
15-281: AI: Representation and Problem Solving

Recitation 6

Fall 2024

October 4

1 Vocabulary Check

Define each of the following terms:

1. Interference

One action’s effect deletes or negates a precondition of the other.

2. Inconsistent effects/Inconsistency

One action’s effect deletes or negates an effect of the other.

3. Competing Needs

One action’s precondition is the negation of a precondition of the other.

1

15-281: AI: Representation and Problem Solving

Recitation 6

Fall 2024

October 4

2 Compare and Contrast

1. What are some ways to find a plan using a classical planning environment model?

Naive search (BFS), graph plan.

2. What classical planning assumptions are relaxed when using the GraphPlan heuristic? Why is this
helpful compared to naive search?

We are assuming we can take multiple non-mutex actions at the same time.

This is useful since in this environment, taking multiple steps at a time will allow us to add multiple
goals, finishing the search problem much quicker than the tradidional one action method

(Also, if we return a plan that requires we take multiple actions at the same time, we can take them in
any order with the same effect since they are non-mutex)

2

15-281: AI: Representation and Problem Solving

Recitation 6

Fall 2024

October 4

3 Journey to Success(or-State Axioms)

1. First, let’s review some definitions. What are successor-state axioms?

Successor-state axioms are axioms outlining what preconditions must be true in order to ensure that
the state at the next time step will be specified. By definition, it is an axiom that sets the truth value
of F t+1 (where F is some fluent, or changeable variable in an environment) in one of two ways:

• The action at time t causes F to be true at t+ 1 (which refers to ActionCausesF t)
• F was already true at time t and the action at time t does not cause it to be false.

It has the following schema: F t+1 ⇐⇒ ActionCausesF t ∨ (F t ∧ ¬ActionCausesNotF t).
We use successor-state axioms to ensure that each state we compute is the result of legal action.

2. Consider the following Mini Pacman grid. In this simplified world, the only available actions are Left,
Right, and Stay. The only possible states are Pacman(1,1) and Pacman(2,1). If Pacman tries to move
into a wall, he will stay in the same state.

Notice that Pacman’s state and actions are both fluent, so we can set up successor-state axioms to
define how Pacman moves in this world. Write the successor-state axiom corresponding to Figure 4.

Figure 1: Mini Pacman Grid

Successor-state axiom: Pacmant+1
(2,1) ⇐⇒ Rightt ∨ (Pacmant

(2,1) ∧ ¬Leftt)

F t+1 is Pacmant+1
(2,1)

ActionCausesF t is Rightt

(F t ∧ ¬ActionCausesNotF t) is (Pacmant
(2,1) ∧ ¬Leftt)

Think about how you could prevent Pacman from being in multiple states or taking multiple actions
at the same time. You will get to explore this in P3!

3. Suppose that at time 0, Pacman is somewhere on a 5x5 grid ((1,1) at the bottom left, (5,5) at the top
right) with only walls on the borders.

For each of the following, state whether the entailment relation is correct. Explain your reasoning.

3

15-281: AI: Representation and Problem Solving

Recitation 6

Fall 2024

October 4

(a) Upt ∨Rightt |= ¬Pacmant+1
(1,1)

True, there is no square that would lead to square (1,1) after moving up or right

(b) ¬Pacmant+1
(1,1) |= Upt ∨Rightt

False, a counterexample would be starting at square (3,2), and an action left leading to square
(2,2)

(c) Up0 ∧ Up2 ∧ Up3 |= Pacman4
(x,y) : x ∈ [1, 5], y ∈ [4, 5]

False, this is almost true, however, if Pacman starts at row 1 and the action at step 1 was down,
Pacman would end at row 3

(d) Upt ∧Rightt |= ¬Pacmant+1
(5,5)

True

There is no model that fits the action at a time step being both Up and Right. Therefore, for
every model that fits this, the right side must also be true

(similar to being vacuously true for implications)

(e) ¬Pacmant+1
(5,5) |= Upt ∧Rightt

False, since there is no model such that the right side is true, and there is at least one model such
that the left side is true

(f) Downt+1 ∧ Leftt+1 |= Upt ∧Rightt

True, since there are no valid models in the left or the right

(similar to False =⇒ False)

4

15-281: AI: Representation and Problem Solving

Recitation 6

Fall 2024

October 4

4 Symbolic Planning - Crate Problem

In the Crane problem, you are given a crane, a package and a truck. The package starts on the left, the truck
on the right, and the crane faces the left. The goal of this is to load the package onto the truck and have the
crane be facing the left.

The crane can swing between left and right, with or without a payload, and it can pick up the crate if it
is on the same side. The crate can only be loaded onto the truck using the crane.

(a) Draw the planning graph for the first 3 moves. You may use pictures instead of propositions.

5

15-281: AI: Representation and Problem Solving

Recitation 6

Fall 2024

October 4

(b) Formulate the crate problem as a symbolic plan. You will need to define your variables, instances,
start/goal states, and operators.

See provided sample code, bottom of the document

6

15-281: AI: Representation and Problem Solving

Recitation 6

Fall 2024

October 4

(c) Draw the first two levels of the Graph Plan graph.

In the following diagram, the blue lines represent the propositions added as the result of an action
and the dotted purple lines represent the propositions deleted at the result of that action. The green
squares in the action levels represent no-op’s.

(d) Identify the exclusive actions in your graph and determine which type of mutex each is.

In the level A0, Swing(R) and Pickup interfere with each other. In level A1, one example would be
Swing(L) and Swing(R) being inconsistent.

7

15-281: AI: Representation and Problem Solving

Recitation 6

Fall 2024

October 4

5 Mutex relation? I don’t even know her!

Pinky is getting food from a Chuck E. Cheese. Pinky has the following actions:

• Move(A,B):

– Preconditions: At(A)

– Add list: At(B)

– Delete list: At(A)

• Buy(Cheese):

– Preconditions: At(ChuckyCheese), Rich

– Add list: Has(Cheese), ¬ Rich

• Gamble

– Preconditions: At(ChuckyCheese),Rich

– Add list: ¬ Rich

– Delete list: Rich

• ATM

– Precondition: At(ChuckyCheese),¬ Rich

– Add list: Rich

– Delete list: ¬ Rich

• Eat(Cheese):

– Preconditions: Has(Cheese)

– Add list: Full

– Delete list: Has(Cheese)

The start state contains the predicates Rich and At(Home).
The goal state is any state containing Full.
Below is the corresponding GraphPlan graph:

8

15-281: AI: Representation and Problem Solving

Recitation 6

Fall 2024

October 4

(a) Based on the above graph, list two actions that are mutex via inconsistent effects in level A0.

No-op of At(Home) and Move(Home, ChuckyCheese)

(b) Based on the above graph, list two actions that are mutex via Interference in level A1

Buy(Cheese) and Gamble()

(c) Based on the above graph, list two actions that are mutex via Competing needs in level A2.

No-op of Rich and ATM

9

15-281: AI: Representation and Problem Solving

Recitation 6

Fall 2024

October 4

Crane planning problem

from graphplanUtils import *

Types

OBJ = ’Object’

DIR = ’Direction’

LOC = ’Location’

Instances

truck = Instance(’truck’, LOC)

crane = Instance(’crane’, LOC)

crate = Instance(’crate’, OBJ)

ground = Instance(’ground’, LOC)

left = Instance(’left’, DIR)

right = Instance(’right’, DIR)

Instances = [truck, crane, crate, left, right, ground]

#Start and Goal States

Start = [Proposition(’on’, crane, left),

Proposition(’on’, truck, right),

Proposition(’on’, crate, ground),

Proposition(’on’, crate, left)]

Goal = [Proposition(’on’, crane, left), Proposition(’on’, crate, truck)]

Variables

v_to_side = Variable(’to_side’, DIR)

v_from_side = Variable(’from_side’, DIR)

Operators

o_pickup = Operator(’pickup’,

Preconditions

[Proposition(’on’, crate, ground),

Proposition(’on’, crate, v_from_side),

Proposition(’on’, crane, v_from_side)],

Adds

[Proposition(’on’, crate, crane)],

Deletes

[Proposition(’on’, crate, v_from_side),

Proposition(’on’, crate, ground)])

o_swing = Operator(’swing’,

Preconditions

[Proposition(’on’, crane, v_from_side),

Proposition(NOT_EQUAL, v_from_side, v_to_side)],

Adds

[Proposition(’on’, crane, v_to_side)],

Deletes

[Proposition(’on’, crane, v_from_side)])

o_load = Operator(’load’,

10

15-281: AI: Representation and Problem Solving

Recitation 6

Fall 2024

October 4

Preconditions

[Proposition(’on’, crane, v_from_side),

Proposition(’on’, truck, v_from_side),

Proposition(’on’, crate, crane)],

Adds

[Proposition(’on’, crate, v_from_side),

Proposition(’on’, crate, truck)],

Deletes

[Proposition(’on’, crate, crane)])

Operators=[o_pickup, o_swing, o_load]

#Problems

prob1 = GraphPlanProblem(’dockloading’,

Instances

Instances,

Operators

Operators,

Initial state

Start,

Goals

Goal)

prob1.solve()

prob1.display()

prob1.dump()

11

	Vocabulary Check
	Compare and Contrast
	Journey to Success(or-State Axioms)
	Symbolic Planning - Crate Problem
	Mutex relation? I don't even know her!

