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Abstract. In this paper we show how to do symbolic model checking
using Boolean Expression Diagrams (BEDs), a non-canonical representa-
tion for Boolean formulas, instead of Binary Decision Diagrams (BDDs),
the traditionally used canonical representation. The method is based on
standard fixed point algorithms, combined with BDDs and SAT-solvers
to perform satisfiability checking. As a result we are able to model check
systems for which standard BDD-based methods fail. For example, we
model check a liveness property of a 256 bit shift-and-add multiplier and
we are able to find a previously undetected bug in the specification of a
16 bit multiplier. As opposed to Bounded Model Checking (BMC) our
method is complete in practice.

Our technique is based on a quantification procedure that allows us to
eliminate quantifiers in Quantified Boolean Formulas (QBF). The basic
step of this procedure is the up-one operation for BEDs. In addition we
list a number of important optimizations to reduce the number of basic
steps. In particular the optimization rule of quantification-by-substitution
turned out to be very useful: ∃x : g ∧ (x⇔ f) ≡ g[f/x]. The rule is used
(1) during fixed point iterations, (2) for deciding whether an initial set
of states is a subset of another set of states, and finally (3) for iterative
squaring.
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1 Introduction

Symbolic model checking has been performed using fixed point iterations for
quite some time [11]. The key to the success is the canonical Binary Decision
Diagram (BDD) [8] data structure for representing Boolean functions. However,
such a representation explodes in size for certain functions. In this paper we
show how to do symbolic model checking using Boolean Expression Diagrams
(BEDs) [2,3], a non-canonical representation of Boolean functions. The method
is theoretically complete as we only change the representation and not the al-
gorithms. Dropping the canonicity requirement has both advantages and disad-
vantages: Non-canonical data structures are more succinct than canonical ones
– sometimes exponentially more. Determining satisfiability of Boolean functions
is easy with canonical data structures, but with non-canonical data structures
it is hard. We show how to overcome the disadvantages and exploit some of the
advantages in symbolic model checking.

As a non-canonical representation, BEDs do not allow for constant time
satisfiability checking. Instead we use two different methods for satisfiability
checking: (1) SAT-solvers like Grasp [15] and Sato [18], and (2) conversion of
BEDs to BDDs. BDDs are canonical and thus satisfiability checking is a constant
time operation. We perform symbolic model checking the classical way with fixed
point iterations. One of the key elements of our method is the quantification-by-
substitution rule: ∃x : g ∧ (x ⇔ f) ≡ g[f/x]. The rule is used (1) during fixed
point iterations, (2) while deciding whether an initial set of states is a subset of
another set of states, and finally (3) while doing iterative squaring.

While complete in the sense that it handles full CTL [13] model checking, our
method performs best if the system has few inputs and the transition relation
can be written as a conjunction of next-state functions. The reason is that this
allows us to fully exploit the quantification-by-substitution rule.

Using our method, we can model check a liveness property of a 256 bit shift-
and-add multiplier, which requires 256 iterations to reach the fixed point. This
should be compared with the 23 bit multipliers that standard BDD methods can
handle. In fact, we are able to detect a previously unknown bug in the specifica-
tion of a 16 bit multiplier. It was generally thought that iterative squaring was
of no use in model checking. However, we show that iterative squaring enables
us to calculate the reachable set of states for all 32 outputs of a 16 bit multiplier
faster than without iterative squaring.

Model checking was invented by Clarke, Emerson, and Sistla in the 1980s [13].
Their model checking method required an explicit enumeration of states which
limited the size of the systems they could handle. Burch et al. [11] showed how
to do model checking without enumerating the states. They called this symbolic
model checking. The idea is to represent sets of states by characteristic func-
tions. The data structure of Binary Decision Diagrams turns out to be a very
efficient representation for characteristic functions. The advantages of BDDs
are compactness, canonicity, and ease of manipulation. Since the appearance of
BDDs, many other related data structures have been proposed. Bryant gives an
overview in [9]. One such data structure is the Boolean Expression Diagram. It is



a generalization of BDDs. In this paper we will study BEDs for use in symbolic
model checking.

Biere, Clarke et al. have proposed Bounded Model Checking (BMC) as an
alternative method to BDD-based model checking [4,5,6]. They unfold the tran-
sition relation and look for repeatedly longer and longer counterexamples, and
they use SAT-solvers instead of BDDs. BMC is good at finding errors with short
counterexamples. The diameter of the system determines the number of unfold-
ings of the transition relation that are necessary in order to prove the correctness
of the circuit. Unfortunately, for many examples the diameter cannot be calcu-
lated and the estimates are too rough. In such cases BMC reduces to a partial
verification method in practice. Our method does not need the computation of
the diameter or approximations of it.

The work most closely related to ours is by Abdulla, Bjesse and Eén. They
consider symbolic reachability analysis using SAT-solvers [1]. For representing
Boolean functions they use the Reduced Boolean Circuit data structure which
closely resembles our Boolean Expression Diagrams. They perform reachability
analysis using a fixed point iteration. Both of us make use of the quantification-
by-substitution rule. They use St̊almarck’s patented method [17] to determine
satisfiability of Boolean functions. While related, their method and ours differ
in a number of ways: In essence, the basic step in their and our quantification
algorithm can be computed by the up-one [2,3] BED-algorithm. Therefore we
think BEDs are the most natural representation in this context. We handle
full CTL while they concentrate on reachability (their tool does handle full
CTL, but they have only reported reachability results so far). In our method the
quantification-by-substitution rule is extensively used at three different places and
not just during fixed point calculation. We have heuristics for choosing different
SAT procedures depending on the expected result of the satisfiability check.
Candidates are various SAT-solvers or an explicit BED to BDD conversion. We
use SAT-solvers if the formula is expected to be satisfiable and either SAT-
solvers or an explicit BED to BDD conversion if the formula is expected to be
unsatisfiable. In their work they only use SAT-solvers. BEDs are always locally
reduced and we identify further important simplification rules. Finally we make
use of iterative squaring.

This paper is organized as follows. In section 2, we review the BED data
structure. In section 3, we show how to do model checking using BEDs. In
section 4, we give three applications of the quantification-by-substitution rule. In
section 5, we deal with the size of BEDs. In section 6, we present the experimental
results. Finally in section 7, we conclude.

2 Boolean Expression Diagrams

A Boolean Expression Diagram [2,3] is a data structure for representing and
manipulating Boolean formulas. In this section we review the data structure.

Definition 1 (Boolean Expression Diagram). A Boolean Expression Dia-
gram (BED) is a directed acyclic graph G = (V,E) with vertex set V and edge set



E. The vertex set V contains four types of vertices: terminal, variable, operator,
and quantifier vertices.

– A terminal vertex v has as attribute a value val(v) ∈ {0, 1}.
– A variable vertex v has as attributes a Boolean variable var(v), and two

children low(v), high(v) ∈ V .
– An operator vertex v has as attributes a binary Boolean operator op(v), and

two children low(v), high(v) ∈ V .
– A quantifier vertex v has as attributes a quantifier quant(v) ∈ {∃,∀}, a

Boolean variable var(v), and one child low(v) ∈ V .

The edge set E is defined by

E =
{

(v, low(v))
∣∣ v ∈ V and v has the low attribute

}
∪
{

(v, high(v))
∣∣ v ∈ V and v has the high attribute

}
.

The relation between a BED and the Boolean function it represents is straight-
forward. Terminal vertices correspond to the constant functions 0 and 1. Vari-
able vertices have the same semantics as vertices of BDDs and correspond to
the if-then-else operator x → f1, f0 defined as (x ∧ f1) ∨ (¬x ∧ f0). Operator
vertices correspond to their respective Boolean connectives. Quantifier vertices
correspond to the quantification of their associated variable. This leads to the
following correspondence between BEDs and Boolean functions:

Definition 2. A vertex v in a BED denotes a Boolean function fv defined re-
cursively as:

– If v is a terminal vertex, then fv = val(v).
– If v is a variable vertex, then fv = var(v)→ fhigh(v), f low(v) .
– If v is an operator vertex, then fv = f low(v) op(v) fhigh(v) .
– If v is a quantifier vertex, then fv = quant(v) var(v) : f low(v) .

The BED data structure is a representation form for formulas in QBF. If we
disallow quantifier vertices, we get a representation form for propositional logic. If
we disallow both operator and quantifier vertices, we get a BDD. As an example,
Figure 1 shows a BED for the formula ∀b : a ∨ (a ∧ b)⇔ a.

There exist algorithms for transforming a BED into a BDD. One such algo-
rithm is up-one. It sifts variables one at a time to the root of the BED. Using
up-one repeatedly to sift all the variables transforms the BED to a BDD. We
refer the reader to [2,3,14] for a more detailed description of up-one and its
applications.

3 Model Checking

In this section, we review the standard model checking algorithm. The system
to be verified is represented as a Kripke structure. A Kripke structure M is a
tuple (S, I, T, `), with a finite set of states S, a set of initial states I ⊂ S, a
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Fig. 1. The BED for ∀b : a∨(a∧b)⇔ a.
All edges are directed downwards; the
dashed edges being the low ones.

transition relation T ⊂ S × S, and a labeling of the states ` : S → P(A) with
atomic propositions A.

A reactive system consists of a set of states and a set of inputs. The states
are encoded as a Boolean vector of state variables s1, . . . , sn. The inputs are
also encoded as Boolean variables sn+1, . . . , sm. These together form the state
variables of the Kripke structure, s1, . . . , sm. The atomic propositions correspond
to the state variables. Each state is assumed to be labeled with the variables
si that are 1 for that state. We use primed variables as next state variables,
unprimed variables as current state variables, and we use characteristic functions
over the state variables to represent sets. Since the inputs are non-deterministic,
they are not constrained by the transition relation. Thus, the transition relation
does not contain the primed versions of the input variables.

There are two ways to specify a transition relation in an SMV [16] program:
(a) by use of the “TRANS” statement, and (b) by use of the “ASSIGN” state-
ment. In (a) one specifies the transition relation directly as a Boolean expression.
In (b) one specifies next-state functions for state variables. Both methods can
be used at the same time. We capture this as follows:

T (s, s′) = t(s, s̄′) ∧
∧
i

s̃′i ⇔ fi(s) (1)

where s̄′ and s̃′ form a partitioning of s′1, . . . , s
′
n. Here, t(s, s̄′) comes from the

“TRANS” statements and we call it the relational part, while
∧
i s̃
′
i ⇔ fi(s)

comes from the “ASSIGN” statements and we call it the functional part. (If a
primed variable is restricted by both “TRANS” and “ASSIGN” statements, we
place it in the relational part of T .) Our verification method performs best if the
transition relation is mainly in functional form.

We use CTL [13] formulas to capture the properties we want to verify. A
CTL formula characterizes a set of states, namely the set of states satisfying the
formula. This set can be computed by a fixed point iteration. The central part of
the fixed point iteration is the computation of relational products. A relational
product between the transition relation T and a set of states R is a new set of
states. In a forward computation, the new set is the set of states reachable in



one step from R. We call it the Image of R. In a backward computation, the new
set is the set of states which in one step can reach a state in R. We call it the
PreImage of R.

The following formulas show how to compute the image and preimage of R:

ImageT,R(s′) = ∃s : T (s, s′) ∧R(s)
PreImageT,R(s) = ∃s′ : T (s, s′) ∧R(s′)

For example, the algorithm in Figure 2 computes the characteristic function for
the set of states satisfying the CTL formula “AG P” (read: always globally P )
using backward iteration. It actually computes “¬EF ¬P”, i.e., it computes the
set of states from which there exists a path to a state where P does not hold.
The complement set then has the property that P holds along all paths.

AG P =
R0 ← characteristic function for

the set of states not satisfying P
i← −1
repeat

i← i+ 1
Ri+1 ← Ri ∨ PreImageT,Ri(s)

until Ri+1 ⇒ Ri
return ¬Ri

Fig. 2. The algorithm for com-
puting “AG P” using backward
iteration. T is the transition re-
lation for the system.

A Kripke structure M = (S, I, T, `) satisfies a specification R if and only
if I is a subset of R. In terms of characteristic functions this translates to the
implication: I ⇒ R.

3.1 Quantification

The basic step in our quantification algorithm is to eliminate one quantified
variable by the following rules:

∃x : f ≡ f [0/x] ∨ f [1/x] ∀x : f ≡ f [0/x] ∧ f [1/x]

Note that this basic step can easily be computed by performing a up-one(f , x)
BED-operation and then replacing the top level variable vertex by an appropriate
operator vertex.

In the worst case, while removing a quantifier from a formula, we double
the formula size. Since each Image/PreImage computation involves existential
quantification of all m state variables, we risk increasing the formula size by a
factor of up to 2m. In this section we present some syntactical transformations
which help us to perform the quantifications efficiently.

The most important transformation is the quantification-by-substitution rule.
It allows us to replace an existential quantification by a substitution:

∃x : g ∧ (x⇔ f) ≡ g[f/x] (2)



where x does not occur as a free variable in f .
Our verification method performs best when we can exploit the quantification-

by-substitution rule. Such cases include systems with few inputs and systems
with a transition relation that is mainly in functional form. After performing
quantification-by-substitution, we quantify the remaining state variables (includ-
ing inputs) using the rules below.

By applying scope reduction rules to a formula, we can push quantifiers down
and thus reduce the potential blowup. The scope reduction rules are the following
(shown for negation, conjunction and disjunction):

∃x : ¬f ≡ ¬∀x : f
∃x : f ∨ g ≡ (∃x : f) ∨ (∃x : g)

∃x : f(y) ∧ g(x) ≡ f(y) ∧ (∃x : g(x))

∀x : ¬f ≡ ¬∃x : f
∀x : f ∧ g ≡ (∀x : f) ∧ (∀x : g)

∀x : f(y) ∨ g(x) ≡ f(y) ∨ (∀x : g(x))

Because BEDs are always reduced, for details see [2,3,14], the quantifiers
disappear if they are pushed all the way to the terminals.

3.2 Satisfiability Checking

There are two places where we need to determine whether a Boolean formula
represented by a BED is satisfiable. First we need to detect that a fixed point has
been reached in the computation of the set of states satisfying a CTL formula. Let
Ri be the ith approximation to the fixed point. The fixed point has been reached
if Ri+1 = Ri. Using characteristic functions, this translates to Ri+1 ⇔ Ri.
However, depending on the CTL operator, the series of approximations will
either be monotonically increasing or monotonically decreasing. It is therefore
enough to check set inclusion instead of set equivalence. In the increasing case we
check if Ri+1 ⇒ Ri is a tautology. In the decreasing case we check if Ri ⇒ Ri+1 is
a tautology. Until we reach the fixed point, these formulas will not be tautologies.
In other words, the negation of the formulas will be satisfiable. SAT-solvers are
good at finding a satisfying variable assignment so we use a SAT-solver here.

Second we need to determine whether the initial set of states I is a subset of
the set of states R represented by the CTL specification. In particular we have
to check I ⇒ R for tautology. There are two cases:

– The specification holds. This means that I ⇒ R is a tautology. We could use
a SAT-solver to prove that the negation of I ⇒ R is not satisfiable. However,
it is our experience that most SAT-solvers are not very good at proving non-
satisfiability. We can also use BDDs. By using the up-one algorithm, we
convert the BED for I ⇒ R to a BDD.

– The specification does not hold. A proof will be a variable assignment fal-
sifying I ⇒ R. Or equivalent, a variable assignment satisfying ¬(I ⇒ R).
SAT-solvers are good at finding such variable assignments.

Of course, we do not know before hand whether the specification holds. A pos-
sibility is to run a SAT-solver and a BED to BDD conversion in parallel.



SAT-solvers like Grasp [15] and Sato [18] expect their input to be a propo-
sitional formula in conjunctive normal form (CNF). After the elimination of
quantifiers, as described in Section 3.1, we still need to convert BEDs into CNF.
For this conversion we use the well known technique of introducing new variables
for every non-terminal vertex [4].

4 Applications of Quantification-by-Substitution

4.1 PreImage Computation

Consider the PreImage computation in section 3. If the transition relation T is
written as in equation (1), then we can apply rule (2) directly for the functional
part. This can be done in one traversal of the BED. Figure 3 shows the pseudo-
code. The algorithm works in a bottom-up way replacing all variables from the
functional part of T with their next-state function. Line 4 does the replacing
by performing a Shannon expansion of the variable vertex and inserting the
next-state function.

PreImage(u) =
1: if u is a terminal then return u
2: (l, h)← (PreImage(low(u)),PreImage(high(u)))
3: if u is a variable vertex with variable from the functional part of T then
4: return (fvar(u) ∧ h) ∨ (¬fvar(u) ∧ l)
5: else
6: return makenode(α(u), l, h)

Fig. 3. The algorithm for computing the PreImage of u for the functional part
of the transition relation: Tfunc =

∧
i s
′
i ⇔ fi(s). The BED u is assumed to be

quantifier-free. The tag α(u) is short for either var(u) or op(u).

4.2 Set Inclusion

We now describe a preprocessing step simplifying I ⇒ R, i.e., whether the initial
set of states is a subset of the states characterized by the specification. The initial
set of states I often has the form:

I =
∧
i

si ⇔ initi(s)

where initi(s) is the function describing the initial state for the variable si. (Note
that not all variables have an initial state specified.) In many cases initi(s) is
either a constant or a very simple function, and we can use this fact to simplify
I ⇒ R. Let I be written I ′∧(si ⇔ initi(s)) and assume initi(s) does not depend



on variable si. Recall that I ⇒ R is a tautology if and only if ∀si : I ⇒ R is a
tautology:

∀si : I ⇒ R

= ∀si : ¬ (I ′ ∧ (si ⇔ initi(s)) ∧ ¬R)
= ¬∃si : I ′ ∧ (si ⇔ initi(s)) ∧ ¬R
= ¬(I ′ ∧ ¬R)[initi(s)/si]
= (I ′ ⇒ R)[initi(s)/si]

The [initi(s)/si] means a substitution of initi(s) for si. This reduces the number
of variables and often simplifies the formula.

4.3 Iterative Squaring

Iterative squaring is a technique for reducing the number of iterations needed to
reach the fixed point [10]. During reachability analysis we repeatedly square the
transition relation:

T 2(s, s′) = ∃s′′ : T (s, s′′) ∧ T (s′′, s′)

Assume that T is written as in equation (1). In general there is no way to square
T and keep it in this form – the functional part will disappear. However, if we
restrict ourselves to transition relations purely in functional form, squaring can
be done easily:

T 2(s, s′) = ∃s′′ : T (s, s′′) ∧ T (s′′, s′)

= ∃s′′ :

(∧
i

s′′i ⇔ fi(s)

)
∧

(∧
i

s′i ⇔ fi(s′′)

)
=
∧
i

s′i ⇔ (fi(s′′)[f(s)/s′′])

where [f(s)/s′′] is a substitution of function fj(s) for variable s′′j (for all j). The
algorithm is similar to the PreImage algorithm in Figure 3.

In this way we can compute T (2k) in only k steps. T (2k) is a new transition
relation representing all paths in T with a length of exactly 2k. However, it is
not possible to represent in functional form the transition relation allowing paths
of length up to 2k. As a consequence we cannot combine this form of iterative
squaring with, for example, frontier set simplifications.

Consider the algorithm in Figure 2. To use iterative squaring we simply
change PreImageT,Ri(s) to PreImageT 2i ,Ri

(s). As a result, Ri represents the set
of states reachable in up to and including 2i − 1 steps.

5 BED Simplifications

As we mentioned in section 3.2, transforming a BED to CNF increases the size
of the formula as we introduce a new variable for each BED non-terminal vertex.
It is therefore vital to keep the size of the BEDs small.



During the conversion of a BED to a BDD, the size may blow up. Even when
the final BDD is small (as for a tautology), the intermediate results might be
large. In this section we describe a method of keeping the BEDs small.

Keeping the BEDs reduced, as mentioned above, already gives us size reduc-
tions due to, for example, constant propagation. But we can reduce the size of
the BEDs even more. This can be achieved by increasing the sharing of vertices
and by removing local redundancies. In [14] we describe a set of rewriting rules
in detail. Here we will just mention some of the ideas:

– Sharing can be increased by disallowing operator vertices which only differ
in the order of their children; for example a∧ b and b∧a. We fix an ordering
< of vertices and only create operator vertices with low < high.

– Size can be reduced by eliminating all negations below binary operators since
for all binary operators op there exists another operator op′ with op′(x, y) =
op(¬x, y)

– Size can be reduced by not using all 16 binary Boolean operators but only a
subset of them. We use the set nand, or, left implication, right implication,
and bi-implication. (For clarity, the BED in Figure 1 has not been reduced
to this subset.)

– Size can be reduced by exploiting equivalences like the absorption laws, for
example a∨ (a∧ b) = a, and distributive laws, for example (a∧ b)∨ (a∧ c) =
a ∧ (b ∨ c).

We apply all these rewriting rules each time we create a new operator vertex.
The rules are important for the performance of up-one.

6 Experimental Results

We have constructed a prototype implementation of our proposed model check-
ing method. It performs CTL model checking on SMV programs. For the exper-
iments presented here we use Sato as our SAT-solver. It is worth mentioning
that for some examples Sato completes the tasks in seconds where Grasp takes
hours. For other examples the reverse is true. We compare our method with the
NuSMV model checker [12] and with Bwolen Yang’s modified version of SMV1,
both of which are state-of-the-art in BDD-based model checking. Finally we
compare reachability results with FixIt from Adbulla, Bjesse, and Eén [1].

The FixIt results are taken directly from the paper by Abdulla and his
group2. All other experiments are run on a Linux computer with a Pentium Pro
200 MHz processor and 1 gigabyte of main memory.

1 http://www.cs.cmu.edu/∼bwolen
2 From personal correspondence with the authors we have learned that they used a

296 MHz Sun UltraSPARC-II for the barrel shifter experiments and a 333 MHz Sun
UltraSPARC-IIi for the multiplier experiments.



6.1 Multiplier

This example comes from the BMC-1.0f distribution3. It is a 16×16→ 32 shift-
and-add multiplier. The specification is the c6288 combinational multiplier from
the ISCAS’85 benchmark series [7]. For each output bit we verify that we cannot
reach a state where the shift-and-add multiplier has finished its computation and
the output bits of the two multipliers differ.

The multiplier fits into the category of SMV programs that we handle well.
The operands are not modeled as inputs. Instead they are modeled as state
variables with an unspecified initial state and the identity function as the next-
state function. This lets us use quantification-by-substitution for all but the last
iteration in the fixed-point calculation. Only in the last iteration do we need to
quantify the operands out using the standard quantification methods.

Table 1 shows the runtimes for verifying that the multiplier satisfies the
specification. Our BED-based method out-performs both NuSMV and Bwolen

Bit BED NuSMV Bwolen FixIt

0 2.2 11 9.4 2.9
1 2.3 23 17 3.1
2 2.9 50 33 3.7
3 3.8 130 71 4.8
4 5.2 290 159 6.6
5 7.0 702 383 11
6 9.2 - 1031 20
7 12 - - 47
8 16 - - 150
9 31 - - 544

10 68 - - 2078
11 352 - - 8134
12 2201 - - 30330

Table 1. Runtimes in seconds
for verifying the correctness of
a 16 bit multiplier. A dash “-
” indicates that the verification
could not be completed with 800
MB of memory.

Yang’s SMV as we are able to model check twice as many outputs as they do.
FixIt handles the same number of outputs as our method, however, for the more
difficult outputs, our method is faster by an order of magnitude.

For the most difficult output in Table 1, the fixed point iteration accounts for
only a fraction of the total runtime for our method. It takes less than a minute
and almost no memory to calculate the fixed point. By far the most time is spent
in proving I ⇒ R. SAT-solvers gave poor results, so we converted the BED for
I ⇒ R to a BDD. The FixIt tool uses a SAT solver to check I ⇒ R. We expect
this is the reason why their runtimes are much longer than ours. However, FixIt

does not use much memory, while the memory required for the BED to BDD
conversion is quite large. Of course this is expected since the formulas originate
from multiplier circuits which are known to be difficult for BDDs. But even
though we have to revert to BDDs, we still outperform standard BDD-based
model checkers.

We did the experiments in Table 1 without use of iterative squaring to enable
fair comparisons. However, iterative squaring speeds up the fixed point calcu-
3 http://www.cs.cmu.edu/∼modelcheck



lations. Table 2 shows the runtimes for calculating the fixed points – with and
without iterative squaring – for the same model checking problem as above. Note

Bit Without I.S. With I.S.

0 2.1 0.9
5 6.8 1.6

10 14 3.7
15 16 8.3
20 37 12
25 19 8.8
30 > 12 hours 6.4

Table 2. Runtimes in seconds for the fixed
point calculation in verifying the correctness of
the 16 bit shift-and-add multiplier. Results are
shown for computations with and without itera-
tive squaring (I.S.). The space requirements are
small, i.e., less than 16 MB.

the case for bit 30 where iterative squaring allows us to calculate the fixed point.
Without iterative squaring the SAT solver gets stuck. After each iteration the
SAT solver looks for new states. With iterative squaring many more new states
are added per iteration making it easier for the SAT solver to find a satisfying
assignment.

To see how our method handles erroneous designs, we introduced an error in
the specification of the multiplier by negating one of the internal nodes (this is
marked as “bug D” in the multiplier file in the BMC distribution). We observe
that the fixed points are computed in roughly the same amount of CPU time
and memory (both with and without iterative squaring). The difference is when
we prove I ⇒ R. Using BED to BDD conversion as with the correct design,
we now get poorer results because I ⇒ R is not a tautology and the final
BDD is not necessarily small. However, using a SAT-solver, we get much better
results. In many cases, the SAT-solver is able to find a counterexample almost
immediately. We are able to model check the first 19 outputs as well as some
of the later outputs of the multiplier using less than 16 MB of memory and one
minute of CPU time per output. NuSMV and Bwolen Yang’s SMV perform as
bad as before.

We were able to find a bug in the “correct” specification of the multiplier for
the two most significant outputs. Iterative squaring allowed us to quickly com-
pute the fixed points, and Sato instantly found the errors. The total runtimes
to find these errors were seven and eight seconds, respectively. It turns out that
the two outputs have been swapped. The original net-list for c6288 does not
contain information about which gates correspond to which multiplier outputs.
However, each gate is numbered and the output numbers seem to be increas-
ing with the the gate numbers – with the exception of the last pair of outputs.
This emphasizes the fact that SAT-based methods are good at finding bugs in
a system.

We constructed shift-and-add multipliers of different sizes and verified that
they always terminate, i.e., we checked “AF done”. The number of iterations
needed to reach the fixed point is equal to the size of the multiplier. This lets
us test how well our method handles cases with lots of iterations. Table 3 shows
the results. We compare our method with NuSMV and Bwolen Yang’s SMV.



Our method performs much better as we are both significantly faster and we are
able to handle much larger designs. We cannot compare with FixIt as they did
not report results for AF properties.

Size BED NuSMV Bwolen

16 1.6 2.2 5.2
18 1.8 18 9.1
20 2.0 90 24
22 2.3 472 104
23 2.7 - 253
24 2.8 - -
32 3.7 - -
64 17 - -

128 119 - -
256 1185 - -

Table 3. Runtimes in seconds for ver-
ifying that shift-and-add multipliers of
different sizes always terminate, i.e., we
check “AF done”. The number of itera-
tions to reach the fixed point is equal to
the size of the multiplier.

6.2 Barrel Shifter

This example is a barrel shifter from the BMC-1.0f distribution and like the
multiplier, it also falls within the category of systems which we handle well. A
barrel shifter consists of two register files. The contents of one of the register
files is rotated at each step while the other file stays the same. The width of a
register is log R, where R is the size of the register file.

The correctness of the barrel shifter is proven by showing that if two registers
from the files have the same contents, then their neighbors are also identical.
The set of initial states is restricted to states where this invariant holds. The left
part of Table 4 shows the results. The BED and FixIt methods are both fast,
however, the BED method scales better and thus outperforms FixIt. NuSMV

and Bwolen Yang’s SMV are both unable to construct the BDD for the transition
relation for all but the smallest examples.

We prove liveness for the barrel shifter by showing that a pair of registers in
the files will eventually become equal. The number of iterations for the fixed point
calculation is equal to the size of the register file. The right part of Table 4 shows
the results. We do not compare with FixIt as no results for this experiment were
reported in [1]. As in the previous case, NuSMV and Bwolen Yang’s SMV can
only handle small examples.

7 Conclusion

We have presented a BED-based CTL model checking method based on the
classical fixed point iterations. Quantification is often the Achilles heel in CTL
fixed point iterations but by using quantification-by-substitution we are in some
cases able to deal effectively with it. While our method is complete, it performs
best on examples with a low number of inputs and where the transition rela-
tion is mainly in functional form. In these situations we can fully exploit the
quantification-by-substitution rule.



Size BED NuSMV Bwolen FixIt

2 0.1 0.1 1.0 0.1
4 0.3 0.2 2.5 0.1
6 0.4 609 - 0.2
8 0.4 - - 0.5

10 0.6 - - 1.1
20 1.9 - - 14
30 4.0 - - 52
40 8.0 - - 231
50 13 - - 502
60 19 - - ?
70 30 - - ?

Size BED NuSMV Bwolen

2 0.2 0.1 1.0
4 0.5 0.2 2.1
6 0.7 521 -
8 0.9 - -

10 1.2 - -
20 3.2 - -
30 5.9 - -
40 11 - -
50 18 - -
60 28 - -
70 47 - -

Table 4. Runtimes in seconds for invariant (left) and liveness (right) checking
of the barrel shifter example. A question mark indicates that the runtime for
FixIt was not reported in [1]. For the BED method we use Sato for checking
satisfiability of I ⇒ R.

We have shown how the quantification-by-substitution rule can also help sim-
plify the final set inclusion problem of model checking and help perform efficient
iterative squaring. Our proposed method combines SAT-solvers and BED to
BDD conversions to perform satisfiability checking. We use a set of local rewrit-
ing rules which helps to keep the size of the BEDs down.

We have demonstrated our method by model checking large shift-and-add
multipliers and barrel shifters, and we obtain results superior to standard BDD-
based model checking methods. Furthermore, we were able to find a previously
undetected bug in the specification of a 16 bit multiplier.

Future work includes investigating two variable ordering problems. One is the
variable ordering when converting the BED for I ⇒ R to a BDD. The variable
ordering is known to be very important in BDD construction, and since we,
in some cases, spend much time on converting I ⇒ R to a BDD, our method
will benefit from a good variable ordering heuristic. The other problem is the
order in which we quantify the variables in the PreImage computation. This
will be interesting especially in cases where we cannot use the quantification-
by-substitution rule. Finally we are currently investigating how to extend our
method to work well for systems with many inputs.
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