15-281: AI: Representation and Problem Solving Fall 2019

Recitation 2 Sep 6

1 Designing & Understanding Heuristics

Today, we will be taking a closer look at how the performance of A* is affected by the heuristics it uses. To
do this, we’ll be using the graph below. You may have noticed that no heuristic values have been provided
(Recall: What is A* without heuristic values?). This is because we’ll be working in pairs to come up with
heuristics ourselves!

Please find someone next to you to work with, and decide between yourselves who will design an admis-
sible heuristic and who will design a consistent heuristic. Then, independently create these heuristics for the

given graph by annotating each node with a heuristic value.

When you have completed your heuristic, exchange papers with your partner, and work together to an-
swer the questions below.

3 ’ ©

(a) Write down the path found by running A* using your heuristic on the graph above.

This will depend on the provided heuristic. Recall that A* expands the node in its frontier that has the
lowest f(n) = g(n) + h(n) value.

(b) Work with your partner to come up with a heuristic that’s admissible but not consistent.

Heuristics will vary from team to team, and there may be many correct solutions. Feel free to come to
OH or post on Piazza if you're unsure about a particular answer.

(¢) (Bonus) Explain why a consistent heuristic must also be admissible. You may assume that the heuristic
value at a goal node is always 0.

Recall the definitions of admissibility and consistency.

A heuristic is admissible if it never overestimates the true cost to a nearest goal.

A heuristic is consistent if, when going from neighboring nodes a to b, the heuristic difference/step cost
never overestimates the actual step cost. This can also be re-expressed as the triangle inequality men-
tioned in Lecture 3.

Let h(n) be the heuristic value at node n and c(n,n + 1) be the cost from node n to n + 1. We're
given the assumption that h(g) = 0. Informally, we want to backtrack from the goal node, showing that
if we start with an admissible node (which h(g) = 0 is by default), its parent nodes will be admissible



15-281: AI: Representation and Problem Solving Fall 2019

Recitation 2 Sep 6

through the rule of consistency, and this pattern continues.

Consider some node n and assume the heuristic value at n is admissible. We want to show that any of
its parent nodes, say n — 1, will also be admissible by the definition of consistency.

By consistency, we get that:
h(n—1) = h(n) <c¢(n—1,n)

=h(n—1) <c(n—1,n)+ h(n)

¢(n —1,n) is the actual path cost from n — 1 to n. Since we know h(n) is admissible, we know that h(n)
has to be less than or equal to the path cost from n to goal node g.

Thus, h(n — 1) < the path cost from (n — 1 to n) 4+ h(n).
Since h(n) is less than or equal to path cost from (n to g),
h(n — 1) < path cost from (n — 1 to g).

This by definition is admissible.

Formal proof (for students interested):

Assume we have some consistent heuristic h. Also assume h(g) = 0, where g is a goal node. By definition
of consistency, h(n) < ¢(n,n+ 1) + h(n + 1) for all nodes n in the graph. We want to show that for all
n, h(n) < h*(n) (the definition of admissibility) also holds.

Base Case: We begin by considering the g — 1th node in any path where g denotes the goal state.

h(g —1) < c(g — 1,9) + h(g) (1)
Because g is the goal state, by assumption, h(g) = h*(g). Therefore, we can rewrite the above as
h(g—1) <clg—1,9) +h*(g)
and given that ¢(g — 1,9) + h*(g9) = h*(g — 1), we can see:
h(g—1) <h*(g—1)

as desired.

Inductive Hypothesis: Assume that for some arbitrary node (which lies on a path from start to
goal) g — k that h(g — k) < h*(g — k).

Inductive Step: To see if this is always the case, we consider the g — k — 1th node in any of the
paths we considered above (e.g. where there is precisely one node between it and the goal state). The
cost to get from this node to the goal state can be written as

hg—k—-1)<clg—k—1,9—k)+h(g—Fk)
From our base case above, we know that
hg—k—-1)<clg—k—-1,9—k)+h(g—k)<clg—k—-1,9—k)+h*(g—k)
hMg—k—-1)<clg—k—1,9—k)+h"(g—k)
And again, we know that ¢(g —k — 1,9 — k) + h*(g — k) = h*(g — k — 1), so we can see:
hg—k—-1)<h*(g—k-1)

By the inductive hypothesis, this holds for all nodes, proving that consistency does imply admissibility!



15-281: AI: Representation and Problem Solving Fall 2019

Recitation 2 Sep 6

2 Adversarial Search

Consider the following game tree, where the root node is a maximizer. Using alpha beta pruning and visiting
successors from left to right, record the values of alpha and beta at each node. Furthermore, write the value
being returned at each node inside the trapezoid. Put an ‘X’ through the edges that are pruned off.

PN N A N

ANANNNNANN

The following picture shows the final o and 8 (denoted a and b) values at each node.

fenhem\

X

Nee e
3 4 10 a=12=1 -2

a=3b=inf a=1,b=3 a=-nf,b=1 a=10,b=inf a=1b=inf

3 0 1 4 6 2 12 -3 -4 2 -2 10 -5 -7

10 1 0



15-281: AI: Representation and Problem Solving Fall 2019

Recitation 2 Sep 6

3 Alpha Beta Expectimax

In this question, player A is a minimizer, player B is a maximizer, and C represents a chance node. All children
of a chance node are equally likely. Consider a game tree with players A, B, and C. In lecture, we considered
how to prune a minimax game tree - in this question, you will consider how to prune an expectimax game tree
(like a minimax game tree but with chance nodes). Assume that the children of a node are visited left to right.

For each of the following game trees, give an assignment of terminal values to the leaf nodes such that
the bolded node can be pruned (it doesn’t matter if you prune more nodes), or write “not possible” if no such
assignment exists. You may give an assignment where an ancestor of the bolded node is pruned (since then
the bolded node will never be visited). You should not prune on equality, and your terminal values must be
finite.




15-281: AI: Representation and Problem Solving Fall 2019

Recitation 2 Sep 6

Answers may vary.

Not possible. At the bolded node, the minimizer can guarantee a score of at most the value of its left subtree.
However, since we have not visited all the children of C, there is no bound on the value that C could attain.
So, we need to continue exploring nodes until we can put a bound on C’s value, which means we must explore

the bolded node.



15-281: AI: Representation and Problem Solving Fall 2019

Recitation 2 Sep 6

4

True/False Section

For each of the following questions, answer true or false and provide a brief explanation (or counterexample,
if applicable).

(a)

Depth-first search always expands at least as many nodes as A* search with an admissible heuristic.
False: If the minimum goal path consists of d nodes, a lucky DFS might expand exactly those d nodes

to reach the goal. A* could potentially expand some other nodes before finding that path (those nodes
would have a lower f(n) value than the final goal’s).

Assume that a rook can move on a chessboard any number of squares in a straight line, vertically or
horizontally, but cannot jump over other pieces. Manhattan distance is an admissible heuristic for the
problem of moving the rook from square A to square B in the smallest number of moves.

False: A rook can move from one corner to the opposite corner across a 4x4 board in two moves, although
the Manhattan distance from start to finish is 6.

Euclidean distance is an admissible heuristic for Pacman path-planning problems.

True: Euclidean distance is the minimum distance to travel between any two points. Thus, it will always
be less than or equal to Pacman’s (who only moves horizontally or vertically) actual cost to travel along
some path, making it admissible (0 < h(n) < h*(n)).

The sum of several admissible heuristics is still an admissible heuristic.

False:

O——® :

hi(S)="7 hi1(A)=4

hz(S):S ]IQ(A):5

Both of these heuristics (h; and hg) are admissible, but if we sum them, we find that h3(s) = 15 and
h3(a) = 9. However, this is not admissible.

For (e) and (f), consider an adversarial game tree where the root node is a maximizer, and the minimax
value of the game (i.e., the value of the root node after running minimax search on the game tree) is V.
Now, also consider an otherwise identical tree where every minimizer node is replaced with a chance node
(with an arbitrary but known probability distribution). The expectimax value of the modified game tree
is VE

Vs is guaranteed to be less than or equal to V.
True: The maximizer is guaranteed to be able to achieve vy, if the minimizer acts optimally. They can

potentially do better if the minimizer acts suboptimally (e.g. by acting randomly). The expectation at
chance nodes can be no less than the minimum of the nodes’ successors.



15-281: AI: Representation and Problem Solving Fall 2019

Recitation 2 Sep 6

(f) Using the optimal minimax policy in the game corresponding to the modified (chance) game tree is
guaranteed to result in a payoff of at least V.

False: In order to achieve vg in the modified (chance) game, the maximizer may need to change their
strategy. The minimax strategy may avoid actions where the minimum value is less than the expectation.
Moreover, even if the maximizer followed the expectimax strategy, they are only guaranteed vg in
expectation.



	Designing & Understanding Heuristics
	Adversarial Search
	Alpha Beta Expectimax
	True/False Section

