
1

Copyright © 2006 – Brad A. Myers

Invited Research Overview:

End-User Programming

Brad Myers, Andrew Ko, and Margaret Burnett

Human Computer School of Elec. Engr.
Interaction Institute & Computer Science

Carnegie Mellon Univ. Oregon State Univ.

Copyright © 2006 - Brad A. Myers, CMU 22

Empowering Users

� One of the key features of computers is
programmability
� Perform the specific actions desired
� But only if know how

� Spreadsheets enable people to define their
own computations
� Invented late 1970’s
� One of the key reasons

personal computers became
popular for business

� How to generalize to other areas?

Copyright © 2006 - Brad A. Myers, CMU 33

Malleability is Key Today

� Hottest new thing on the web is end-user
authoring
� Blogs
� Flickr
� MySpace

� Key is personalization
� End users shape the artifact

� Raises expectations for the level of
personalization, customization generally

Copyright © 2006 - Brad A. Myers, CMU 44

Definitions

� “Program”
� ‘‘A set of statements that can be submitted as a

unit to some computer system and used to
direct the behavior of that system’’

– Oxford Dictionary of Computing

� “Programming”
� ‘‘The process of transforming a mental plan of

desired actions for a computer into a
representation that can be understood by the
computer’’ – Jean-Michel Hoc and Anh Nguyen-Xuan

Copyright © 2006 - Brad A. Myers, CMU 55

Definitions, cont.

� “Professional Programmer”
� Someone whose primary job function is to write

or maintain software
� Typically have significant training in

programming (e.g., BS in CS)

� “Novice Programmer”
� Someone who is learning to be a professional

programmer

Copyright © 2006 - Brad A. Myers, CMU 66

Definitions, cont.

� “End-User Programmer” (EUP)
� People who write programs, but not as their

primary job function
� Instead, they must write programs in support of

achieving their main goal, which is something
else

� Covers a wide range of programming expertise
� Business executives and secretaries
� Physicists

2

Copyright © 2006 - Brad A. Myers, CMU 77

Examples of EUP
� Accounting (spreadsheets)
� Analysts using MatLab
� Creating a web page
� Recording Macros in Word
� Automating office tasks
� Business software (SAP programming)
� “Programming” VCRs, Microwaves
� Scientific research
� Authoring educational software
� Creating email filters
� Musicians configuring synthesizers
� Mashups
� Entertainment (e.g., behaviors in The Sims) Copyright © 2006 - Brad A. Myers, CMU 88

Other Names

� Also called “End User Development” (EUD)
� As in European Commission’s

� Some “Domain-Specific Languages” (DSL)
� Often created for end-user programmers

� Visual (Graphical) Programs
� Sometimes created for EUP

� “Scripting” languages, “Macros”
� Rapid Application Development (RAD)

Copyright © 2006 - Brad A. Myers, CMU 99

How Many Today?

� Most people who
write programs
today are not
professional
programmers

(based on data from US
Bureau of Labor Statistics)

United States, at Work, 2006

90,000,000

12,000,000

3,000,000

50,000,000

0

25,000,000

50,000,000

75,000,000

100,000,000

U
sers

Spreadsheets
and D

Bs

Self-
D

escribed
Program

m
ers

Professional
Program

m
ers Copyright © 2006 - Brad A. Myers, CMU 1010

Languages Being Used
� For the 12 millions self-

described programmers
� Caveats:

� Probably outdated
� Doesn’t count the

50,000,000 spreadsheet
programmers

� Cobol Æ SAP, etc.
� .Net (C#) is rising

Number of Programmers, by Language

3,500,000

2,500,000

1,500,000

1,000,000

120,000

0

1,000,000

2,000,000

3,000,000

4,000,000

Visu
al B

as
ic

Ja
va

C++

Borl
an

d's
 D

elp
hi

Small
tal

k

Copyright © 2006 - Brad A. Myers, CMU 1111

History
� Long History:

� Original HCI!
� 1973 “Psychology of Programming”

� “Software Psychology”
� Ben Shneiderman book, 1980

� “Empirical Studies of Programming” (ESP)
� Workshops from 1986 through 1999

� “Psychology of Programming”
� Psychology of Programming Interest Group (PPIG)

� from 1987 and PPIG’06 = 18th workshop

� But mostly focused on novice or
professional

Copyright © 2006 - Brad A. Myers, CMU 1212

“Millions for compilers but hardly a penny for
understanding human programming language use.
Now, programming languages are obviously
symmetrical, the computer on one side, the
programmer on the other. In an appropriate science
of computer languages, one would expect that half the
effort would be on the computer side, understanding
how to translate the languages into executable form,
and half on the human side, understanding how to
design languages that are easy or productive to use....
The human and computer parts of programming
languages have developed in radical asymmetry.”

Allen Newell and Stuart Card, 1985:

3

Copyright © 2006 - Brad A. Myers, CMU 1313

Renewed Interest Recently

� Significant numbers of papers at
CHI, VL/HCC, ICSE, UIST and many
other conferences!

� New book from Springer
� Areas like End-User Software

Engineering (EUSE)
� End-users are and will program
� How to make their software more reliable?
� EUSES – NSF funded consortium
� 3 papers and a workshop at CHI’06

� This overview! ☺
Copyright © 2006 - Brad A. Myers, CMU 1414

Consequences of Lack of Attention
� Lots of errors attributed to End-User Programming

of spreadsheets:
� Columbia Housing Authority admitted to overpaying by

$118,387 due to a spreadsheet data-entry error
(February 22, 2006)

� New York Times, Oct 30th, 2003 - $1.2 Billion
Spreadsheet Error at Fannie Mae

� TransAlta Corp. took $24 million charge to earnings due
to cut-and-paste error in an Excel spreadsheet (June
3rd, 2003)

� Auditor, major accounting firm:
“...in 6 years work, checking literally hundreds of
business-critical models, ... my team have never failed
to find errors.”

� …. (many more!)
� See http://eusesconsortium.org/euperrors/

Copyright © 2006 - Brad A. Myers, CMU 1515

Consequences, 2
� Also, errors in:

� Web pages
� Email filtering rules

� From the WEUSE II workshop:
� Clinical customization package used by medical

personnel reports the need for better reuse and
debugging support

� SysAdmins need better testability of database and other
sorts of scripts

� Issues with reuse of MATLAB applications
� Difficulty of learning

� Potentially millions of people who try to learn HTML,
Flash, Visual Basic, Javascript, spreadsheets, etc., but
give up because of one or two insurmountable errors

Copyright © 2006 - Brad A. Myers, CMU 1616

Why is Programming Difficult?

� Some difficulty may be intrinsic to
programming
� Problem solving
� Precise specification of algorithms

� How much difficulty can be attributed to
usability problems?
� Programming languages are a kind of user

interface
� Most language designs do not emphasize

usability

Copyright © 2006 - Brad A. Myers, CMU 1717

Evidence That Difficult

� End User Programming is still research goal
� Researchers have tried many approaches

� Surveyed next

� Many commercial attempts have moved
away from addressing end users
� E.g., Visual Basic & Flash
� Increasing language complexity and features

Copyright © 2006 - Brad A. Myers, CMU 1818

class HelloWorldApp {
public static void main(String[] args) {

System.out.println("Hello World!");
}

}

Hello World!

� 3 kinds of parentheses and 9 special words!
� Compared to click and type: “Hello World”

4

Copyright © 2006 - Brad A. Myers, CMU 1919

Goal: Gentle Slope Systems

Difficulty
of

Use

Goal

Director (v6)

Lingo

C Programming

Visual Basic

Basic

C or C# Programming

HyperCard

HyperTalk

xCmds

Swing

Java

Program Complexity and Sophistication

Email
Filters

Low
Threshold High

Ceiling

Wide
Walls

Copyright © 2006 - Brad A. Myers, CMU 2020

Outline

� NOTE: Not Comprehensive
� Empirical studies of programming

� Novices, professionals, EUP
� Approaches:

� Visual Programming
� Programming by Example
� Simpler Textual Languages
� Better Environments

� Recent: Focus on Reliability
� End-User Software Engineering (EUSE)

Copyright © 2006 - Brad A. Myers, CMU 2121

Empirical Studies of Programming

� Studies of why programming difficult to learn
� Identified collections of issues with languages
� Mostly relevant to EUP
� Survey: [Pane 1996]

Copyright © 2006 - Brad A. Myers, CMU 2222

Techniques for Studies
� Many observations and intuition based on teaching
� Green & Petre’s “Cognitive Dimensions” [1996]

� 13 criteria for evaluating programming systems
� E.g., “Viscosity” – how hard to change
� “Consistency”, “Premature Commitment”, etc.
� Low-cost analytical tool that can avert a lot of problems

at design time
� Very influential in a number of language/environment

design efforts
� “Natural Programming” approach [Myers, Pane, Ko]

� See how people think about a task
� Design a tool to support the way they are thinking
� Evaluate how well the tool works with user studies

Copyright © 2006 - Brad A. Myers, CMU 2323

Empirical Studies of Programming, cont.

� Many Syntax Problems observed
� E.g., if (a = 0)

� Small typos easily missed Æ wrong
programs
� Incorrect indentation Æ code is in a control

structure
[du Boulay1989a].

� Syntax, idioms, strategies for programming &
debugging

� Wrong words: STOP doesn’t mean halt &
exit (Logo) [Kurland 1989]

Copyright © 2006 - Brad A. Myers, CMU 2424

Empirical Studies of Programmers, cont.

� Inappropriate formatting hinders reading (e.g.,
highlighting keywords instead of content words)

Baecker, R.M. and
Marcus, A., Human
Factors and Typography
for More Readable
Programs, ACM Press,
Addison-Wesley, 1990

5

Copyright © 2006 - Brad A. Myers, CMU 2525

Empirical Studies of Programmers, cont.

� Many studies about the differences between
novices and experts
� E.g., experts know more “schemas” or “plans”

and how to put them together [Soloway]
� E.g., Running-Total-Loop Plan (sum up a set of

numbers); Dirty-Bit Flag Plan (a flag is set if some
data needs to be rewritten out to disk)

� Novices do not know debugging strategies

Copyright © 2006 - Brad A. Myers, CMU 2626

More studies, cont.

� Incremental testing important to understanding
� Rapid test, revise cycle with good feedback

� Spreadsheets provide immediate feedback

� Appropriate metaphor important
� “von Neumann machine” model has no physical world

counterpart, which is an important stumbling block for
novices [du Boulay]
� E.g., variables as “box”, but can’t hold more than one value
� Value still in J after I = J [Putnam 1989, Sleeman 1988]

� Spreadsheet metaphor works better [Lewis 1987]

Copyright © 2006 - Brad A. Myers, CMU 2727

More Recent Empirical Studies
� [Pane and Myers, 2000]: how people express algorithms

Usually Pacman moves like this.

Now let's say we add a wall.

Pacman moves like this.

Not like this.

Do this: Write a statement that summarizes how I
(as the computer) should move Pacman in relation
to the presence or absence of other things.

Copyright © 2006 - Brad A. Myers, CMU 2828

Examples of Results [Pane]
� Rule-based style

“If PacMan hits the wall, he stops.”

� Set operations instead of iterations
“When PacMan eats all of the dots, he goes to the next level.”

� “And”, “Or”, “Not” don’t match computer interpretation
� … men and women, … not an apple or pear

� Most arithmetic used natural language style
“When PacMan eats a big dot, the score goes up 100.”

� Operations suggest data as lists, not arrays
� People don’t make space before inserting

� Objects normally moving
“If PacMan hits a wall, he stops.”

� so objects remember their own state

()

Copyright © 2006 - Brad A. Myers, CMU 2929

Barriers in Novice use of VB

� Studied 40 novices using Visual Basic.NET
[Ko & Myers 2004]

� Analyzed 74 barriers that were not able to
overcome
� Design – inherently hard algorithm, e.g., sorting
� Selection – can’t find how to do it
� Use – can’t figure out how it is used
� Coordination – how to use 2 things together
� Understanding – what just happened?

Copyright © 2006 - Brad A. Myers, CMU 3030

Outline

� Empirical studies of programming
� Novices, professionals, EUP

� Approaches:
� Visual Programming
� Programming by Example
� Simpler Textual Languages
� Better Environments

� Recent: Focus on Reliability
� End-User Software Engineering (EUSE)

6

Copyright © 2006 - Brad A. Myers, CMU 3131

Visual Programming

� Harness human visual system
� Should be more “natural”

� Avoid syntax
� People were already using graphical

notations
� Flowcharts and Data flow, State-Transition

Diagrams, Wiring Diagrams, Petri nets, etc.
� Use these directly

Copyright © 2006 - Brad A. Myers, CMU 3232

Examples of Visual Programming
� Flowcharts and Data flow

� Earliest: Grail [Ellis, 1969]
� Pict [Glinert 1984]
� Prograph [Pietrzykowski 84]
� LabView [National Instruments, 1986]
� Lego Mindstorms [1998]
� Apple’s Automator

� Spreadsheet systems
� Forms3

� Before and after pictures
� Agentsheets [Repenning 91]
� Kidsim/Cocoa/Stagecast Creator [Smith 94]

� Studies of VP – Green & Petre

Copyright © 2006 - Brad A. Myers, CMU 3333

Pict

� [Glinert 1984]
� Flowchart
� Only 4 variables
� Animate execution

Copyright © 2006 - Brad A. Myers, CMU 3434

Prograph

� Innovative data-flow
format

� 1983
� TGS Æ Prograph, Inc
Æ “Pictorius” Æ /

Copyright © 2006 - Brad A. Myers, CMU 3535

National Instruments Labview

� 1986

� And today

Copyright © 2006 - Brad A. Myers, CMU 3636

Lego Mindstorms

� 1998
� “Nxt” version coming fall’06

� “Powered by LabView”

7

Copyright © 2006 - Brad A. Myers, CMU 3737

Apple’s Automator

� 2005
� Sequence of operations
� Transform data
� No control structures

Copyright © 2006 - Brad A. Myers, CMU 3838

Spreadsheet Systems
� Leverage power and success of

spreadsheets for other domains
� E.g., Forms3

� Burnett, 1991
� More general

code for formulas
� Graphics in

cells

Copyright © 2006 - Brad A. Myers, CMU 3939

Agentsheets

� [Repenning 91]
� Agentsheets.com
� Before and after

pictures as rules

Copyright © 2006 - Brad A. Myers, CMU 4040

KidSim/Cocoa/Stagecast Creator

� [Smith, Cypher
& Spohrer, 94]

� Stagecast ‘97
� Before and

after pictures

Copyright © 2006 - Brad A. Myers, CMU 4141

Studies of VP

� Claims that VP would be better due to 2-D more
“natural” and no syntax

� Formal studies show some benefits for novices
� But:

� Not a panacea: every notation has advantages and
disadvantages

� Graphical programs are no better for understanding
than text [Green 91, 92][Moher 1993]

� Visual programs are usually very difficult to edit (“high
viscosity”) [Green 96]

� Take more space than text

Copyright © 2006 - Brad A. Myers, CMU 4242

Outline

� Empirical studies of programming
� Novices, professionals, EUP

� Approaches:
� Visual Programming
� Programming by Example
� Simpler Textual Languages
� Better Environments

� Recent: Focus on Reliability
� End-User Software Engineering (EUSE)

8

Copyright © 2006 - Brad A. Myers, CMU 4343

Programming by Example

� Create program by performing the steps by
example
� Assumes user knows how to do the problem concretely
� Avoids problems of abstraction
� [Cypher 93], [Lieberman 2001]

� Pygmalion [Smith 77]
� Smallstar [Halbert 81, 84]
� Peridot [Myers 86]
� Comic strip:

� Chimera [Kurlander 92]
� Pursuit [Modugno 93]

� Gamut [McDaniel 96]

Copyright © 2006 - Brad A. Myers, CMU 4444

Pygmalion

� [Smith 77]
� Show the computer

the desired steps

Copyright © 2006 - Brad A. Myers, CMU 4545

SmallStar

� Halbert 81,84
� By example in

simulation of the
Star

� Property sheets
for data
generalizations

Copyright © 2006 - Brad A. Myers, CMU 4646

Peridot

� [Myers 86]
� Show behavior of

controls (widgets)
by example

� Leverage power
of Direct
Manipulation
� Directly build dynamic parts of interface

� Inferred constraints and mouse behaviors

Copyright © 2006 - Brad A. Myers, CMU 4747

As a “Comic Strip”

� Chimera [Kurlander 1988]
� Pursuit [Modugno 1993]

Copyright © 2006 - Brad A. Myers, CMU 4848

Gamut

� [McDaniel 96]
� Inferred complex

behaviors
� “Do Something”

and “Stop That”
� Various kinds of

hints

9

Copyright © 2006 - Brad A. Myers, CMU 4949

Gamut Video

Copyright © 2006 - Brad A. Myers, CMU 5050

Evaluation of PBE

� Systems often need examples of different
cases
� People are not good at giving good examples

� Sometimes by example is harder than
expressing desired result: sorted, A AND B

� Need a way to represent code for
confirmation, understanding, editing
� If can understand code, why not just write it

Copyright © 2006 - Brad A. Myers, CMU 5151

Outline

� Empirical studies of programming
� Novices, professionals, EUP

� Approaches:
� Visual Programming
� Programming by Example
� Simpler Textual Languages
� Better Environments

� Recent: Focus on Reliability
� End-User Software Engineering (EUSE)

Copyright © 2006 - Brad A. Myers, CMU 5252

Simpler Textual Languages

� Basic (1963)
� Logo (1966)
� Pascal (1970)
� Hypertalk (1987)
� Hands (2002)
� Chickenfoot (2005)

Copyright © 2006 - Brad A. Myers, CMU 5353

Basic
� Designed in 1963, by

John George Kemeny and
Thomas Eugene Kurtz at
Dartmouth College

� Beginner's All-purpose
Symbolic Instruction Code

� To allow students not in
science fields to use computers

� Timesharing and then personal computers
� (Microsoft’s first product, in 1975)

Copyright © 2006 - Brad A. Myers, CMU 5454

Logo

� Created in 1966 at BBN by
Wally Feurzeig and
Seymour Papert

� Like Lisp without
parentheses

� First turtle was physical
device with wheels and a
pen

10

Copyright © 2006 - Brad A. Myers, CMU 5555

Pascal

� Created in 1970 by Niklaus Wirth to teach
structured programming

Copyright © 2006 - Brad A. Myers, CMU 5656

HyperTalk
� Created in 1987 for Apple’s HyperCard by Bill

Atkinson
� Targeted at EUP
� Programmers were called “authors” and programs

called “scripting”
� Event-based programming model
� HyperTalk designed to be similar to English

� Studies inconclusive on whether this helps
� Lots of problems with consistency

� Evolved into AppleScript

Copyright © 2006 - Brad A. Myers, CMU 5757

HANDS
� PhD of John Pane, 2002
� Designed based on studies
� Properties:

� All data visible on cards
� Metaphor of agent (Handy

the dog) operating on cards
� Natural language style for

code
� Domain-specific operations, like movement in a direction
� All operations can operate on single items or sets of items
� Sets can be dynamically constructed and used

� “Set all bees direction to 90”
Copyright © 2006 - Brad A. Myers, CMU 5858

HANDS Video

Copyright © 2006 - Brad A. Myers, CMU 5959

Chickenfoot

� [Bolin, 2005]
� EUP for the web

� Automating repetitive
operations

� Integrating multiple
web sites

� Transforming a web site's appearance

� Simpler version of JavaScript
� Adds pattern-matching to find parts of web page

Copyright © 2006 - Brad A. Myers, CMU 6060

Outline

� Empirical studies of programming
� Novices, professionals, EUP

� Approaches:
� Visual Programming
� Programming by Example
� Simpler Textual Languages
� Better Environments

� Recent: Focus on Reliability
� End-User Software Engineering (EUSE)

11

Copyright © 2006 - Brad A. Myers, CMU 6161

Better Environments

� Integrated development environment (IDE)
� Help with creating, maintaining, debugging

code
� Somewhat independent of the particular

language

Copyright © 2006 - Brad A. Myers, CMU 6262

Better Support in the Environment

� Original: Cornell Program Synthesizer, 1981
� Structured Editing

� MacGnome, 1988
� Alice, 2002

� HyperCard, 1987
� Director, 1988
� Visual Basic, 1991
� WhyLine, 2004

Copyright © 2006 - Brad A. Myers, CMU 6363

MacGnome
� [Miller, 1988]
� Structured editing

� But could edit as plain text for flexibility

� Also added data and code visualization

Copyright © 2006 - Brad A. Myers, CMU 6464

Alice

� Alice 2 [Pausch] (2002)
� Drag-and-drop program parts
� Pop-up menus for parameters
� Dramatic impact on learning and attitude

Copyright © 2006 - Brad A. Myers, CMU 6565

Alice Movie

Copyright © 2006 - Brad A. Myers, CMU 6666

Structured Editing Studies

� Studies show such editors can help novices
construct correct programs

� Acquiring language syntax is a barrier to
novices, especially for children

� But, make it very difficult to edit programs
after created
� E.g., re-organizing code, re-using arbitrary-size

pieces

12

Copyright © 2006 - Brad A. Myers, CMU 6767

HyperCard

� Atkinson (1987) tried to make user’s first
experience with the tool effective (“low
threshold”)

� Metaphor of designing cards
� Background, foreground objects
� Change cards in-place
� Now familiar from WWW and PowerPoint

� Programmed in HyperTalk (discussed
earlier)

� Successfully enabled significant EUP
Copyright © 2006 - Brad A. Myers, CMU 6868

Visual Basic

� Microsoft, first released, 1991
� 1997, VB5 Debuts – replaces Word Basic, Excel

Basic, etc.
� 2002, VB.NET Debuts

� For scripting, connecting components,
database access, etc.

� Interactive tool for placing widgets
(controls) such as buttons (= “Interface
Builder”)

� Event-based version of the Basic language

Copyright © 2006 - Brad A. Myers, CMU 6969

Visual Basic Picture

� VB.Net

Copyright © 2006 - Brad A. Myers, CMU 7070

Director

� MacroMedia (now Adobe) 1988
� Most people now use Flash

� Scripting language (“Lingo”) for animations,
with IDE

� Metaphor of a timeline “Score”, for when
animations start and stop
� Awkward for user-driven interactions

Copyright © 2006 - Brad A. Myers, CMU 7171

Director Picture

Copyright © 2006 - Brad A. Myers, CMU 7272

WhyLine
� Debugging tool [Ko & Myers, 2004]

� Surprising lack of support for debugging, even in EUP
tools

� Observation from studies: All of the observed
debugging problems could be addressed by “Why”
questions
� 32% were “why did”; 68% were “Why didn’t”
� Allow directly asking these questions in the UI
� Searches code and execution history for answers
� “Why didn’t” questions are answerable because only ask

about what was plausible to have happened.
� Answers use:

� Text message
� Visualization of the time line (“WhyLine”), and
� Highlighting of code and data

13

Copyright © 2006 - Brad A. Myers, CMU 7373

WhyLine video

Copyright © 2006 - Brad A. Myers, CMU 7474

Review of Results of User Study

� Subjects with WhyLine got 40% more tasks
completed
� 3.20 vs. 2.25, (p<.02)

� In matched situations, subjects with the
WhyLine debugged about 8 times faster
� Average: 20 seconds vs. 155.7 seconds,

(p<.02)

Copyright © 2006 - Brad A. Myers, CMU 7575

Outline

� Empirical studies of programming
� Novices, professionals, EUP

� Approaches:
� Visual Programming
� Programming by Example
� Simpler Textual Languages
� Better Environments

� Recent: Focus on Reliability
� End-User Software Engineering (EUSE)

Copyright © 2006 - Brad A. Myers, CMU 7676

End-User Software Engineering
� Initiative to make software created by end users more

reliable and correct
� Motivation:

� Spreadsheet errors
� Difficulty of debugging

� Bring “Software Engineering” principles to end users
� But not necessarily SE methods
� EUP will not follow strict processes, etc.

� Founded by Burnett, et. al. ~2002
� NSF ITR 2003-2007
� End Users Shaping Effective Software = EUSES consortium.

www.eusesconsortium.org
� Workshops on EUSE (WEUSE 1 at ICSE’05,

WEUSE II at CHI’06)
� Connections: Researchers + Industry

Copyright © 2006 - Brad A. Myers, CMU 7777

EUSE Examples, 1

� UCheck [Abraham 2004]
� Infers units based from layout and headers
� Identifies formulas that try to combine

incompatible units

Copyright © 2006 - Brad A. Myers, CMU 7878

EUSE Examples, 2
� WYSIWYT [Burnett 1997]

� What you see is what you test

System can figure out
more assertions

User can enter assertions

There’s got to be something
wrong with the formula!

14

Copyright © 2006 - Brad A. Myers, CMU 7979

Conclusions
� Increasing need to automate our systems

� Increase productivity
� Control our complex world
� Author interesting behaviors

� Programming still too hard for most people
� How can it be made easier?
� Is there a way to avoid or to make understandable

abstraction, iteration, conditions, recursion and other
concepts?

� Will Artificial Intelligence (AI) help?
� Reduce need for programming?

� Still enormous opportunities for research and new
ideas

Copyright © 2006 – Brad A. Myers

End-User
Programming

Brad Myers, Andrew Ko, and Margaret Burnett

Funded by NSF

