and %ss segment selectors encode the current privilege level in their low-order 
bits, which means that they always contain the value 11b when running translated guest code. 
Correct emulation of selector save requires that these bits be replaced by the ring number in 
which the guest is logically running when segment registers are moved to integer registers or 
pushed onto the guest stack. To preserve these bits, the true selector values for %cs and %ss are 
preserved in the MState area. Also, as explained in Section 3.5.2, the descriptor table index 
values present within the segment registers in the hardware would not be the same as the index 
values according to the guest. Therefore, the segment registers in the guest’s terms are preserved 
in the MState area. 

The need to multiplex bits from the EFLAGS and segment registers has cascading consequences: 
the MState region must supply a small region to support temporary register spills, about which 
we will discuss further in Section 3.5.6. 

EFLAGS and segment registers together form the performance-intensive portion of the MState 
structure. In addition to these, other virtual state of privileged registers such as that of control 
registers is also maintained in the MState, whose access is dynamically rare. 

3.4. Physical Memory 

The physical memory requirement derives from the fact that VDebug provides the guest with 
direct access to hardware, and most modern hardware is capable of bus mastering DMA. VDebug 
needs to ensure that the guest does not erroneously program the hardware device in a way that 
might lead to VDebug getting overwritten. To discourage this, VDebug relocates itself into high 
physical memory at startup time and interposes on the guest's attempts to probe physical memory 
(either directly or through the BIOS). Using this interposition, VDebug contrives to report to the 
guest a slightly reduced amount of available physical memory. 

As a rule, guest operating systems to not request DMA to non-existent memory, so this 
effectively discourages the guest from performing physical DMA operations into the memory 
occupied by VDebug. This approach is not robust, but there is no clear way to improve on it short 



of virtualizing the device hardware. The current strategy is an acceptable compromise for a 
debugger, but would not be suitable for an emulator supporting multiple guests. 

3.5. Memory Management Support 

A VDebug guest believes that it has control over the hardware virtual memory map. In order for 
VDebug to hide itself, implement watchpoints, and retain control, it is necessary for VDebug to 
virtualize the hardware mapping mechanism.  

The VDebug emulator itself is mapped in a way that renders it inaccessible to the guest. VDebug 
is prepared to relocate either the emulator or the basic-block cache on demand if it is referenced 
by the guest. i.e., VDebug does not demand any a priori arrangement with the guest for any kind 
of reservation of the address space. 

3.5.1. “Virtual-Physical” Memory 

In order to reliably notice changes to guest mapping tables, and to implement physical address 
watch points, VDebug interposes a logical memory layer called “Virtual-Physical” layer between 
the real physical memory and the guest's view of physical memory. This layer is essentially a 
mapping filter used to maintain access restrictions on a per physical page basis. The necessary 
information is stored in a per-page emulator data structure. 

In addition to any outstanding permission restrictions on the page, this data structure records the 
physical locations of page table entries that currently reference this physical page. That is, 
VDebug maintains a full inverted mapping table. The number of simultaneous mappings for a 
given frame is restricted by the number of inverse mapping entries available in the per-frame 
structure. Our experience as operating system designers is that the number of simultaneously 
active mappings for a given physical frame is typically small. 

3.5.2. Segmentation Support Virtualization 

When executing user-mode guest code, the local and global descriptor tables must hold entries 
corresponding to the currently loaded segment register selectors. In general, entries that do not 
involve a protection transition to an inner ring can be directly exposed for use in guest user-mode 
execution. The main problem is to determine when these entries need to be re-examined. 

For privileged guest code, matters are slightly more delicate. The guest code may issue a 
sequence such as 

guest store into current DS descriptor 
instruction whose emulation traps 
mov $10, %ax 
mov %ax, %ds 

Because of the intervening trap instruction between the descriptor revision and the selector load, 
the update to the shadow GDT must not be performed too aggressively lest the wrong value end 
up in the %ds register. This is because the on return from the trap into emulator, the emulator 
would perform restoration of the context of the guest, which would include loading segment 
registers with their corresponding descriptor value from the table. Note that this register load is 



not a load that has been explicitly instructed by the guest; rather, it is a gratuitous load performed 
by the emulator. 

In essence, the problem is that an application can modify the global descriptor table and 
encounter a trap-into-emulator or a real hardware interrupt before the segment would normally 
be reloaded. Between the modification of the descriptor and the explicit reload of the register, the 
old (cached) value of the descriptor must be used. Otherwise, precise virtualization of the 
hardware’s behavior would not be achieved. 

Therefore, VDebug uses a small, dedicated global descriptor table containing the six currently 
live descriptor values (in addition to the segment descriptors for the use of the emulator itself). 
Every time the guest performs a load into a segment register, the emulator loads a "tamed" copy 
of the descriptor table entry into the appropriate slot of the shadow descriptor table. This 
"descriptor caching" strategy resembles exactly what the hardware does when it loads a segment 
register (i.e., the hardware actually updates the descriptor cache corresponsing to the register 
only when it loads a segment register).  

This mechanism sharply contrasts with the exisiting "descriptor table shadowing" approaches, as 
done by Vmware [4], which require write-protecting the guest's GDT/LDT in order to catch 
updates to the descriptors that have currently been shadowed. Also, as per our understanding of 
the Vmware system, it involves a decision subsystem that decides from where the descriptor 
value should be loaded during a segment register load,  

(i) From Shadow table 

a. If the guest is loading the register 
b. If the emulator is loading the register with an un-reshadowed entry 

(ii) From Descriptor Cache 

- If the emulator is loading the register with a reshadowed (i.e., already modified but 
not yet reloaded) entry 

VDebug does not need to get involved in such decision making as it always loads (shadows) an 
entry only upon encountering the corresponding segment register load. Our mechanism is 
simpler to implement and would incur lesser overhead, as we need not even bother about 
catching updates to the tables by the guest through the technique of write-protecting the guest’s 
descriptor tables. An illustration of our mechanism, as well as a comparison with the technique 
used by Vmware, is shown in Figure 1. 
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3.5.3. Paging Support Virtualization 

The Pentium implements a hierarchical page mapping table providing read/write protection and 
user/supervisor protection. Because VDebug needs an undetectable location in the mapping 
tables, we chose to have all guest code run in user mode. VDebug maps its nucleus using a 
supervisor-only mapping, and uses page table shadowing to implement guest mapipngs. The 
shadowing technique is similar to the one used in [17]. The code translator relies on the 
assumption that unsafe guest references will take a page fault. 

We first describe the mechanism by which mappings are shadowed and then describe how 
VDebug itself is mapped. 

VDebug handles guest mappings using a shadow mapping system. The emulator has a fixed 
supply of physical pages that are reserved for use in mapping emulation. These are reused in 
ring-like fashion, and should be thought of as a second level translation cache that is 
implemented in software. As each guest page table (or page directory) is referenced by the 
emulated TLB, an associated page is allocated in the translation cache. A given guest page table 
(or page directory) may have up to two associated pages in the mapping translation cache: once 
for user-mode mappings and a second time for supervisor-mode mappings (mappings with the 
“system” bit set). That is, the guest “system” protection bit is implemented by partitioning in the 
shadow mapping cache. The native “system” protection bit is used to protect VDebug itself. An 
illustration of the shadow paging technique is shown in Figure 2. 

Note that the shadow mapping is performed on a frame by frame basis. User-mode mapping 
tables that are mapped shared in the guest are shared in the translation cache. More importantly, 
the implicit sharing of mappings between the guest kernel and its current application (which 
depends on the system protection bit) is preserved in most cases. Specifically, the sharing is not 
preserved as a result of “splitting” of page tables in the mapping cache. In order for a page table 
or page directory to become “split” in the mapping cache it must contain at least one system-only 
mapping and must be referenced from both user and supervisor mode. 

Whenever a guest mapping entry is shadowed into the mapping cache, the containing guest page 
table is marked “read-only.” Subsequent changes to the guest page table will induce a page fault, 
giving VDebug an opportunity to invalidate the corresponding entries in the translation cache. 
Fortunately, mapping changes are rare and are often performed in batches. Further, there tends to 
be a large number of instructions between the modification of the mapping table and the first 
instruction that references the new mapping entry. This usually has the effect of amortizing the 
extra page fault over several mapping updates. 

Initially, the guest system is started with no valid mappings in the translation cache. As page 
faults occur, VDebug proceeds as follows: 

• It first checks whether the faulting location has been “hijacked” by VDebug (see below). If 
so, VDebug relocates itself and restarts the faulting instruction. 

• Next, VDebug walks the guest page table, simulating the traversal performed by the 
hardware. If no valid mapping exists, the page fault is reflected to the guest operating system. 



• Finally, if a valid guest mapping exists, VDebug copies this mapping into the translation 
cache. If the “system” bit in the guest mapping is set, this may require allocation of a new 
translation cache frame. 

Another important aspect of the shadowing technique we use is that the guest mappings are 
shadowed in a staged manner in order to precisely virtualize the support for ‘Accessed’ and 
‘Dirty’ bits available in the mapping entry: 

• While a mapping entry is being shadowed, the entry is shadowed with the ‘Accessed’ bit 
set, but with read-only attribute first.  

Shadow on First Access of 
PTE & Write-protect the 

containing Guest Page Table

Unshadow PTE when the write-
protected containing Guest Page Table 
is caught being modified, and then un-
write-protect that table and continue 
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• Later, when a write to that page is attempted by the guest, the mapping entry is “promoted” 
to R/W (both reads and writes permitted), but this time, with the ‘Dirty’ bit set. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.5.4. VDebug Mappings 

The Pentium mapping mechanism is a two-layer system allowing page mappings to appear at 
both the lower and upper (large page) layers. VDebug “borrows” two page directory mappings 
from the top level map at arbitrarily chosen locations. 



These mappings are marked using the “system” protection bit. In the event that the guest 
references a virtual address in either area, VDebug will relocate the offending region out of the 
way. If the emulator code region is relocated, the corresponding entries in the global descriptor 
table and task state structure must be updated. Model specific registers describing the syscall 
entry point are updated to reflect the new location. Finally, the GDT, IDT, LDT, TSS, and address 
space registers are reloaded to reflect the new locations. 

3.5.5. Basic-Block Cache Visibility 

The basic-block cache presents a unique challenge among all the parts of the emulator’s 
belongings. The problem is that the basic-block cache area must be accessible to the guest 
because it is where the guest will execute out of; At the same time, the guest should not be 
allowed to inspect/modify the basic-block cache itself. In other words, the basic-block cache 
must be I-space accessible to the guest, but must not be D-space accessible.  

To ensure this invariant, VDebug exploits the separation of instruction(I) and data(D) translation 
look-aside buffer caches (TLBs) in the hardware. Each page of the basic block cache begins with 
a distinguished basic block consisting solely of a ret (procedure return) instruction. When an 
instruction fetch page fault occurs within the basic block cache, VDebug proceeds as follows: 

• The “system” bit of the mapping entry corresponding to the basic block cache is temporarily 
turned off. 

• VDebug performs a call to the distinguished basic block. The purpose of this call is to reload 
the missing TLB entry corresponding to this part of the basic block cache. 

• The “system” bit of the mapping entry corresponding to the basic block cache is now turned 
on again. 

Note that this sequence of actions is performed whenever a location within the basic block cache 
is accessed. The access may be a data access or an instruction fetch access. If it was an 
instruction fetch access, execution would continue without any problem once this sequence is 
performed. However, if it was a data access, a page fault would again occur with the same 
faulting address, at which point we can check if the fault occurred as a result of a data access or 
not by some means (e.g., by decoding the faulting instruction), and take steps accordingly. 

In all, this sequence ensures that data references into the basic block cache area by the guest will 
induce a page fault if they are performed by the translated code. The emulator itself retains full 
access to the basic block cache. In effect, we use software TLB management techniques to 
explicitly establish an instruction cache mapping that is not available in the data cache. 

The mechanism described does not work reliably on processors prior to the Pentium III. A few 
early mobile versions of the Pentium III do not implement split TLBs. For these processors we 
know of no efficient means to guard the translation cache. Later updates to the Pentium 
specification effectively require the hardware to implement split TLBs for architectural 
compliance. 

Regrettably, some Pentium family processors implement large pages only in the data TLB. Such 
processors behave correctly using the scheme outlined, but may incur an unnecessarily high page 
fault rate. 



3.5.6. MState Visibility 

The translated code sequences would sometimes need to spill a register or two in order to 
perform their computations. VDebug cannot rely on the guest stack as a valid spill area because it 
may not be valid.  

Also, as the interposition at some “sensitive” instructions is achieved through dynamic 
translation, the translated code sequences would sometimes need access to the guest’s virtual 
state maintained by VDebug (also called MState), which would not be directly hardware 
accessible.  

The virtualization of segment registers and the condition codes register (EFLAGS) requires the 
translated instruction sequences (i.e., xBB's) to have access to the virtual registers. If a trap into 
the emulator is to be avoided for this purpose, the xBB's should somehow have access to these 
virtual registers directly, but at the same time, the virtual register state must be protected from 
explicit tampering by the guest. Unfortunately, a memory-based MState data structure is 
detectable by the guest as a read-write "hole" in their address space. For this purpose, the 
existing systems reserve a part of the guest's virtual address space for holding the virtual 
registers, among other similar state that needs to be accessible to the guest directly. But, we want 
to avoid this kind of reservation. 

We have now identified the requirements to be met by a functional unit in the processor that 
would host the (performance-intensive portion of) MState. Specifically, we are looking for 
something that: 

a) is accessible in user mode 
b) isn't used by operating systems 
c) has direct move instructions between integer and <functional unit> registers. 

Supervisor-mode VDebug therefore exploits a fortunate circumstance of operating system code: 
operating systems do not generally use the SSE functional unit. The supervisor-mode "guest" 
does not normally include the SSE instructions or register set. Thus, VDebug uses the SSE 
register set to hold the performance-intensive portion of MState (which would mainly include 
EFLAGS and the segment registers). Also, the necessary temporary registers are "spilled" by 
transferring them temporarily to the SSE functional unit registers. If needed by the guest OS, the 
SSE register set can be enabled and disabled through inserted traps to the emulator. This method 
allows the majority of guest execution to occur within the basic block cache even when a small 
number of "spills" are required. In essence, we use multiplexing of the SSE register set to solve 
the above problem. 

3.6. Input / Output Instructions 

Since the IOPL flag in the EFLAGS register controls access to the I/O address space by 
restricting use of the CLI and STI instructions along with the IN, INS, OUT and OUTS 
instructions, VDebug never set the IOPL of the real machine to 3 while running any ring of the 
guest. This is for two reasons: 

1. To prevent the guest from disabling interrupts on the real machine. Otherwise, the debugger's 
interrupts would also get disabled. 



2. To facilitate interposition of the use of certain I/O ports for the debugger's purpose, e.g. those 
related to the ethernet card. 

Therefore, the IOPL on the real machine will always be set to 0, while running the guest (be it 
supervisor-mode or user-mode). However, to prevent a trap on each I/O instruction (especially in 
the case of I/O-intensive programs), we make use of the I/O permissions bitmap (situated within 
the TSS) provided by the hardware to selectively execute the I/O instructions natively. To 
achieve this, we do the following: 

1. For all rings of the guest that have full I/O privilege (i.e., having CPL <= IOPL), we use an 
I/O permissions bitmap having all the bits marked "grant", except for the bits corresponding 
to the I/O ports interposed by VDebug (for which the I/O instructions will trap into the 
emulator, giving it a chance to interpose). 

2. For all the other guest's rings (i.e., having CPL > IOPL), we use a copy of the I/O 
permissions bitmap found in the guest's current TSS, modified for the purpose of 
interposition. 

The following are the desirable consequences achieved by this approach:  

1. All the I/O instructions that need to be interposed by VDebug (i.e., the ones that access the 
interposed I/O ports) are now in fact interposed as a result of a trap. However, we are 
achieving this interposition without using translation. 

2. All the other I/O instructions that are allowed in the guest will be allowed to execute natively 
on the hardware as well. 

Thus, it turns out that atleast the I/O support part of the Intel processor is easily virtualizable, as 
the I/O virtualization is being achieved quite naturally. 

3.7. Device State 

VDebug is designed as a debugger rather than a simulator. As a result, it tries to avoid 
interposing between the hardware device layer and the guest operating system. In order to retain 
control of the machine, VDebug interposes between the guest and the CPU, the peripheral 
interrupt controller and timer hardware. For interface purposes, VDebug also interposes between 
the ethernet hardware and the guest, presenting an entirely fake ethernet card to the guest system. 
To support this illusion, VDebug must also interpose between the guest and the PCI enumeration 
registers. All other hardware is exposed to the guest operating system directly. 

Interposition of the ethernet hardware for user interface purposes is a temporary inconvenience. 
Our original plan was to interpose the keyboard and display so that the VDebug user could 
switch back and forth between the debugger and the guest. The difficulty of simulating display 
hardware proved challenging enough that we elected to do the simpler ethernet interposition first 
for testing purposes. 

 

 



3.8. Precise Interrupt / Exception Delivery 
Dynamic translation has some major implications on interrupt/exception delivery to the guest. 
Specifically, a complication arises because of pseudo-instruction-boundaries being present in the 
translated instruction sequences, that were not present in the original (guest) instruction 
sequences. When a gBB instruction is translated into a sequence of multiple xBB instructions, 
new instruction boundaries have been introduced as far as the underlying hardware is concerned. 
When delivering an interrupt or an exception to the guest, it is imperative that we preserve the 
atomicity corresponding to guest instruction boundaries, and subsequently report the correct 
instruction boundary at which the interrupt or exception was delivered.  

Consider the consequences of a hardware interrupt arriving at such a pseudo-instruction-
boundary point in a sequence. When the hardware interrupt arrives, execution should logically 
be interrupted at the start of this instruction sequence. Unfortunately, because of the side-effects 
of the instructions within this sequence that have already been executed, we cannot simply report 
the start of the sequence as the point of interrupting and get away. 

Interrupt arrival is inherently imprecise. A permissible implementation would be to delay the 
handling of interrupts until the end of the current basic block and explicitly issue some form of 
probe instruction to check for pending interrupts at the end of each basic block. We rejected this 
design for two reasons: 

• Interrupts are low-frequency events. We did not wish to carry the cost of interrupt probes in 
every basic block. 

• There are other exception scenarios that require precise delivery of exceptions. Handling 
these situations requires the ability to roll translated instructions back to the beginning of the 
interrupted guest instruction boundary. 

We have thus taken the approach of rolling back to the start of the instruction sequence and 
reporting that point as the boundary at which the interrupt arrived. 

Towards this, we have designed a framework that lays out the format of a translated instruction 
sequence corresponding to a given guest instruction, as follows: 

1. Each individual instruction translation consists of a preamble, an “active” instruction, and a 
postamble. 

2. Preamble and postamble are typically empty. If needed, a typical preamble contains register 
spill instructions to provide available temporary registers for use in instruction execution, or 
a push instruction (in the case of translating call), or a pop instruction (in the case of 
translating return), etc. The postamble restores the expected register values into the hardware 
registers for use by the following instruction. The important point to note about the 
requirements of a preamble and postamble is that a preamble can result in side-effects as long 
as its effects can be rolled back (i.e., can be safely undone); and, a postamble must not result 
in any side-effects as visible to the guest, but may result in effects visible to the emulator. 

3. Most importantly, side-effects that are visible to the guest and are non-undoable, if any, can 
occur as a result of the execution of only one instruction (as seen by the underlying 
hardware), which we call the "active" instruction. Then, an interrupt or exception can occur 
only before or after that instruction, but not in between that instruction. 



We now describe the exception delivery mechanism that uses the above framework: When an 
interrupt or exception occurs while the preamble part of a translation sequence (including the 
point just before the "active" instruction) is being executed, we roll back the execution up to the 
most recent instruction boundary. If it occurs after the execution of the "active" instruction, i.e., 
while the postamble is being executed, we report the next guest instruction boundary to the 
guest. Note that postamble operations invariably restore register values that will be restored 
anyway on return from supervisor mode, so postamble instructions do not need to be honored 
when a trap occurs. 

In order to facilitate the rollback of the preamble's execution, the instruction generator generates 
two instruction streams in parallel. The first is a sequence of instructions that simulate the input 
basic block instructions. The second is a sequence of bytecodes that describe how to undo the 
effects of the preambles. 

When an exception occurs in the preamble phase, these bytecodes are interpreted to determine 
which registers have been spilled and what modifications have been performed to the stack 
pointer during the preamble. These changes are undone, and execution will resume at the 
beginning of the preamble. 

When an exception occurs during the postamble, the preamble bytecodes are consulted to 
determine which registers have already been spilled and what modifications to the stack may 
need to be undone. The trap handler is going to spill the registers anyway; it merely skips the 
spills of the registers that have already been spilled. The bytecodes encode sufficient information 
to know what stack operations must be undone.  

Collectively, the bytecode system provides a form of instruction-level "reverse execution" that is 
sufficient to enable the appearance of instruction atomicity to be preserved. See Figure 3 for an 
illustration of our framework. 
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Figure 3: Precise Delivery of Interrupts/Exceptions in VDebug



4. Applications 

Some things that can be achieved with the virtualization support presented thus far are: 

  Kernel Debugging 
This is the application that motivated us to build the virtualization that has been presented. 
Our contention is that the most natural direction of providing software support for debugging 
operating system kernels would be to run the kernel on a hypervisor that is implemented 
using virtual machine technology, because there is no other way of having a run-time 
software entity running below an operating system kernel, that would help monitor and 
debug the kernel. Although kernel debugging has been alluded to as a possible application of 
virtual machine technology, we know of no work that has pursued this direction. 

When we use the machine virtualization approach to kernel debugging, we, as the debugger, 
get many interesting points to interpose between the kernel and the hardware, so that we 
could exploit our interposition for monitoring and debugging the kernel. For example, we 
could use a shadow page-table approach to virtualizing the paging support for implementing 
a watch-point facility. Another more interesting example is that we could interpose at the 
interrupt delivery mechanism of the hardware, so that we could provide some facilities while 
debugging the kernel such as inducing artificial interrupts at some points or deferring 
interrupts up to a pre-specified point, which could be used to create certain situations in the 
kernel's execution to help catch bugs. 

  Static-Analysis-Driven-Dynamic-Analysis 
-> e.g. To see if a data structure is locked whenever it is accessed 

  Exploratory questioning 
The ability to pause the kernel at some point and ask some exploratory questions using a 
scripting language (e.g. The question asked could be: "If this procedure has an active stack 
frame, see if a local variable's value matched some local variable in another stack frame," 
etc.). 

  Simulating the execute-bit for paging support 
As the virtualization design we have presented incorporates shadowing of page tables, it is in 
a position to interpose at the paging support presented to the guest, so that we can present a 
modified architecture to the guest that actually supports the execute-bit on a per-page basis. 
With this, further, we could incorporate checks in order to prevent stack smashing and other 
such attacks which exploit the possibility of executing from a data area that is accessible to 
the attacker. 
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