
J. Functional Programming 1 (1): 1{000, January 1993 c 1993 Cambridge University Press 1

FUNCTIONAL PEARLS

Proof-Directed Debugging

Robert Harper

Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

The close relationship between writing programs and proving theorems has frequently been
cited as an advantage of functional programming languages. We illustrate the interplay
between programming and proving in the development of a program for regular expression
matching. The presentation is inspired by Lakatos's method of proofs and refutations in
which the attempt to prove a plausible conjecture leads to a revision not only of the proof,
but of the theorem itself. We give a plausible implementation of a regular expression
matcher that contains a aw that is uncovered in an attempt to prove its correctness.
The failure of the proof suggests a revision of the speci�cation, rather than a change to
the code. We then show that a program meeting the revised speci�cation is nevertheless
su�cient to solve the original problem.

Capsule Review

The capsule review goes here.

1 Introduction

A signi�cant challenge in an introductory programming course is to teach students

to reason inductively. While it is not di�cult to devise small examples to illustrate

the idea, it is quite hard to convince students that these ideas are useful, even

essential, in practice. What is required is a collection of compelling examples of the

use of inductive reasoning methods to help solve interesting programming problems.

In this note we present one such example. The problem is to implement an on-line

regular expression matching algorithm in Standard ML: given a regular expression r

and a string s determine whether or not s matches r.y It is relatively easy to devise,

by \seat of the pants" reasoning, an algorithm to solve the problem. The primary

di�culty is with sequential composition of regular expressions, for which we use

continuations. With this in mind it is easy to give a very plausible implementation

of a regular expression matcher that works in nearly every case.

y By \on line" we mean that we do not pre-process the regular expression before matching.

2 Robert Harper

However, the program contains a subtle error that we tease out by attempting to

carry out a proof of its correctness. The development is inspired by Lakatos's book

Proofs and Refutations (1976), which is concerned with the dynamics of mathemati-

cal reasoning: formulating conjectures, devising proofs, and discovering refutations.

The �rst step is to give a precise speci�cation of the continuation-passing regular

expression matcher. This leads to the conjecture that the matcher satis�es its spec-

i�cation, which we proceed to investigate. Inspection of the code suggests a proof

by induction on the structure of the given regular expression, with a case analysis

on its outermost form. The proof proceeds along relatively familiar lines, with no

serious di�culties, except in the case of iteration, where we discover that the in-

ductive hypothesis is inapplicable. Further analysis suggests an inner induction on

the length of the candidate string. Once again the proof appears to go through, but

for a small gap at a critical step of the argument. Analysis of the gap in reasoning

reveals a counterexample to the conjecture | the proposed implementation does

not satisfy the speci�cation.

A common impulse is to change the code to correct the error, often by an ad hoc

method that only buries the problem, rather than eliminates it. A less obvious al-

ternative is to change the speci�cation to eliminate the counterexample | \monster

barring", in Lakatos's colorful terminology. The failed proof of correctness is a valid

proof of a weaker speci�cation. But what about those \monsters"? We show that

there is no loss of generality in ruling them out because every regular expression

is equivalent to one that is not a \monster". By pre-processing to eliminate the

\monsters", we arrive at a fully-general matching procedure.

All programs are written in Standard ML (Milner et al., 1997), but there should

be no di�culty transcribing the examples into other functional languages.

2 Background

We review here some basic de�nitions in order to establish notation.

2.1 Languages

Fix an alphabet, �, a countable set of letters. The set �� is the set of strings over

the alphabet �. The null string is written �, and string concatenation is indicated

by juxtaposition. A language L is any subset of �� | that is, any set of strings over

�. We will identify � with the ML type char and �� with the ML type string.

We will need the following operations on languages (over a �xed alphabet):

Zero 0 = ;

Unit 1 = f � g

Alternation L1 + L2 = L1 [L2

Concatenation L1 L2 = f s1 s2 j s1 2 L1; s2 2 L2 g

Iteration L(0) = 1

L(i+1) = LL(i)

L� =
S

i�0 L
(i)

Functional pearls 3

It is instructive to observe that L� is the smallest languageM such that 1+LM �

M | that is, the smallest language containing the null string and closed under

concatenation with L on the left. It follows that L� = 1+LL�, an identity that we

shall use shortly.

2.2 Regular Expressions

Regular expressions are a notation system for languages. The set of regular expres-

sions over an alphabet � is given by the following inductive de�nition:

1. 0 and 1 are regular expressions.
2. If a 2 �, then a is a regular expression.
3. If r1 and r2 are regular expressions,then so are r1 + r2 and r1 r2.
4. If r is a regular expression, then so is r�.

The language, L(r), of a regular expression r is de�ned by induction on the

structure of r as follows:

L(0) = 0

L(1) = 1

L(a) = f a g

L(r1 + r2) = L(r1) + L(r2)

L(r1 r2) = L(r1)L(r2)

L(r�) = L(r)�

On the left-hand side we are dealing with syntax, whereas on the right we are dealing

with semantics. Thus 0 on the right-hand side stands for the empty language, 1

stands for f � g, and so on, whereas on the left-hand side 0 and 1 are just forms of

expression.

We say that a string s matches a regular expression r i� s 2 L(r). Thus s never

matches 0; s matches 1 only if s = �; s matches a i� s = a; s matches r1 + r2 if

it matches either r1 or r2; s matches r1 r2 if s = s1 s2, where s1 matches r1 and

s2 matches r2; s matches r� i� either s = �, or s = s1 s2 where s1 matches r and

s2 matches r�. An equivalent formulation for the last case is that s matches r� i�

there exists n � 0 such that s = s1 : : : sn with si matching r for each 1 � i � n.

3 A Matching Algorithm

We are to de�ne a function accept with type regexp -> string -> bool such

that accept r s evaluates to true i� smatches r, and evaluates to false otherwise.

The type regexp is de�ned as follows:

datatype regexp =

Zero

| One

| Char of char

| Times of regexp * regexp

| Plus of regexp * regexp

| Star of regexp

4 Robert Harper

The correspondence to the de�nition of regular expressions should be clear. It is

a simple matter to de�ne for each regular expression r its representation prq as

a value of type regexp in such a way that a given value v of type regexp is prq

for exactly one regular expression r. We shall gloss over the distinction between a

regular expression r and its representation prq as a value of type regexp.

The matcher is de�ned using a programming technique called continuation-

passing. We will de�ne an auxiliary function acc of type

regexp -> char list -> (char list -> bool) -> bool

which takes a regular expression, a character list, and a continuation, and yields

either true or false. Informally, the function acc matches some initial segment of

the given character list against the given regular expression, and passes the corre-

sponding �nal segment to the continuation, which determines the �nal outcome. To

ensure that the matcher succeeds (yields true) whenever possible, we must be sure

to consider all ways in which an initial segment of the input character list matches

the given regular expression in such a way that the remaining unmatched input

causes the continuation to succeed. Only if there is no way to do so may we yield

false.

This informal speci�cation may be made precise as follows. We call a function

f of type �->� 0 total i� for every value v of type � , there exists a value v0 of type

� 0 such that f(v) evaluates to v0. For every s of type char list, every r of type

regexp, and every total function k of type char list -> bool

1. If there exists s1 and s2 such that s = s1 s2, s1 2 L(r), and k(s2) evaluates

to true, then acc r s k evaluates to true.

2. If for every s1 and s2 such that s = s1 s2 with s1 2 L(r) we have that k(s2)

evaluates to false, then acc r s k evaluates to false

Notice that we restrict attent to continuations k that always yield either true or

false on any input. Notice as well that the speci�cation implies that the result

should be false in the case that there is no way to partition the input string s

such that an initial segment matches r.

Without giving an implementation of acc, we can de�ne accept as follows:

fun accept r s =

acc r (String.explode s) (fn nil => true | => false)

We \explode" the string argument into a list of characters to facilitate sequential

processing of the string. The initial continuation yields true or false according

to whether the remaining input has been exhausted. Assuming that acc satis�es

the speci�cation given above, it is easy to see that accept is indeed the required

matching algorithm.

We now give the code for acc:

Functional pearls 5

fun acc Zero cs k = false

| acc One cs k = k cs

| acc (Char d) nil k = false

| acc (Char d) (c::cs) k =

if c=d then k cs else false

| acc (Plus (r1, r2)) cs k =

acc r1 cs k orelse acc r2 cs k

| acc (Times (r1, r2)) cs k =

acc r1 cs (fn cs' => acc r2 cs' k)

| acc (r as (Star r1)) cs k =

k cs orelse acc r1 cs (fn cs' => acc r cs' k)

Does acc satisfy the speci�cation given above? A natural way to approach the

proof is to proceed by induction on the structure of the regular expression. For

example, consider the case r = Times(r1,r2). We have two proof obligations, ac-

cording to whether or not the input may be partitioned in such a way that an

initial segment matches r and the continuation succeeds on the corresponding �nal

segment.

First, suppose that s = s1 s2 with s1 matching r and k(s2) evaluates to true.

We are to show that acc r s k evaluates to true. Now since s1 matches r, we have

that s1 = s1;1 s1;2 with s1;1 matching r1 and s1;2 matching r2. Consequently, by

the inductive hypothesis applied to r2, we have that acc r2 (s1;2 s2) k evaluates

to true. Therefore the application (fn cs' => acc r2 cs' k) (s1;2 s2) evaluates

to true, and hence by the inductive hypothesis applied to r1, the expression acc r1

s (fn cs' => acc r2 cs' k) evaluates to true, which is enough for the result.

Second, suppose that no matter how we choose s1 and s2 such that s = s1 s2 with

s1 2 L(r), we have that k(s2) evaluates to false. We are to show that acc r s k

evaluates to false. It su�ces to show that acc r1 s (fn cs' => acc r2 cs' k)

evaluates to false. By the inductive hypothesis (applied to r1) it su�ces to show

that for every s1;1 and s02 such that s = s1;1 s
0
2 with s1;1 2 L(r1), we have that acc

r2 s02 k evaluates to false. By the inductive hypothesis (applied to r2) it su�ces

to show that for every s1;2 and s2 such that s02 = s1;2 s2 with s1;2 2 L(r2), we

have that k(s2) evaluate to false. But this follows from our assumptions, taking

s1 = s1;1 s1;2.

The cases for 0, 1, a, and r1 + r2 follow a similar pattern of reasoning.

What about iteration? Let r be Star r1, and suppose that s = s1 s2 with s1
matching r and k(s2) evaluates to true. By our choice of r, there are two cases to

consider: either s1 = �, or s1 = s1;1s1;2 with s1;1 matching r1 and s1;2 matching r.

In the former case the result is the result of k(s), which is k(s2), which is true,

as required. In the latter case it su�ces to show that acc r1 s (fn cs' => acc r

cs' k) evaluates to true. By inductive hypothesis it su�ces to show that acc r

s1;2s2 k evaluates to true. It is tempting at this stage to appeal to the inductive

hypothesis to complete the proof | but we cannot because the regular expression

argument is the original regular expression r, and not some sub-expression of it!

What to do? Let's try to �x the proof. The o�ending call to acc is on the original

6 Robert Harper

regular expression r, but only after some initial segment of the string argument s

has been matched by r1. This suggests that we proceed by an inner induction on the

length of the string argument to acc, relying on the inner inductive hypothesis in

the critical case of a recursive call to acc with the original regular expression r. This

seems appealing, until we realize that the initial segment s1;1 of s matched by r1
might be the null string, in which case neither the regular expression nor the string

argument change on the recursive call! This immediately suggests a counterexample

to the conjecture: acc 0� � k loops in�nitely, even if k succeeds on input �.

So the conjecture, as stated, is false. What to do? Following Lakatos, we observe

that the proof proves something, it is only a question of what. Call a regular ex-

pression r standard i� whenever r�1 occurs in r, the language L(r1) does not contain

the null string. Observe that for a standard regular expression, if r = r�1 matches

a string s, then either s = � or s = s1 s2, where s1 6= � matches r1 and s2 again

matches r. Thus the proof proves that the regular expression matcher is correct for

regular expressions in standard form. Rather than change the code, we change the

speci�cation!

4 Standardization

But haven't we lost something by making the restriction to standard form? After all,

0� is a perfectly reasonable regular expression, yet we've ruled it out as a possible

input to the matching algorithm (or, at any rate, only guaranteed the behavior of

the matcher for regular expressions in standard form). Isn't this just mathematical

sleight of hand?

No, because any regular expression can be brought into standard form. More

precisely, every regular expression is equivalent to one in standard form in the sense

that they both accept the same language. Moreover this equivalence is e�ective in

that we may de�ne an algorithm to put every regular expression into standard form.

Thus we may de�ne a fully general regular expression matcher by composing the

matcher de�ned in the previous section with a standardization algorithm that puts

regular expressions into standard form.

We rely on the equation r = �(r) + r�, where �(r) is either 1 or 0 according to

whether or not r accepts the null string, and where L(r�) = L(r) n f � g.(Berry &

Sethi, 1987) The function �(r) is de�ned as follows.

�(0) = 0

�(1) = 1

�(a) = 0

�(r1 + r2) = �(r1)� �(r2)

�(r1 r2) = �(r1)
 �(r2)

�(r�) = 1

Here r1 � r2 is de�ned to be 1 if either r1 or r2 is 1, and 0 otherwise. Similarly,

r1
 r2 is de�ned to be 0 if either r1 or r2 is 0, and is 1 otherwise.

Functional pearls 7

The function r� is de�ned as follows:

0� = 0

1� = 0

a� = a

(r1 + r2)
� = r�1 + r�2

(r1 r2)
� = �(r1) r

�
1 + r1 �(r2) + r�1 r

�
2

(r�)� = r�(r�)�

The last two clauses deserve comment. The non-empty strings matching r1 r2 are

(1) the non-empty strings in r2, in the case that r1 contains the empty string, (2)

the non-empty strings in r1, in the case that r2 contains the empty string, and (3)

the concatenation of a non-empty string in r1 followed by a non-empty string in r2.

The clause for iteration is motivated by the observation that the non-empty strings

in the iteration r� are simple the non-zero iterations of the non-empty strings in r.

It is easy to check that �(r) and r� have the properties stated above, that r� is

in standard form, and that L(r) = L(�(r)+r�). It follows that we may relax the re-

striction to standard form regular expressions in the speci�cation of the matcher by

composing the matcher given in the previous section with a simple standardization

algorithm based on the equations given above.

5 Conclusion

The example of regular expression matching illustrates a number of important pro-

gramming concepts:

1. Continuation-passing: the use of higher-order functions to manage the ow of

control in a program.

2. Proof-directed debugging: the use of a failed proof attempt to discover an error

in the code.

3. Change of speci�cation: once we isolated the error, we didn't change the code,

but rather the speci�cation. Debugging isn't always a matter of changing the

code!

4. Pre-processing: to satisfy the more stringent speci�cation we pre-processed

the regular expression so that it satis�es the additional assumption required

for correctness.

6 Acknowledgement

The regular expression matching problem was suggested by Frank Pfenning, to

whom I am grateful for his comments and suggestions.

References

Berry, Gerard, & Sethi, Ravi. (1987). From regular expressions to deterministic automata.
Theoretical computer science, 25(1).

Lakatos, Imre. (1976). Proofs and refutations. Cambridge University Press.

8 Robert Harper

Milner, Robin, Tofte, Mads, Harper, Robert, & MacQueen, David. (1997). The de�nition
of Standard ML (revised). MIT Press.

beatrice

beatrice
This research was sponsored in part by National Science Foundation (NSF) grant no. CCR-0122581.

