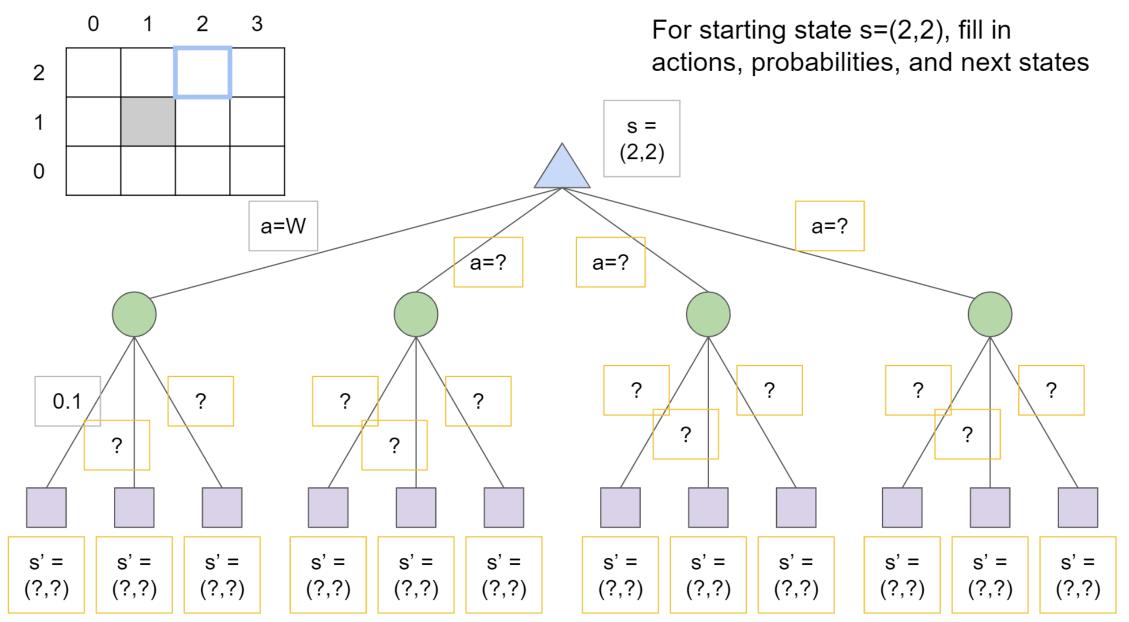
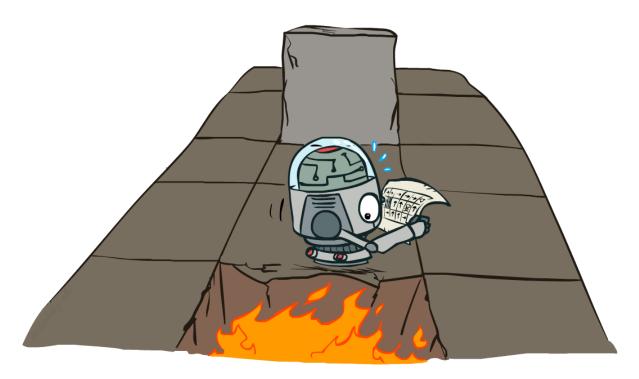
Warm-up as you walk in: Grid World



AI: Representation and Problem Solving Markov Decision Processes II



Instructor: Pat Virtue

Slide credits: CMU AI and http://ai.berkeley.edu

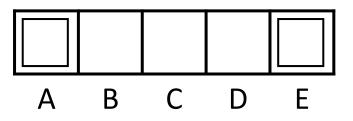
Outline

MDP Setup

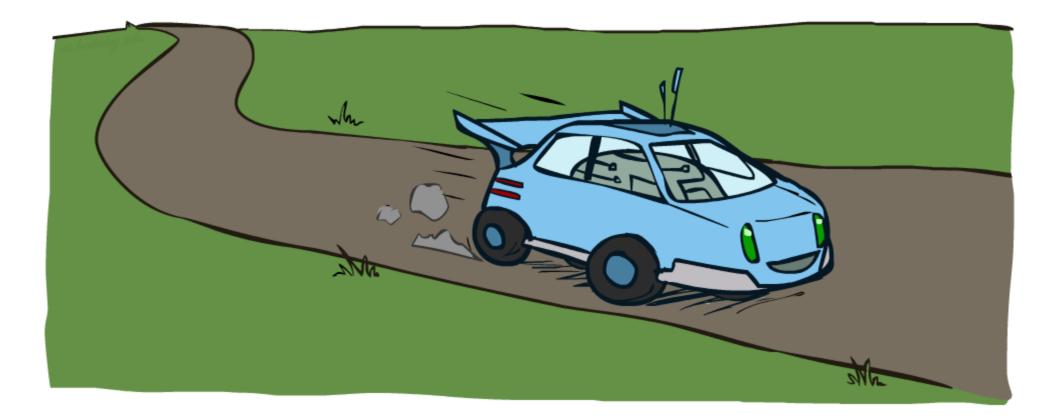
- Expectimax: State, actions, non-deterministic transition functions
- Rewards
 - Walk-through of super-simple value iteration
- Discounting, γ

Solving MDPs

- Method 1) Value iteration
 - Value iteration convergence
- Bellman equations
- Policy Extraction
- Method 2) Policy Iteration



MDP Example: Racing

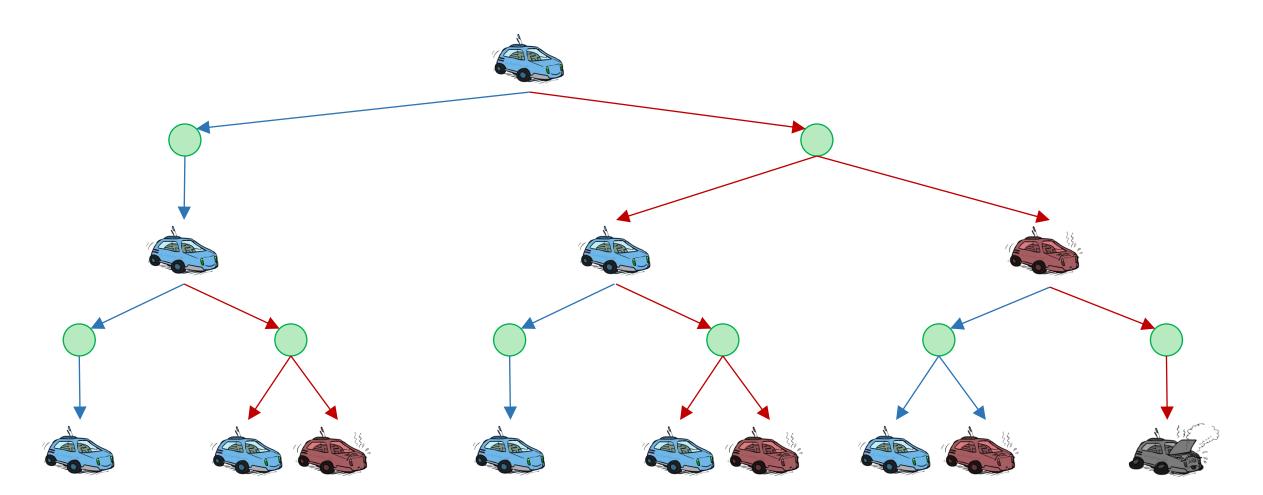


MDP Example: Racing

A robot car wants to travel far, quickly Three states: Cool, Warm, Overheated

Two actions: *Slow*, *Fast* 1.0 Fast Going faster gets double reward 0.5 (r=-10)Slow (r=1)0.5 Slow Warm (r=1) 0.5 Fast (r=2) Cool Overheated 1.0 0.5

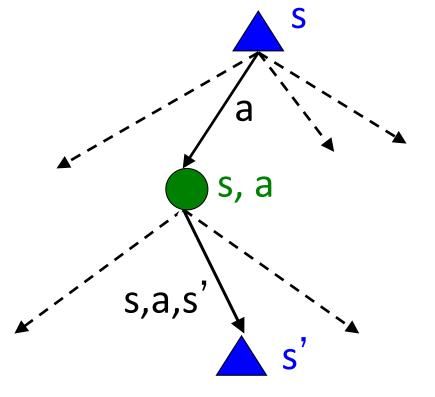
Racing Search Tree



Recursive Expectimax

 $V(s) = \max_{a} \sum_{s'} P(s'|s, a) V(s')$ Now with rewards:

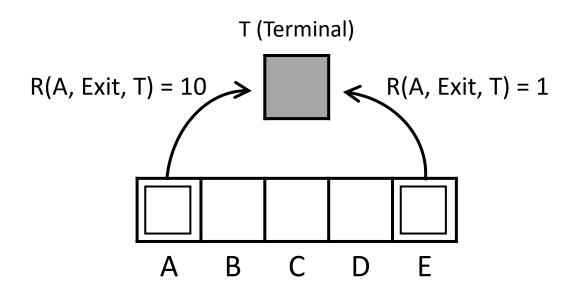
$$V(s) = \max_{a} \sum_{s'} P(s'|s, a) \left[R(s, a, s') + V(s') \right]$$



Simple Deterministic Example

- Actions: B, C, D: East, West
- Actions: A, E: Exit
- Transitions: deterministic
- Rewards only for transitioning to terminal state

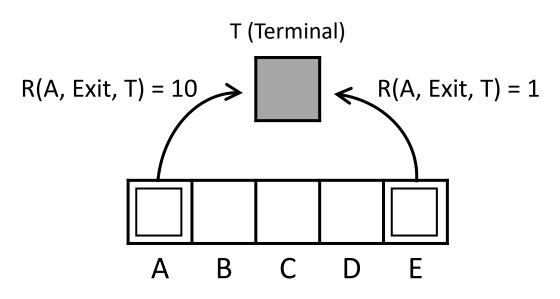
 $V(s) = \max_{a} [R(s, a, s') + V(s')]$

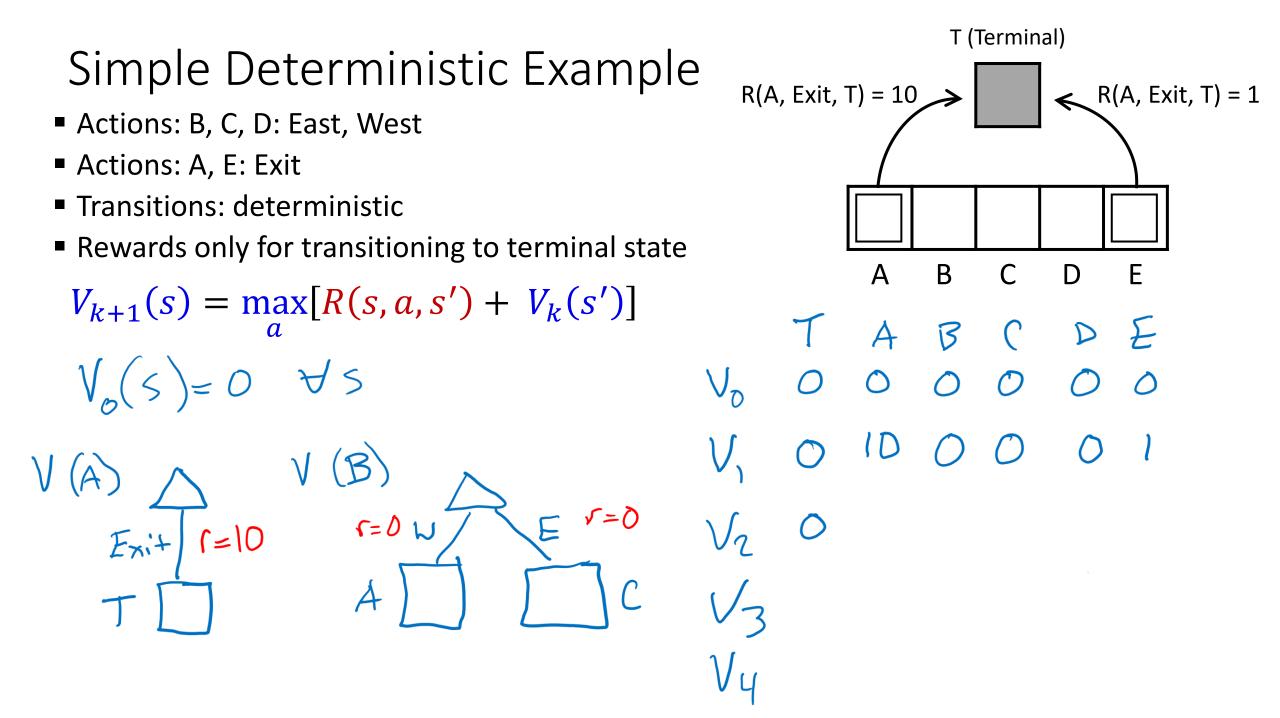


Simple Deterministic Example

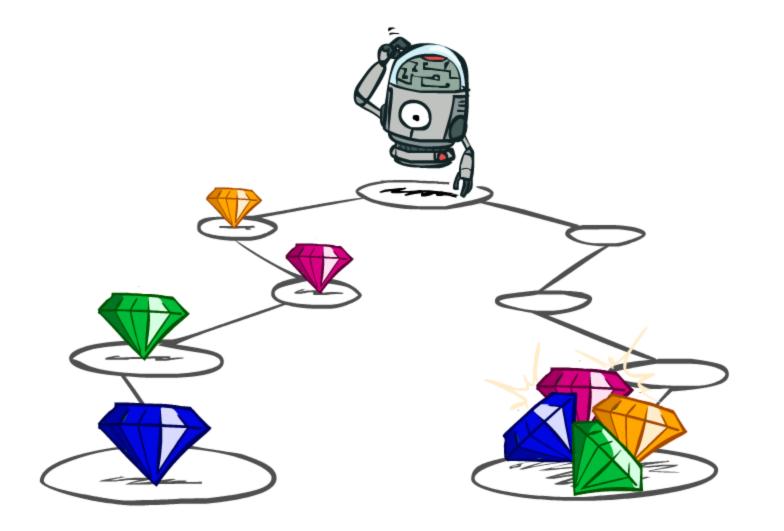
- Actions: B, C, D: East, West
- Actions: A, E: Exit
- Transitions: deterministic
- Rewards only for transitioning to terminal state

 $V_{k+1}(s) = \max_{a} [R(s, a, s') + V_k(s')]$





Utilities of Sequences

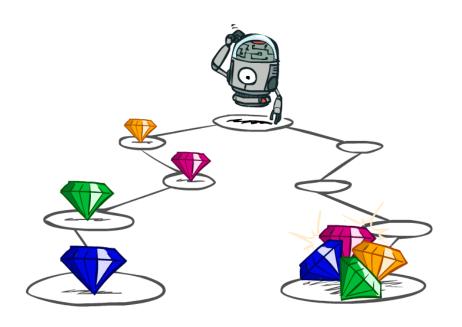


Utilities of Sequences

What preferences should an agent have over reward sequences?

More or less? [1, 2, 2] or [2, 3, 4]

Now or later? [0, 0, 1] or [1, 0, 0]



Discounting

It's reasonable to maximize the sum of rewards It's also reasonable to prefer rewards now to rewards later One solution: values of rewards decay exponentially

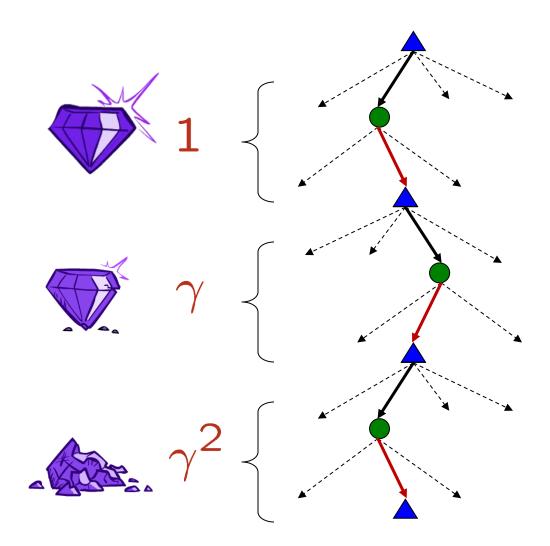
Discounting

How to discount?

 Each time we descend a level, we multiply in the discount once

Why discount?

- Sooner rewards probably do have higher utility than later rewards
- Also helps our algorithms converge
- Important: use 0 < γ < 1</p>



What is the value of this ordered sequence of rewards [2,4,8] with $\gamma = 0.5$?

- A. 3
- B. 6
- C. 7
- D. 14

Bonus: What is the value of [8,4,2] with $\gamma = 0.5$?

Discounting

- Actions: B, C, D: East, West
- Actions: A, E: Exit
- Transitions: deterministic
- Rewards only for transitioning to terminal state

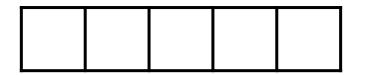
 $V_{k+1}(s) = \max_{a} [R(s, a, s') + \gamma V_k(s')]$ For $\gamma = 1$, what is the optimal policy?

For γ = 0.1, what is the optimal policy?

For which γ are West and East equally good when in state D?

T (Terminal)

$$R(A, Exit, T) = 10$$
 $R(A, Exit, T) = 1$
 $R(A, Exit, T) = 1$



Discounting

- Actions: B, C, D: East, West
- Actions: A, E: Exit
- Transitions: deterministic
- Rewards only for transitioning to terminal state

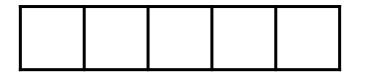
 $V_{k+1}(s) = \max_{a} [R(s, a, s') + \gamma V_k(s')]$ For $\gamma = 1$, what is the optimal policy?

For γ = 0.1, what is the optimal policy?

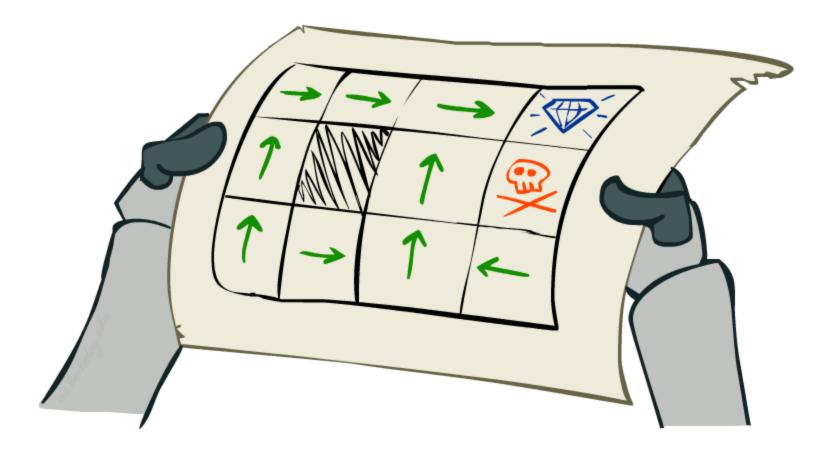
For which γ are West and East equally good when in state D?

T (Terminal)

$$R(A, Exit, T) = 10$$
 $R(A, Exit, T) = 1$
 $R(A, Exit, T) = 1$

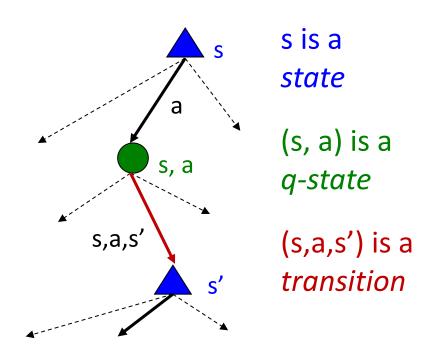


Solving MDPs



Optimal Quantities

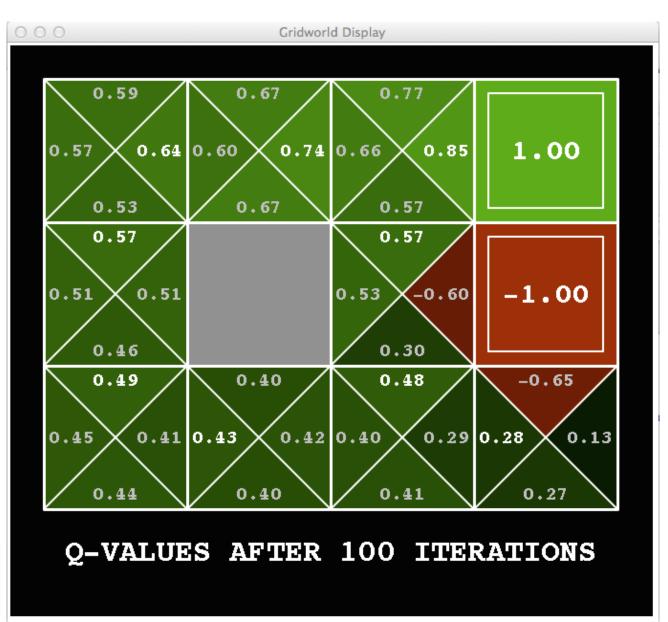
- The value (utility) of a state s:
 - V^{*}(s) = expected utility starting in s and acting optimally
- The value (utility) of a q-state (s,a):
 - Q^{*}(s,a) = expected utility starting out having taken action a from state s and (thereafter) acting optimally
- The optimal policy:
 π^{*}(s) = optimal action from state s



Snapshot of Demo – Gridworld V Values

000	Gridworld Display			
0.64	▶ 0.74 ▶	0.85)	1.00	
^		^		
0.57		0.57	-1.00	
^		^		
0.49	∢ 0.43	0.48	∢ 0.28	
VALUES AFTER 100 ITERATIONS				

Snapshot of Demo – Gridworld Q Values



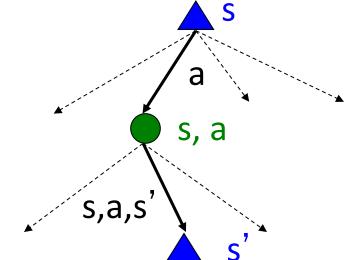
Values of States

Fundamental operation: compute the (expectimax) value of a state

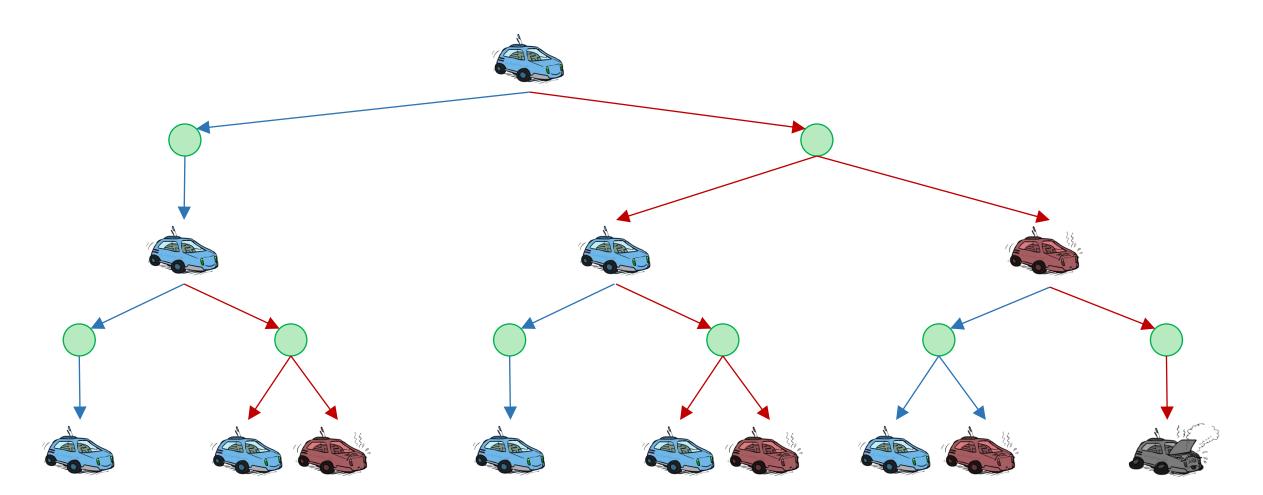
- Expected utility under optimal action
- Average sum of (discounted) rewards
- This is just what expectimax computed!

Recursive definition of value:

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$
$$Q^{*}(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$
$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$



Racing Search Tree



Racing Search Tree

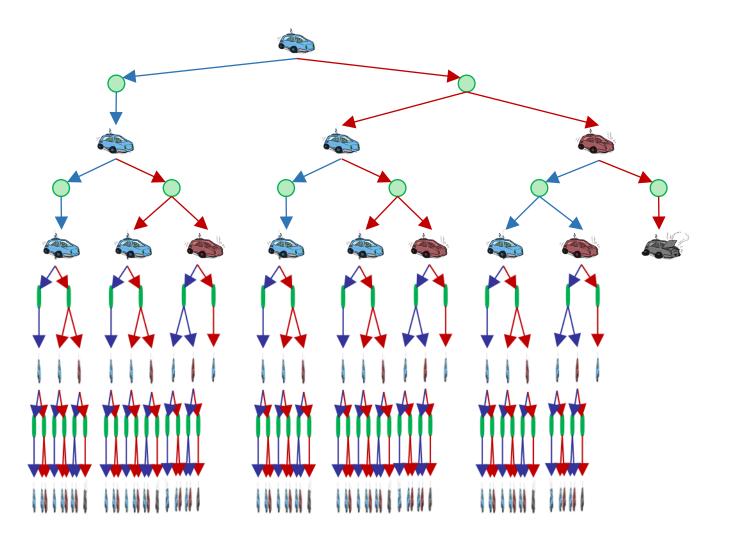
We're doing way too much work with expectimax!

Problem: States are repeated

 Idea: Only compute needed quantities once

Problem: Tree goes on forever

- Idea: Do a depth-limited computation, but with increasing depths until change is small
- Note: deep parts of the tree eventually don't matter if γ < 1

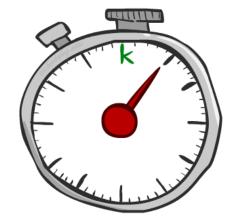


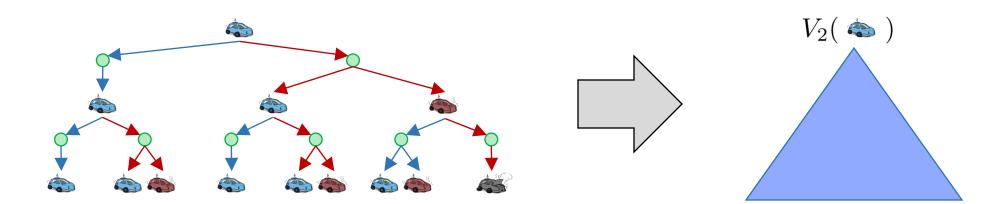
Time-Limited Values

Key idea: time-limited values

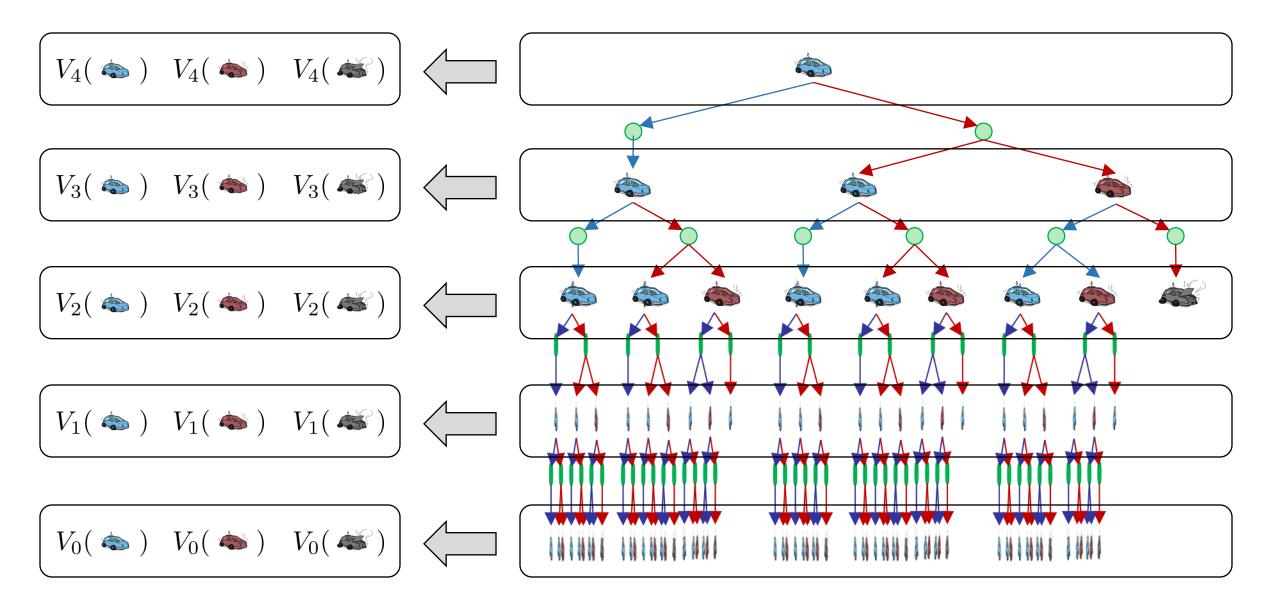
Define $V_k(s)$ to be the optimal value of s if the game ends in k more time steps

Equivalently, it's what a depth-k expectimax would give from s

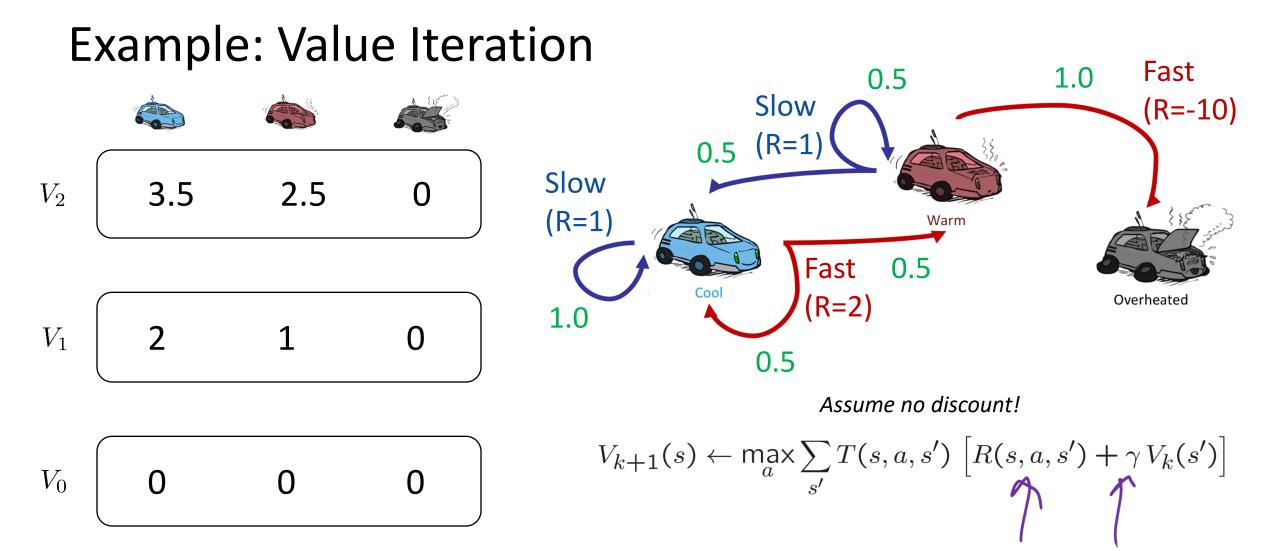




Computing Time-Limited Values



Value Iteration



k=0

C C Cridworld Display				
		^		
	0.00	0.00	0.00	0.00
			^	
	0.00		0.00	0.00
	0.00	0.00	0.00	0.00

VALUES AFTER 0 ITERATIONS

k=1

00	C Cridworld Display				
	^				
	0.00	0.00	0.00 →	1.00	
	• 0.00		∢ 0.00	-1.00	
	^	^	^		
	0.00	0.00	0.00	0.00	
				•	

VALUES AFTER 1 ITERATIONS

00	Gridworld Display			
	• 0.00	0.00)	0.72 →	1.00
	• 0.00		•	-1.00
	^	^	^	
	0.00	0.00	0.00	0.00 -

VALUES AFTER 2 ITERATIONS

000	Gridworld Display			
0.00	0.52 →	0.78)	1.00	
		^		
0.00		0.43	-1.00	
^	^	-		
0.00	0.00	0.00	0.00	
			-	
VALUES AFTER 3 ITERATIONS				

k=4

000	Gridworld Display			
0.37)	0.66)	0.83)	1.00	
•		• 0.51	-1.00	
•	0.00 →	• 0.31	∢ 0.00	
VALUES AFTER 4 ITERATIONS				

000	○ ○ Gridworld Display			
0.51)	0.72 →	0.84)	1.00	
• 0.27		• 0.55	-1.00	
•	0.22 →	• 0.37	∢ 0.13	
VALUES AFTER 5 ITERATIONS				

k=6

000	O Gridworld Display				
0.59 ▸	0.73)	0.85)	1.00		
		^			
0.41		0.57	-1.00		
		•			
0.21	0.31 >	0.43	∢ 0.19		
VALUES AFTER 6 ITERATIONS					

k=7

000	Gridworld Display			
0.62)	0.74 ▸	0.85)	1.00	
^		•		
0.50		0.57	-1.00	
▲ 0.34	0.36 →	▲ 0.45	∢ 0.24	
VALUES AFTER 7 ITERATIONS				

000	Gridworl	d Display			
0.63)	0.74 ▸	0.85)	1.00		
• 0.53		• 0.57	-1.00		
• 0.42	0.39)	• 0.46	∢ 0.26		
VALUES AFTER 8 ITERATIONS					

000	Gridworl	d Display			
0.64)	0.74 →	0.85)	1.00		
•		•			
0.55		0.57	-1.00		
• 0.46	0.40 →	• 0.47	∢ 0.27		
VALUES AFTER 9 ITERATIONS					

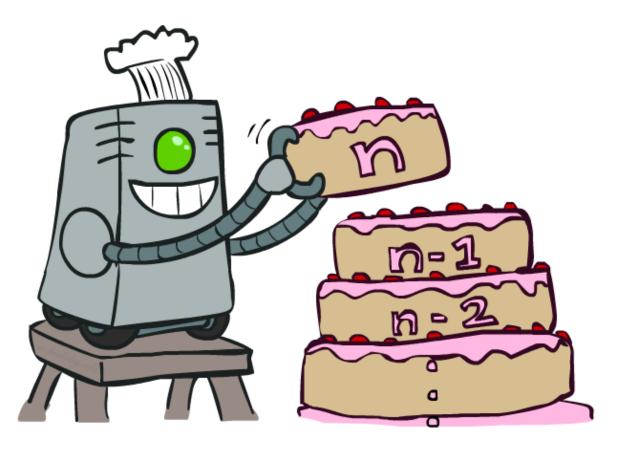
000	Gridworl	d Display				
0.64 →	0.74 ▸	0.85)	1.00			
▲ 0.56		• 0.57	-1.00			
▲ 0.48	∢ 0.41	• 0.47	∢ 0.27			
VALUE	VALUES AFTER 10 ITERATIONS					

000		Gridworl	d Display				
	0.64 →	0.74)	0.85)	1.00			
	• • E6		•	1.00			
	0.56		0.57	-1.00			
	▲ 0.48	∢ 0.42	• 0.47	∢ 0.27			
	VALUES AFTER 11 ITERATIONS						

000	Gridworl	d Display				
0.64 ▸	0.74)	0.85)	1.00			
^		^				
0.57		0.57	-1.00			
^		^				
0.49	∢ 0.42	0.47	∢ 0.28			
VALUE	VALUES AFTER 12 ITERATIONS					

000		Gridworl	d Display					
	0.64)	0.74)	0.85)	1.00				
	• 0.57		• 0.57	-1.00				
	• 0.49	∢ 0.43	▲ 0.48	∢ 0.28				

VALUES AFTER 100 ITERATIONS



Value Iteration

Value Iteration

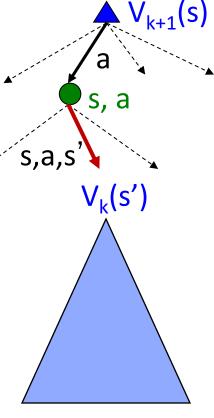
Start with $V_0(s) = 0$: no time steps left means an expected reward sum of zero

Given vector of $V_k(s)$ values, do one ply of expectimax from each state:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

Repeat until convergence

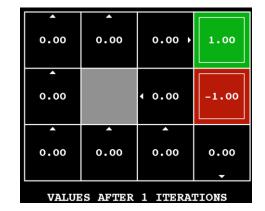
0.00	0.00	•	0.00	•	•	0.00 →	1.00	0.00	0.00 >	0.72 ♪	1.00		0.64)	0.74 ≯	0.85)	1.00
0.00		0.00	0.00	•		∢ 0.00	-1.00	0.00		0.00	-1.00	•••	0.57		• 0.57	-1.00
0.00	• 0.00	0.00	0.00	•	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.49	∢ 0.43	• 0.48	• 0.28
VALUE	S AFTER	0 ITERA	TIONS	VALUE	S AFTER	1 ITERA	TIONS	VALU	S AFTER	2 ITERA	TIONS		VALUE	S AFTER	100 ITER	ATIONS



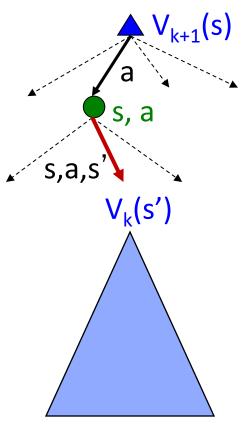
Poll 1

What is the complexity of each iteration in Value Iteration? S -- set of states; A -- set of actions

I: O(|S||A|)II: $O(|S|^2|A|)$ III: $O(|S||A|^2)$ IV: $O(|S|^2|A|^2)$ V: $O(|S|^2)$



0.00	0.00)	0.72)	1.00		
0.00		0.00	-1.00		
•	•	•	0.00		
VALUES AFTER 2 ITERATIONS					



$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

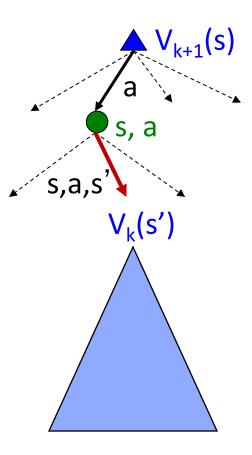
Poll 1

What is the complexity of each iteration in Value Iteration? S -- set of states; A -- set of actions

 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •

I: O(|S||A|)II: $O(|S|^2|A|)$ III: $O(|S||A|^2)$ IV: $O(|S|^2|A|^2)$ V: $O(|S|^2)$

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$



Value Iteration

Start with $V_0(s) = 0$: no time steps left means an expected reward sum of zero

Given vector of $V_k(s)$ values, do one ply of expectimax from each state:

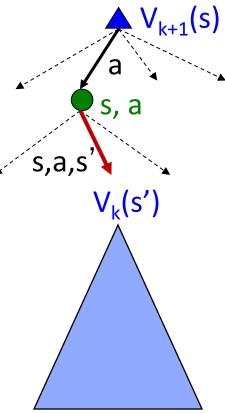
$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

Repeat until convergence

Complexity of each iteration: O(S²A)

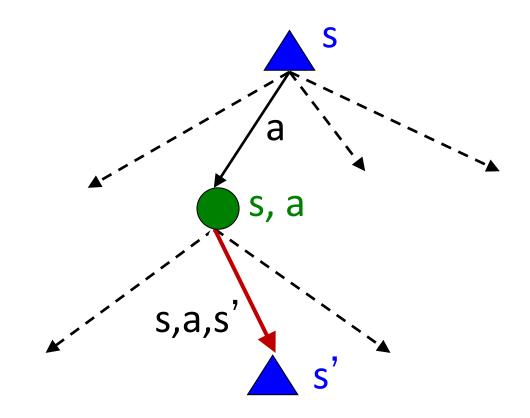
Theorem: will converge to unique optimal values

- Basic idea: approximations get refined towards optimal values
- Policy may converge long before values do



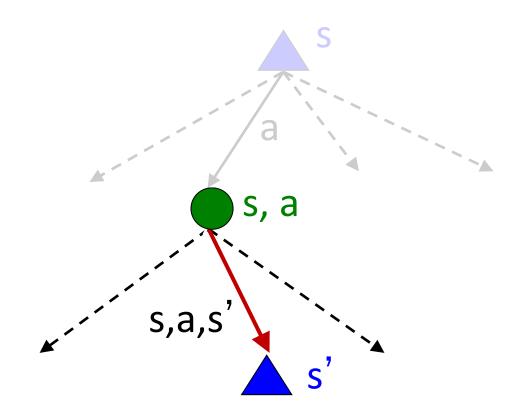
Optimal Quantities

The value (utility) of a state s:
 V*(s) = expected utility starting in s and acting optimally



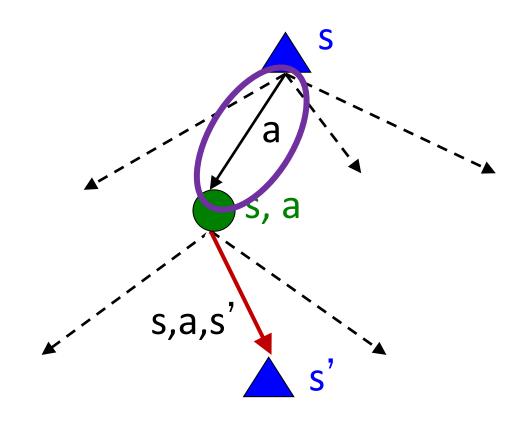
Optimal Quantities

- The value (utility) of a state s:
 V*(s) = expected utility starting in s and acting optimally
- The value (utility) of a q-state (s,a):
 Q^{*}(s,a) = expected utility starting out having taken action a from state s and (thereafter) acting optimally



Optimal Quantities

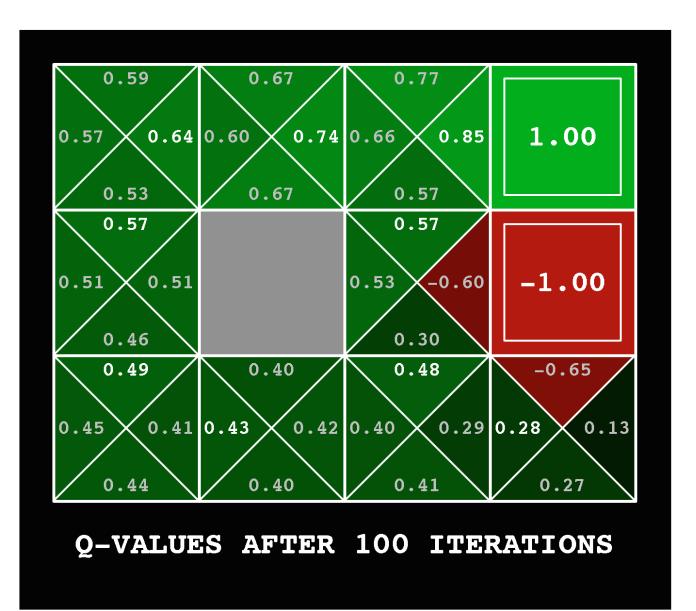
- The value (utility) of a state s:
 V*(s) = expected utility starting in s and acting optimally
- The value (utility) of a q-state (s,a):
 Q^{*}(s,a) = expected utility starting out having taken action a from state s and (thereafter) acting optimally
- The optimal policy:
 π^{*}(s) = optimal action from state s

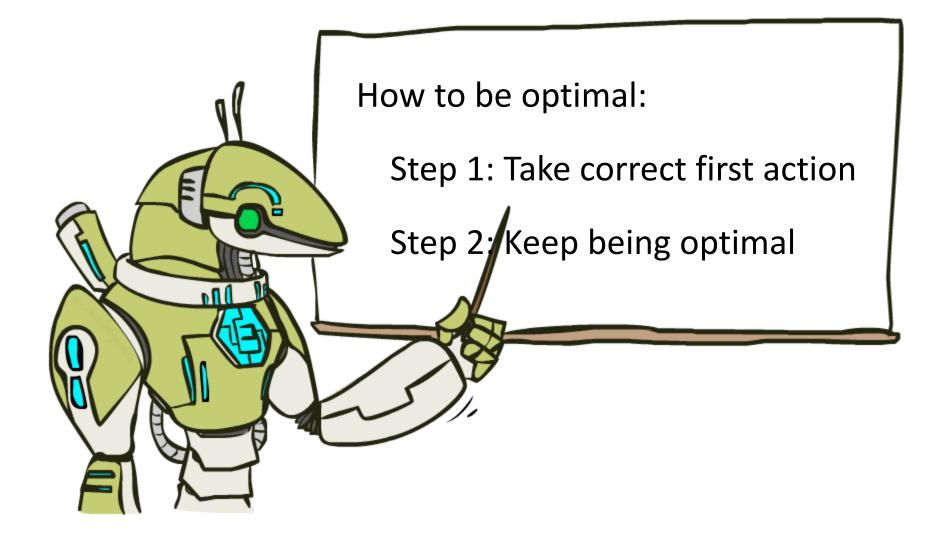


Gridworld Values V*

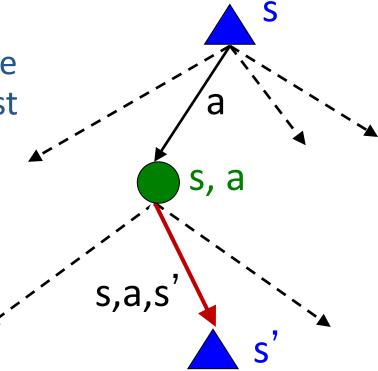
0.64 ▶	0.74 ▶	0.85 →	1.00			
		^				
0.57		0.57	-1.00			
0.49	◀ 0.43	0.48	∢ 0.28			
VALUES AFTER 100 ITERATIONS						

Gridworld: Q*



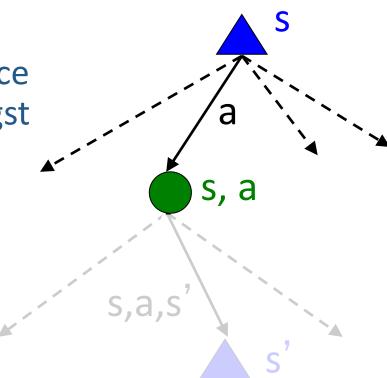


Definition of "optimal utility" via expectimax recurrence gives a simple one-step lookahead relationship amongst optimal utility values



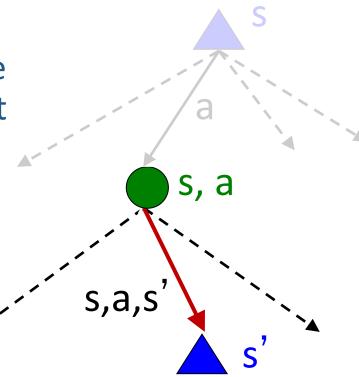
Definition of "optimal utility" via expectimax recurrence gives a simple one-step lookahead relationship amongst optimal utility values

 $V^*(s) = \max_a Q^*(s,a)$



Definition of "optimal utility" via expectimax recurrence gives a simple one-step lookahead relationship amongst optimal utility values

 $V^{*}(s) = \max_{a} Q^{*}(s, a)$ $Q^{*}(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$



Definition of "optimal utility" via expectimax recurrence gives a simple one-step lookahead relationship amongst optimal utility values

s, a

s,a,s

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$
$$Q^{*}(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$
$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$

These are the Bellman equations, and they characterize optimal values in a way we'll use over and over

MDP Notation

Standard expectimax:

Bellman equations:

Value iteration:

$$V(s) = \max_{a} \sum_{s'} P(s'|s, a) V(s')$$

$$V^{*}(s) = \max_{a} \sum_{s'} P(s'|s, a) [R(s, a, s') + \gamma V^{*}(s')]$$

$$V_{k+1}(s) = \max_{a} \sum_{s'} P(s'|s, a) [R(s, a, s') + \gamma V_{k}(s')], \quad \forall s$$

Value Iteration

Bellman equations characterize the optimal values:

$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$

s, a

s,a,s

Value iteration computes them:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

Value iteration is just a fixed point solution method

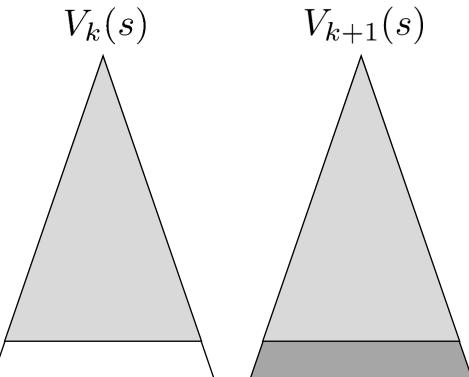
Value Iteration Convergence

How do we know the V_k vectors are going to converge?

Case 1: If the tree has maximum depth M, then $\rm V_M$ holds the actual untruncated values

Case 2: If the discount is less than 1

- Sketch: For any state V_k and V_{k+1} can be viewed as depth k+1 expectimax results in nearly identical search trees
- The difference is that on the bottom layer, V_{k+1} has actual rewards while V_k has zeros
- That last layer is at best all R_{MAX}
- It is at worst R_{MIN}
- But everything is discounted by γ^k that far out
- So V_k and V_{k+1} are at most $\gamma^k \max |R|$ different
- So as k increases, the values converge



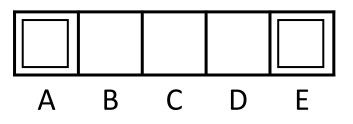
Outline

MDP Setup

- Expectimax: State, actions, non-deterministic transition functions
- Rewards
 - Walk-through of super-simple value iteration
- Discounting, γ $\overleftarrow{\phi}$

Solving MDPs

- Method 1) Value iteration
 - Value iteration convergence
- Bellman equations
- Policy Extraction
- Method 2) Policy Iteration



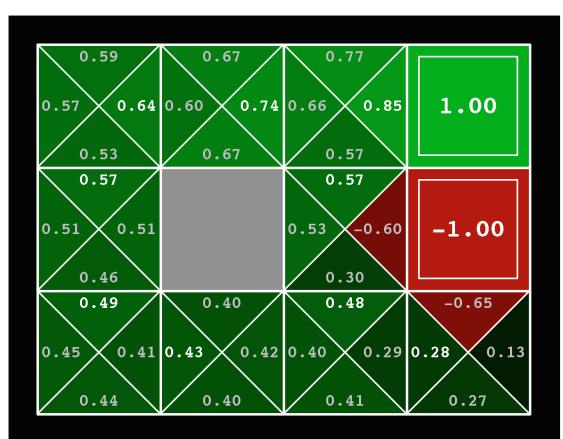
Solved MDP! Now what?

What are we going to do with these values??

0.74 ▶ 0.85 1.00 0.64 → 0.57 0.57 -1.000.49 ● 0.43 0.48 0.28

 $V^*(s)$

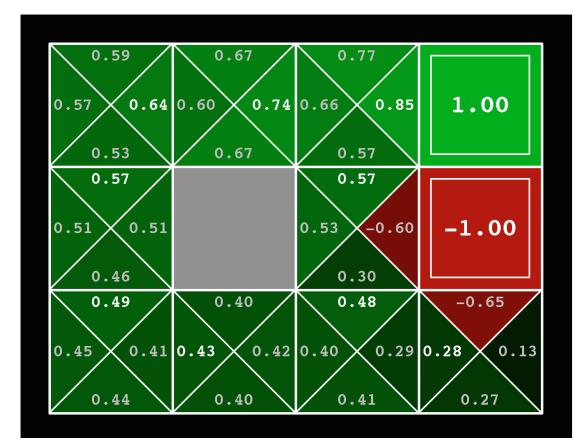
 $Q^*(s,a)$



Poll 2

If you need to extract a policy, would you rather have A) Values, B) Q-values?

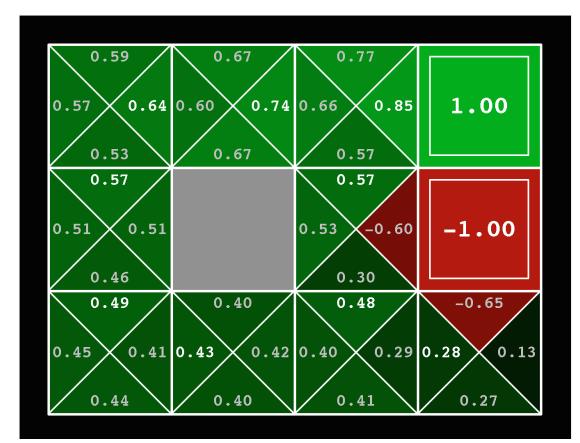
0.64 ▶	0.74 ▶	0.85)	1.00
0.57		0.57	-1.00
^		^	
0.49	↓ 0.43	0.48	∢ 0.28



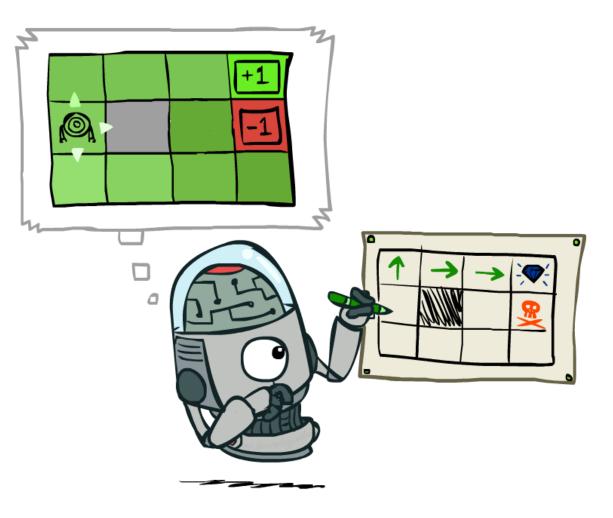
Poll 2

If you need to extract a policy, would you rather have A) Values, B) Q-values ?

0.64 ▶	0.74 →	0.85 →	1.00
0.57		0.57	-1.00
^		^	
0.49	◆ 0.43	0.48	∢ 0.28



Policy Extraction



Computing Actions from Values

Let's imagine we have the optimal values V*(s)

How should we act?

It's not obvious!

We need to do a mini-expectimax (one step)

$$\pi^{*}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^{*}(s')]$$

This is called **policy extraction**, since it gets the policy implied by the values

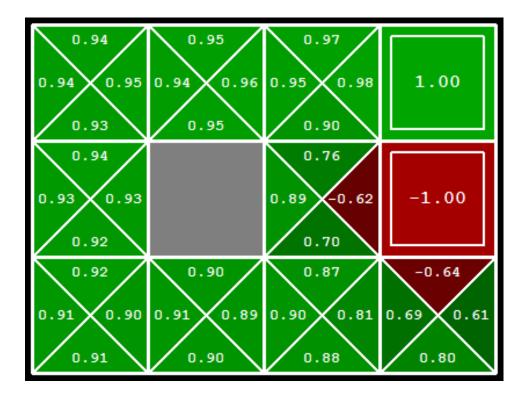
Computing Actions from Q-Values

Let's imagine we have the optimal q-values:

How should we act?

Completely trivial to decide!

$$\pi^*(s) = \arg\max_a Q^*(s,a)$$



Important lesson: actions are easier to select from q-values than values!

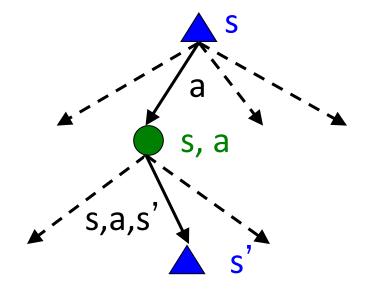
Value Iteration Notes

Value iteration repeats the Bellman updates:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

Things to notice when running value iteration:

- It's slow O(S²A) per iteration
- The "max" at each state rarely changes
- The optimal policy appears before the values converge (but we don't know that the policy is optimal until the values converge)



0.0	0	Gridworl	d Display	
	0.00	.00 0.00 0.00		0.00
			^	
	0.00		0.00	0.00
	0.00	0.00	0.00	0.00

VALUES AFTER 0 ITERATIONS

00	Gridworld Display					
ſ						
	0.00	0.00	0.00 >	1.00		
	• 0.00		∢ 0.00	-1.00		
	^	^	^			
	0.00	0.00	0.00	0.00		
				—		

VALUES AFTER 1 ITERATIONS

Gridworld Display			
•	0.00 >	0.72 →	1.00
•		•	-1.00
^			
0.00	0.00	0.00	0.00
			-

VALUES AFTER 2 ITERATIONS

○ ○ ○ Gridworld Display					
0.00	0.52 →	0.78)	1.00		
		^			
0.00		0.43	-1.00		
^	^	-			
0.00	0.00	0.00	0.00		
			-		
VALUES AFTER 3 ITERATIONS					

000	Gridworld Display			
0.37)	0.66)	0.83)	1.00	
•		• 0.51	-1.00	
•	0.00 →	• 0.31	∢ 0.00	
VALUI	VALUES AFTER 4 ITERATIONS			

000	Gridworl	d Display		
0.51)	0.72 →	0.84)	1.00	
• 0.27		• 0.55	-1.00	
• 0.00	0.22 →	• 0.37	∢ 0.13	
VALU	VALUES AFTER 5 ITERATIONS			

000	Gridworl	d Display	
0.59 ▸	0.73)	0.85)	1.00
		^	
0.41		0.57	-1.00
		•	
0.21	0.31 →	0.43	∢ 0.19
VALUE	VALUES AFTER 6 ITERATIONS		

000	Gridworl	d Display	
0.62)	0.74 ▸	0.85)	1.00
^		•	
0.50		0.57	-1.00
▲ 0.34	0.36 →	▲ 0.45	∢ 0.24
VALUE	VALUES AFTER 7 ITERATIONS		

000	○ ○ Gridworld Display				
0.63)	0.74 ▸	0.85)	1.00		
^		^			
0.53		0.57	-1.00		
^		•			
0.42	0.39)	0.46	∢ 0.26		
VALUI	VALUES AFTER 8 ITERATIONS				

000	Gridworl	d Display		
0.64)	0.74 →	0.85)	1.00	
•		•		
0.55		0.57	-1.00	
• 0.46	0.40 →	• 0.47	∢ 0.27	
VALUE	VALUES AFTER 9 ITERATIONS			

000	Gridworl	d Display		
0.64)	0.74)	0.85)	1.00	
▲ 0.56		• 0.57	-1.00	
▲ 0.48	∢ 0.41	• 0.47	∢ 0.27	
VALUE	VALUES AFTER 10 ITERATIONS			

000		Gridworl	d Display	
	0.64 →	0.74 →	0.85)	1.00
	• • E6		•	1.00
	0.56		0.57	-1.00
	▲ 0.48	∢ 0.42	• 0.47	∢ 0.27
	VALUES AFTER 11 ITERATIONS			

000	Gridworl	d Display		
0.64 ▸	0.74 →	0.85)	1.00	
		•		
0.57		0.57	-1.00	
•		•		
0.49	∢ 0.42	0.47	∢ 0.28	
VALUE	VALUES AFTER 12 ITERATIONS			

000	O Gridworld Display			
	0.64)	0.74)	0.85)	1.00
	• 0.57		• 0.57	-1.00
	• 0.49	∢ 0.43	▲ 0.48	∢ 0.28

VALUES AFTER 100 ITERATIONS

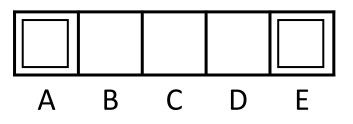
Outline

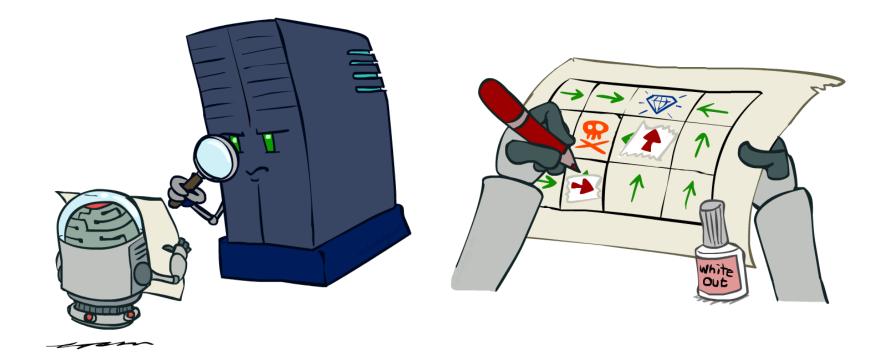
MDP Setup

- Expectimax: State, actions, non-deterministic transition functions
- Rewards
 - Walk-through of super-simple value iteration
- Discounting, γ $\overleftarrow{\phi}$

Solving MDPs

- Method 1) Value iteration
 - Value iteration convergence
- Bellman equations
- Policy Extraction
- Method 2) Policy Iteration





Policy Iteration

Two Methods for Solving MDPs

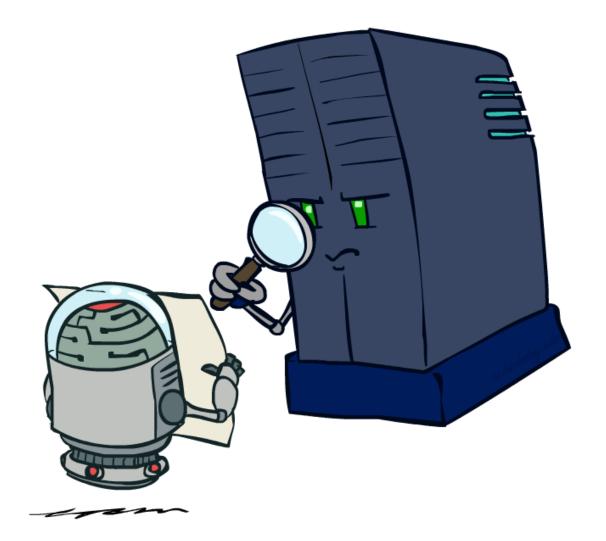
Value iteration + policy extraction

- Step 1: Value iteration: calculate values for all states by running one ply of the Bellman equations using values from previous iteration until convergence
- Step 2: Policy extraction: compute policy by running one ply of the Bellman equations using values from value iteration

Policy iteration

- Step 1: Policy evaluation: calculate values for some fixed policy (not optimal values!) until convergence
- Step 2: Policy improvement: update policy by running one ply of the Bellman equations using values from policy evaluation
- Repeat steps until policy converges

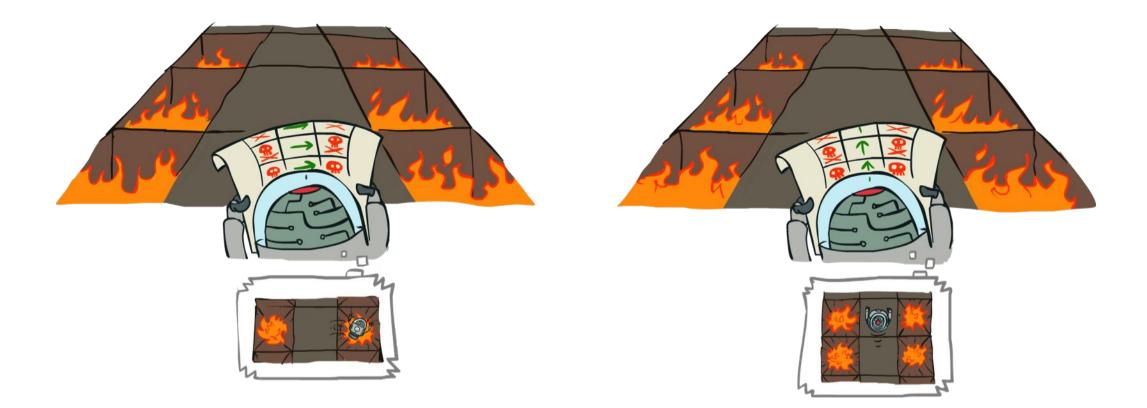
Policy Evaluation



Example: Policy Evaluation

Always Go Right

Always Go Forward



Example: Policy Evaluation

Always Go Right

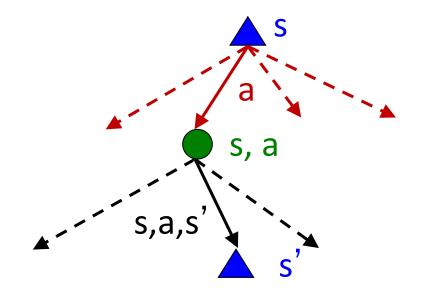
-10.00	100.00	-10.00
-10.00	1.09 🕨	-10.00
-10.00	-7.88 ▶	-10.00
-10.00	-8.69 ▶	-10.00

Always Go Forward

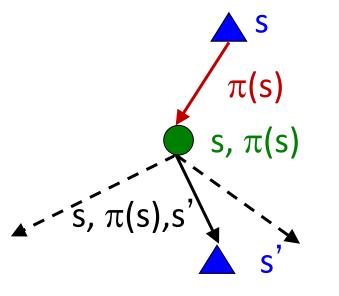
-10.00	100.00	-10.00
-10.00	▲ 70.20	-10.00
-10.00	▲ 48.74	-10.00
-10.00	▲ 33.30	-10.00

Policy Evaluation: Fixed Policies

Normally: Do the optimal action



Fixed policy: Do what π says to do



Expectimax trees max over all actions to compute the optimal values

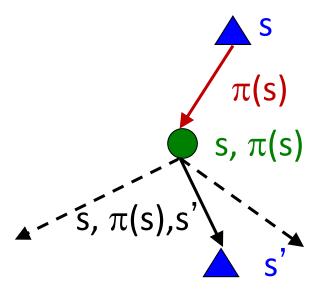
If we fixed some policy $\pi(s)$, then the tree would be simpler

- only one action per state
- In though the tree's value would depend on which policy we fixed

Policy Evaluation: Utilities for a Fixed Policy

Another basic operation: compute the utility value of a state s under a fixed (generally non-optimal) policy

Define the utility of a state s, under a fixed policy π : $V^{\pi}(s)$ = expected sum of discounted rewards starting in s and following π



Recursive relation (one-step look-ahead / Bellman equation):

$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

Policy Evaluation

How do we calculate the V's for a fixed policy π ?

Idea 1: Turn recursive Bellman equations into updates (like value iteration)

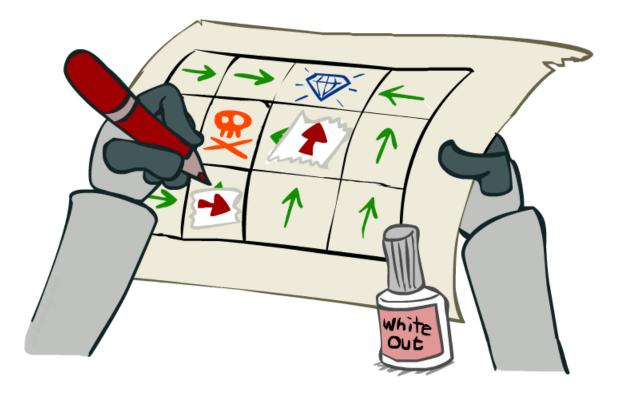
$$V_0^{\pi}(s) = 0$$

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')$$

Efficiency: O(S²) per iteration

Idea 2: Without the maxes, the Bellman equations are just a linear systemSolve with your favorite linear system solver

Policy Improvement



Policy Iteration:

Evaluation: For fixed current policy π , find values with policy evaluation:

Iterate until values converge:

$$V_{k+1}^{\pi_i}(s) \leftarrow \sum_{s'} T(s, \pi_i(s), s') \left[R(s, \pi_i(s), s') + \gamma V_k^{\pi_i}(s') \right]$$

Improvement: For fixed values, get a better policy using **policy extraction**

One-step look-ahead:

$$\pi_{i+1}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_i}(s') \right]$$

Policy iteration

- It's still optimal!
- Can converge faster under some conditions

Two Methods for Solving MDPs

Value iteration + policy extraction

Step 1: Value iteration:

 $V_{k+1}(s) = \max_{a} \sum_{s'} P(s'|s, a) [R(s, a, s') + \gamma V_k(s')], \forall s \text{ until convergence}$ • Step 2: Policy extraction:

$$\pi_V(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} P(s'|s, a) [R(s, a, s') + \gamma V(s')], \forall s$$

Policy iteration

Step 1: Policy evaluation:

 $V_{k+1}^{\pi}(s) = \sum_{s'} P(s'|s, \pi(s)) [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')], \forall s \text{ until convergence}$

Step 2: Policy improvement:

$$\pi_{new}(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V^{\pi_{old}}(s')], \forall s$$

Repeat steps until policy converges

Comparison

Both value iteration and policy iteration compute the same thing (all optimal values)

In value iteration:

- Every iteration updates both the values and (implicitly) the policy
- We don't track the policy, but taking the max over actions implicitly recomputes it

In policy iteration:

- We do several passes that update values with fixed policy (each pass is fast because we consider only one action, not all of them; however we do many passes)
- After the policy is evaluated, a new policy is chosen (with (arg)max like value iteration)
- The new policy will be better (or we're done)

(Both are dynamic programs for solving MDPs)

Summary: MDP Algorithms

So you want to....

- Compute optimal values: use value iteration or policy iteration
- Compute values for a particular policy: use policy evaluation
- Turn your values into a policy: use policy extraction (one-step lookahead)

These all look the same!

- They basically are they are all variations of Bellman updates
- They all use one-step lookahead expectimax fragments
- They differ only in whether we plug in a fixed policy or max over actions

$$\begin{array}{ll} \mbox{Standard expectimax:} & V(s) = \max_{a} \sum_{s'} P(s'|s,a) V(s') \\ \mbox{Bellman equations:} & V^*(s) = \max_{a} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V^*(s')] \\ \mbox{Value iteration:} & V_{k+1}(s) = \max_{a} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V_k(s')], & \forall s \\ \mbox{Q-iteration:} & Q_{k+1}(s,a) = \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma \max_{a'} Q_k(s',a')], & \forall s,a \\ \mbox{Policy extraction:} & \pi_V(s) = \operatorname*{argmax}_{a} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V(s')], & \forall s \\ \mbox{Policy evaluation:} & V_{k+1}^{\pi}(s) = \sum_{s'} P(s'|s,\pi(s)) [R(s,\pi(s),s') + \gamma V_k^{\pi}(s')], & \forall s \\ \mbox{Policy improvement:} & \pi_{new}(s) = \operatorname*{argmax}_{a} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V^{\pi_{old}}(s')], & \forall s \\ \end{array}$$

 $V(s) = \max_{a} \sum P(s'|s, a) V(s')$ Standard expectimax: $V^{*}(s) = \max_{a} \sum P(s'|s,a) [R(s,a,s') + \gamma V^{*}(s')]$ **Bellman equations:** $V_{k+1}(s) = \max_{a} \sum P(s'|s, a) [R(s, a, s') + \gamma V_k(s')],$ Value iteration: $\forall s$ $Q_{k+1}(s,a) = \sum P(s'|s,a) [R(s,a,s') + \gamma \max_{a'} Q_k(s',a')], \quad \forall s,a$ **Q-iteration:** $\pi_V(s) = \operatorname{argmax}_a \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V(s')],$ **Policy extraction:** $\forall s$ $V_{k+1}^{\pi}(s) = \sum P(s'|s, \pi(s)) [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')],$ **Policy evaluation:** $\forall s$ $\pi_{new}(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V^{\pi_{old}}(s')],$ Policy improvement:

 $\forall s$

$$\begin{array}{ll} \mbox{Standard expectimax:} & V(s) = \max_{a} \sum_{s'} P(s'|s,a) V(s') \\ \mbox{Bellman equations:} & V^*(s) = \max_{a} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V^*(s')] \\ \mbox{Value iteration:} & V_{k+1}(s) = \max_{a} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V_k(s')], & \forall s \\ \mbox{Q-iteration:} & Q_{k+1}(s,a) = \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma \max_{a'} Q_k(s',a')], & \forall s,a \\ \mbox{Policy extraction:} & \pi_V(s) = \operatorname*{argmax}_{a} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V(s')], & \forall s \\ \mbox{Policy evaluation:} & V_{k+1}^{\pi}(s) = \sum_{s'} P(s'|s,\pi(s)) [R(s,\pi(s),s') + \gamma V_k^{\pi}(s')], & \forall s \\ \mbox{Policy improvement:} & \pi_{new}(s) = \operatorname*{argmax}_{a} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V^{\pi_{old}}(s')], & \forall s \\ \end{array}$$

$$\begin{array}{ll} \text{Standard expectimax:} & V(s) = \max_{a} \sum_{s'} P(s'|s,a)V(s') \\ \text{Bellman equations:} & V^*(s) = \max_{a} \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma V^*(s')] \\ \text{Value iteration:} & V_{k+1}(s) = \max_{a} \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma V_k(s')], \quad \forall s \\ \text{Q-iteration:} & Q_{k+1}(s,a) = \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma \max_{a'} Q_k(s',a')], \quad \forall s,a \\ \text{Policy extraction:} & \pi_V(s) = \operatorname*{argmax}_a \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma V(s')], \quad \forall s \\ \text{Policy evaluation:} & V_{k+1}^{\pi}(s) = \sum_{s'} P(s'|s,\pi(s))[R(s,\pi(s),s') + \gamma V_k^{\pi}(s')], \quad \forall s \\ \text{Policy improvement:} & \pi_{new}(s) = \operatorname*{argmax}_a \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma V^{\pi_{old}}(s')], \quad \forall s \\ \end{array}$$