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Abstract

This paper presents a combinatorial polynomial-time algorithm for minimizing
submodular functions, answering an open question posed in 1981 by Grotschel,
Lovész, and Schrijver. The algorithm employs a scaling scheme that uses a flow in
the complete directed graph on the underlying set with each arc capacity equal to
the scaled parameter. The resulting algorithm runs in time bounded by a polyno-
mial in the size of the underlying set and the length of the largest absolute function
value. The paper also presents a strongly polynomial version in which the number
of steps is bounded by a polynomial in the size of the underlying set, independent
of the function values.
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1. Introduction

Let V be a finite nonempty set of cardinality n. A function f defined on all the subsets
of V is called submodular if it satisfies

FX)+(Y) 2 FXUY)+ F(XNY),  YX,YCV.

This paper presents a combinatorial polynomial-time algorithm for finding a minimizer of
a general submodular function, provided that an oracle for evaluating the function value
is available. Throughout this paper, we assume without loss of generality that f(@) =0
by subtracting the scalar f(() from every function value.

Submodularity is a discrete analog of convexity [12, 19, 32], and submodular functions
arise naturally in various fields, including combinatorial optimization, computational
biology, game theory, scheduling, probability, and information theory. Examples include
the matroid rank function, the cut capacity function, and the entropy function. Problems
in diverse areas such as dynamic flows [26], facility location [39], and multi-terminal
source coding [16, 25] rely on algorithms for general submodular function minimization.
Submodular function minimization is also used to solve submodular flow problems [4, 7,
21], which generalize network flow and matroid optimization problems, and model several
graph augmentation and connectivity problems [7, 14, 15]. For general background on
submodular functions, see [14, 20, 32].

There are two natural polyhedra in RY associated with a submodular function f.
The submodular polyhedron P(f) and the base polyhedron B(f) are defined by

P(f) = {z|zeRY, VX CV:z(X) < f(X)},
B(f) = {z|zeP(f),z(V)=f(V)}

where z(X) = Y ,cx ¢(v). Linear optimization problems over these polyhedra can be
solved efficiently by the greedy algorithm [6].

The first polynomial-time algorithm for submodular function minimization is due
to Grotschel, Lovdsz, and Schrijver [23]. They showed in general the polynomial-time
equivalence of separation and optimization for polyhedra via the ellipsoid method. The
separation problem of deciding whether 0 € P(f#), for the submodular function f#*
defined by subtracting scalar y < 0 from f(X) for every nonempty X C V, is equivalent
to determining if the minimum of the submodular function f is at least u. This problem
can be solved using the ellipsoid algorithm in conjunction with the greedy algorithm
that solves the optimization problem over P(f#). Since the maximum value p* of u
with 0 € P(f#) equals the minimum value of f, embedding the ellipsoid algorithm
in a binary search for u* yields a polynomial-time algorithm for submodular function
minimization. However, the ellipsoid method is far from being efficient in practice, and
is not combinatorial.



In this paper, we present a combinatorial polynomial-time algorithm for submodular
function minimization. Our algorithm uses an augmenting path approach with reference
to a convex combination of extreme points of the associated base polyhedron. Such an
approach was first introduced by Cunningham [2] for minimizing submodular functions
that arise from the separation problem for matroid polyhedra. This was adapted for
general submodular function minimization by Bixby, Cunningham, and Topkis [1] and
improved by Cunningham [3] to obtain the first combinatorial, pseudopolynomial-time al-
gorithm. More recently, Narayanan [34] introduced a rounding technique which improves
Cunningham’s algorithm for matroid polyhedra. Based on a minimum-norm base char-
acterization of minimizers [17, 18], Sohoni [38] devised another pseudopolynomial-time
algorithm. For a closely related problem of finding a nonempty proper subset that mini-
mizes a symmetric submodular function f, Queyranne [35] has described a combinatorial
strongly polynomial algorithm. (A symmetric set function f satisfies f(X) = f(V\X)
for all X C V.) Queyranne’s algorithm extends the undirected minimum cut algorithm
of Nagamochi and Ibaraki [33].

A fundamental tool in the above algorithms for general submodular function mini-
mization [1, 2, 3, 34] is to move from one extreme point of the base polyhedron to an
adjacent extreme point via an exchange operation that increases one coordinate and de-
creases another coordinate by the same quantity. This quantity is called the exchange
capacity. These previous methods maintain a directed graph with a vertex set given by
the underlying set of the submodular function, and with an arc set that represents a set
of possible exchange operations. They progress by iteratively performing a sequence of
exchange operations along an augmenting path. These algorithms are not known to be
polynomial since the best known lower bound on the amount of each augmentation is too
small. The amount of augmentation is determined by exchange capacities multiplied by
the convex combination coeflicients. These coefficients may be as small as the reciprocal
of the maximum absolute value of the submodular function.

To make a pseudopolynomial-time algorithm run in polynomial time, Edmonds and
Karp [8] introduced the scaling technique in the design of the first polynomial-time mini-
mum cost flow algorithm. Since this initial success there have been many polynomial-time
scaling algorithms designed for various combinatorial optimization problems. However,
a straightforward attempt to apply the scaling technique does not work for submodular
function minimization. This is mainly because rounding a submodular function may vio-
late the submodularity. More specifically, the set function f’ defined by f'(X) = | f(X)]
is not necessarily submodular even if f is a submodular function.

To overcome this difficulty, we employ a scaling framework that uses the complete
directed graph on the underlying set, letting the capacity of this arc set depend directly
on the scaling parameter §. The complete directed graph serves as a relaxation of the
submodular function f to another submodular function f5 defined by f5(X) = f(X) +
§ | X|-|[V\X]|. Note that the second term § | X |-|V\X]| is the cut function of this additional



graph, and hence submodular.

The relaxation f; has a natural interpretation in the setting of network flows. In
their cut canceling algorithm for minimum cost flows, Ervolina and McCormick [9] relax
the capacity of each flow arc by the scaling parameter §. For submodular function
minimization, the “graph” is the set of possible exchange arcs, which is really the complete
directed graph on V.

The use of this additional graph was first introduced by Iwata [28] in the design of
the first capacity scaling algorithm for submodular flow. Since this, techniques have
been developed further in the submodular flow algorithms of Iwata, McCormick, and
Shigeno [30] and Fleischer, Iwata, and McCormick [11]. In particular, incorporating
ideas from [30], the algorithm in [11] introduces a method to avoid exchange operations
on an augmenting path. This is done by carefully performing exchange operations during
the search for an augmenting path of sufficient residual capacity. Our work in the present
paper employs this technique to develop a capacity scaling, augmenting path algorithm
for submodular function minimization.

The resulting algorithm uses O(n®log M) arithmetic steps and function evaluations,
where M = max{|f(X)| | X C V}. Even under the assumption that M is bounded
by a constant, our scaling algorithm is faster than the best previous combinatorial,
pseudopolynomial-time algorithm due to Cunningham [3], which uses O(n°M log(nM))
arithmetic steps and function evaluations.

We then modify our scaling algorithm to run in strongly polynomial time. A strongly
polynomial algorithm for submodular function minimization performs a number of steps
bounded by a polynomial in the size of the underlying set, independent of M. Grétschel,
Lovész, and Schrijver [24] described the first such algorithm using the ellipsoid method.
To make a polynomial-time algorithm run in strongly polynomial time, Frank and Tar-
dos [13] developed a generic preprocessing technique that is applicable to a fairly wide
class of combinatorial optimization problems including submodular flow (assuming an
oracle for computing exchange capacities) and testing membership in matroid polyhedra.
However, this framework does not readily apply to our scaling algorithm for submodular
function minimization. Instead, we establish a proximity lemma, and use it to devise a
combinatorial algorithm that repeatedly detects either a new element contained in ev-
ery minimizer, a new element not contained in any minimizer, or a new ordered pair
(u,v) € V such that any minimizer containing u also contains v. The resulting algorithm
uses O(n” logn) arithmetic steps and function evaluations. Our approach is based on the
general technique originated by Tardos [40] in the design of the first strongly polynomial
minimum cost flow algorithm.

Independently, Schrijver [36] has also developed a combinatorial strongly polynomial
algorithm for general submodular function minimization based on Cunningham’s ap-
proach. Instead of designing an algorithm that uses provably large augmentations as
we do here, Schrijver’s complexity analysis depends on an algorithmic framework that



uses paths whose lengths are provably nondecreasing. His algorithm can be shown to use
O(n®) function evaluations and O(n®) arithmetic steps. A modification of this algorithm
improves both of these quantities by a linear factor [10]. Both Schrijver’s algorithm and
ours use Gaussian elimination to maintain the representation of a vector in B(f) as the
convex combination of a small number of extreme points. However, we do not require
this step to establish the polynomial time complexity of our algorithm.

Schrijver [36] poses an open problem to design a strongly polynomial algorithm for
submodular function minimization that consists only of additions, subtractions, compar-
isons, and oracle calls. The symmetric submodular function minimization algorithm of
Queyranne [35] is “fully combinatorial” in this sense. Iwata [29] has very recently an-
swered this question by describing a fully combinatorial implementation of the strongly
polynomial algorithm in the present paper.

This paper is organized as follows. Section 2 provides background on submodular
functions. Section 3 presents our scaling algorithm for submodular function minimization,
and Section 4 gives a strongly polynomial algorithm. In Section 5, we discuss the variants
of our algorithms without Gaussian elimination. Finally, we conclude with extensions in
Section 6.

2. Preliminaries

We denote by Z and R the set of integers and the set of reals, respectively. For any vector
z € RV and any subset X C V, the expression z(X) denotes 3,cx z(v). For any vector
r € RY, we denote by z+ and z~ the vectors in RV defined by z7(v) = max{0,z(v)}
and z~(v) = min{0,z(v)} for v € V. For each u € V, let x, denote the vector in RV
such that x,(u) =1 and x,(v) = 0 for v € V\{u}.

A vector in the base polyhedron B(f) is called a base, and an extreme point of B(f) an
extreme base. It is easy to see that for any base x € B(f) and any subset ¥ C V' we have
2z~ (V) <z(Y) < f(Y). The following fundamental lemma shows that these inequalities
are in fact tight for appropriately chosen z and Y. Although the lemma easily follows
from a theorem of Edmonds [6] on the vector reduction of polymatroids, we provide a
direct proof for completeness.

Lemma 2.1: For a submodular function f : 2¥ — R we have
max{z~(V) | ¢ € B(f)} = min{f(X) | X C V. (2.1)
If f is integer-valued, then the maximizer x can be chosen from among integral bases.

0 and

Proof. Let z be a maximizer in the left-hand side. For any s,t € V with z(s) <
= f(Xst)

z(t) > 0, there exists a subset X such that s € Xu C V\{t} and z(Xy)



Then it follows from the submodularity of f that

X=U N X

s:x(s)<0 t:x(¢)>0

satisfies (X) = f(X). Since z(u) < 0 for every u € X and z(v) > 0 for every v € V\ X,
we have 7 (V) = z(X) = f(X), which establishes the min-max relation. The integrality
assertion follows from the same argument starting with an integral base x that maximizes
z~ (V) over all integral bases. [

It is not completely obvious that Lemma 2.1 provides a good characterization of a
minimizer of f. In fact, proving x € B(f) by the definition would require exponential
number of function evaluations. If y is an extreme base, however, there is a compact
proof that y € B(f) resulting from the greedy algorithm described below. However, the
maximizer of (2.1) may not be an extreme base. To handle this, Cunningham [2, 3]
suggested maintaining a base z € B(f) as a convex combination of extreme bases, thus
yielding a compact proof that z € B(f) for any base z generated by his algorithm.

Let L = (v1,--+,v,) be a linear ordering of V. For any j € {1,---,n}, we define
L(vj) = {vy,-+,v;}. The greedy algorithm of Edmonds [6] and Shapley [37] computes
an extreme base y € B(f) associated with L by

y(v) == f(L()) = f(L\{e}), VveV (2.2)

Thus the linear ordering L provides a certificate that y is an extreme base. Conversely,
any extreme base can be generated by applying the greedy algorithm to an appropriate
linear ordering.

A fundamental tool in our algorithm is to move from a base = to another base by an
exchange operation that increases one component and decreases another component by
the same amount, i.e., z := = + a(xy, — Xv). With z = >,c; \iy;, a convex combination
of extreme bases, this can be realized by applying an exchange operation on an extreme
base y;. An exchange amount 3 on y; corresponds to an exchange amount A\;5 on z. The
following lemma shows that interchanging two consecutive elements in a linear ordering
that generates y; results in an exchange operation on y;.

Lemma 2.2: Suppose u tmmediately succeeds v in a linear ordering L that generates an
extreme base y € B(f). Then the linear ordering L' obtained from L by interchanging u
and v generates an extreme base y' =y +€(y, u, v)(Xu — Xv) With

¢y, u,v) = f(L(w)\{v}) = f(L(w)) + y(v). (2.3)

Proof. Tt is obvious from the greedy algorithm that ¢’ can differ from y only at u and v.
Namely, ¥’ = y + B(xu — X») for some §. Since L'(v) = L(u), it follows from (2.2) that

y'(v) = f(L(w)) — f(L(w)\{v}). Thus we obtain § = f(L(u)\{v}) — F(L(v)) +y(v). ™

6



The quantity ¢(y,u,v) in Lemma 2.2 is called an ezchange capacity. In general, an
exchange capacity ¢(z,u,v) is defined for any base z € B(f) and any ordered pair of
distinct u, v € V' as the maximum amount of exchange operation that keeps x in the base
polyhedron. Hence the exchange capacity ¢(z,u,v) is expressed as

¢(z,u,v) =min{f(X) —z(X) |u e X CV\{v}}. (2.4)

However, there is nothing special that makes this computation easier than minimizing f.
Our algorithm uses only those exchange capacities that can be computed via Lemma 2.2.

3. A Scaling Algorithm

In this section, we describe a combinatorial algorithm for minimizing an integer-valued
submodular function f : 2" — Z with f(f)) = 0. We assume we have an evaluation oracle
for the function value of f. Our algorithm is an augmenting path algorithm, embedded
in a scaling framework. A formal description of this algorithm SFM appears in Figure 1.

3.1. The Scaling Framework

The algorithm consists of scaling phases with a positive parameter §. The algorithm
starts with an arbitrary linear ordering L on V' and the extreme base z € B(f) generated
by L. The initial value of 4 is given by ¢ := £/n? with ¢ = min{|z~(V)|,z"(V)}. At
the end of each scaling phase, the algorithm cuts ¢ in half. The algorithm ends with
§ < 1/n

To adapt the augmenting path approach to this scaling framework, we use a complete
directed graph on V' with arc capacities that depend directly on our scaling parameter ¢.
Let ¢ : V XV — R be a flow in the complete directed graph G = (V, A) with the vertex
set V and the arc set A =V x V. The boundary 0p : V — R is defined by

dp(u) = plu,v) — > plv,u), YuelV. (3.1)

veV veV

That is, dp(u) is the net flow value emanating from u. A flow ¢ is called d-feasible if it
satisfies capacity constraints 0 < ¢(u,v) < ¢ for every u,v € V. Our algorithm maintains
¢ such that at least one of ¢(u,v) and (v, u) is equal to zero for any u,v € V.

The algorithm maintains a base z € B(f) as a convex combination z = Y ;c; Ay
of extreme bases y; € B(f). For each index i € I, the algorithm also maintains a
linear ordering L; that generates y;. Instead of trying to maximize z~ (V) directly, the
algorithm uses z = x + Jyp and seeks to increase z~(V'), thereby increasing z~ (V) via
the 0-feasibility of ¢. This 2 is a base in the base polyhedron of the submodular function
f5(X) = £(X) + 8[X|- [V\X]|



SFM(f):

Initialization:
L + a linear ordering on V
x < an extreme base in B(f) generated by L
§ + min{|z~(V)], 2z (V)}/n?
I(—{k},yk<—x, M1, Ly« L
¢ <0,
While § > 1/n? do [ Scaling phase |
S {v|z(v) + 0p(v) < -6}
T + {v]| z(v) + 0p(v) > 6}
W « the set of vertices reachable from S in G°
While W NT # ) or there is an active triple do
While W NT =0 and there is an active triple do
Apply Double-Exchange to an active triple (i, u,v).
Update W.
IfWNT #( then [ There is a 6-augmenting path. |
Augment flow ¢ along a d-augmenting path P.
Update G°, S, T, W.
Apply Reduce(z, I).
§4/2
P /2
Return W.
End.

Figure 1: A scaling algorithm for submodular function minimization. The algorithm
finds a subset of V that minimizes submodular function f. It uses a directed graph
G° = (V, A°) where A° = {(u,v) | u,v € V, u # v, o(u,v) = 0}.

3.2. A Scaling Phase

Each d-scaling phase maintains a d-feasible flow ¢ and a subgraph G° = (V, A°) with the
arcset A° = {(u,v) |u,v € V, u # v, p(u,v) = 0}. The d-scaling phase aims at increasing
2z~ (V') by sending flow along directed paths in G° from S = {v | v € V| z(v) < =4} to
T={v]|veV,z(v)>d}. Such a directed path is called a §-augmenting path.

If there is no d-augmenting path, let W denote the set of vertices currently reachable
from S in G°. A triple (4,u,v) of i € I, u € W and v € V\W is called active if u
immediately succeeds v in L;. If there is an active (4,u,v), the algorithm performs an
appropriate exchange operation, and modifies ¢ so that z = x+ 0y is invariant. We refer



to this procedure as Double-Exchange(i, u, v). The detail of Double-Exchange is described
below. As a result of Double-Exchange(i, u, v), either W remains unchanged or the vertex
v and the set of vertices in V\W reachable from v by d-capacity paths are added to W.
The algorithm performs Double-Exchange as long as it is applicable, until a d-augmenting
path is found. Once a d-augmenting path P is found, the algorithm augments the flow
¢ by § along P by setting ¢(u,v) := 0 — ¢(v,u) and ¢(v,u) := 0 for each arc (u,v) in P.
This increases z~ (V') by 4 since z changes only at the initial and terminal vertices of P.
This is an extension of a technique developed in [11] for finding §-augmenting paths for
submodular flows.

A ¢-scaling phase ends when there is neither a d-augmenting path nor an active triple.
Then the algorithm cuts the value of § in half and goes to the next scaling phase. To
keep the d-feasibility of ¢, the algorithm halves the flow ¢ for each arc.

Double-Exchange(s, u, v):

¢(yir u,v) ¢ f(Li(w)\{v}) — f(L(v)) + y(v)
a + min{p(u, v), A\C(y;, u,v)}
T2+ a(Xu— Xo)
QO(/UW U) A QO(/UW U) -«
If & < A\i€(yi, u,v) then
k < a new index
I+ Tu{k}
A — A — af¢(y;, u,v)
Ai — a/¢(yi, u,v)
Yk < Yi
Yi < Ui + (Ui, 4, 0) (Xu — Xo)
Update L; by interchanging v and v.

Figure 2: Algorithmic description of the procedure Double-Exchange(s, u, v).

The first step of the procedure Double-Exchange(i, u, v) is to compute the exchange
capacity €(y;,u,v). It then updates z and ¢ as z := = + a(x, — Xv) and p(u,v) =
¢(u,v) — @, so that z = = + Jp remains unchanged. The amount « of this exchange
operation is determined by taking the minimum of ¢(u,v) and A;€(y;, u,v). Note that
¢(u,v) is the maximum amount of feasible decrease of flow on (u,v) and that A\;¢(y;, u, v)
is the maximum exchange possible to effect in x = 3>, \;y; by performing an exchange
operation on y; and keeping all the other extreme bases in [ fixed.



The procedure Double-Exchange(i, u,v) updates y; := vy; + ¢(y;, u,v)(Xu — Xv) and
Ai = «af¢(y;,u,v). It also updates L; by interchanging v and v, which maintains
y; as an extreme base generated by L;. Double-Exchange(i,u,v) is called saturating
if @« = N€(yi,u,v). Otherwise, it is called nonsaturating. If Double-Exchange (i, u,v)
is nonsaturating, the old y; remains in the convex representation of z with coefficient
Ai — a/€(y;, u,v). Thus, if Double-Exchange(i, u, v) is nonsaturating, then before updat-
ing y;, it adds to I a new index k with y; 1= i, A\ := Ny — o/S(ys, u,v), and Ly, := L;.
Double-Exchange(%, u, v) is summarized in Figure 2.

After each d-augmentation, and at the end of the d-scaling phase, the algorithm
applies a procedure Reduce(z,I) that computes an expression for z as a convex com-
bination of (at most n) affinely independent extreme bases y;, chosen from the current
y;’s. This computation is a standard linear programming technique of transforming a
feasible solution into a basic feasible solution. If the set of extreme points are not affinely
independent, there is a set of coeflicients y; for ¢+ € I that is not identically zero and
satisfies > p;y; = 0 and Y_ p; = 0. Using Gaussian elimination, we can start computing
such p; until a dependency is detected. At this point, we eliminate the dependency by
computing 6 := min{\;/p; | p#; > 0} and updating \; := \; — Oy; for ¢ € I. At least
one ¢ € I satisfies A; = 0. Delete such ¢ from I. We continue this procedure until we
eventually obtain affine independence.

This same step is also used in the submodular function minimization algorithms
of Cunningham [3] and Schrijver [36]. However, for the present algorithm, we do not
need this step to obtain a polynomial bound on the complexity. We include this linear
algebraic procedure because it significantly reduces the running time of the algorithm.
For an analysis of the algorithm without Reduce, see Section 5.

3.3. Correctness

In the subsequent analysis, the end of a scaling phase refers to the point immediately
before ¢ is cut in half. The following lemma establishes a relaxed strong duality, which
plays a crucial role in the analysis of our algorithm.

Lemma 3.1: At the end of the §-scaling phase, z= (V) > f(W) —nd.

Proof. At the end of the ¢ scaling phase, there are no active triples, which implies for
each 7 € I the first |WW| vertices in L; must belong to W. Then it follows from (2.2) that
yi(W) = f(W). Since z = Y ;jcr Ayi and >;c; A = 1, we obtain (W) = Y ;e Ay (W) =
fFw).

At the end of the § scaling phase, the set W also satisfies S C W C V\T and
dp(W) > 0. By the definitions of S and T', we have z(v) < ¢ for every v € W and
z(v) > =4 for every v € VA\W. Therefore, we have z=(V) = 2= (W) + 2= (V\W) >
z(W) = 0|W| = 8|VA\W| = 2(W) + 0p(W) —nd > f(W) — nd. [ |
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As an immediate consequence of Lemma 3.1, we obtain the following lemma, which
leads us to the correctness of the scaling algorithm.

Lemma 3.2: At the end of the §-scaling phase, z=(V) > f(W) — n?6.

Proof. By Lemma 3.1, the set W satisfies z~

(V) > nd. Since dp(v) < (n—1)8
for each v € V, we have 2= (V) > 2= (V) — n(n —

fW) -
1)6 > f(W) — ns. n

Theorem 3.3: The algorithm obtains a minimizer of f at the end of the d-scaling phase
with § < 1/n?.

Proof. By Lemma 3.2, the output W of the algorithm satisfies 2= (V) >
f(W)—1. For any Y C V, the weak duality in Lemma 2.1 asserts z~ (V
implies f(W) —1 < f(Y). Hence it follows from the integrality of f that W minimizes

f. n

3.4. Complexity

We now investigate the number of iterations in each scaling phase.
Lemma 3.4: The number of augmentations per scaling phase is O(n?).

Proof. 1t follows from Lemma 3.1 that at the beginning of the J-scaling phase except
for the first one, z7 (V) is at least f(X) — 2nd for some X C V. Replacing ¢ by /2
could decrease z(X) by at most |X|- [V\X|§ which is bounded above by n?§/4 for any
X, and hence the decrease of 27 (V) is also bounded by n?¢/4. Hence f(X) — 2nd —
n?6/4 < 27 (V). On the other hand, since z(X) < f(X) and dp(X) < §|X| - [V\X],
we have 27 (V) < 2(X) < f(X) + n?6/4 throughout the d-scaling phase. Since each
J-augmentation increases z~ (V) by d, the number of d-augmentations per phase is at
most 2n + n?/2, which is O(n?), for all phases after the first one.

In the first phase, let x denote the initial extreme base. Then z = z at the start
of the algorithm. Since z=(V) < f(0) = 0 and 27 (V) < f(V) = z(V) must hold
throughout, possible increase of z~ (V) during the first scaling phase is bounded by & =
min{|z=(V)|, zT(V)}. Thus the initial setting § = £/n* guarantees that the number of
augmentations in the first scaling phase is n?. [ |

Lemma 3.5: Between §-augmentations, |I| grows by at most n — 1.

Proof. A new index is added to I only during a nonsaturating Double-Exchange. Since
each nonsaturating Double-Exchange adds a new element to W, this happens at most
n — 1 times before a J-augmenting path is found. [ ]

11



Lemma 3.6: Algorithm SFM performs the procedure Double-Exchange O(n?) times be-
tween d-augmentations.

Proof. Once the algorithm applies Double-Exchange(i, u,v), the vertices u and v are
interchanged in L;, and the triple (¢,u,v) never becomes active again until the next
d-augmentation or the end of the phase. By performing basis reduction after each aug-
mentation, |I| < 2n throughout the algorithm by Lemma 3.5. Hence, the number of
times Double-Exchange is applied is bounded by the number of triples, which is at most
O(n®). |

Theorem 3.7: Algorithm SFM is a polynomial-time algorithm that performs O(n°log M)
function evaluations and arithmetic operations.

Proof. The algorithm starts with § = £/n? and ends with § < 1/n?. For the initial
extreme base z and X = {v | v € V, z(v) > 0}, we have £ < z7(V) = z(X) < f(X) <
M. Thus SFM consists of O(log M) scaling phases. Each scaling phase performs O(n?)
augmentations by Lemma 3.4.

Between d-augmentations, there are O(n®) calls of Double-Exchange by Lemma 3.6.
The procedure Double-Exchange consists of O(1) calls of the function evaluation oracle.
Therefore the algorithm calls the oracle O(n®log M) times in total.

As a result of Double-Exchange(i, u, v), the vertex v and the set of vertices in V\W
reachable from v by d-capacity paths may be added to W. (This set may be determined
by standard graph search on G.) Thus, over the course of an augmentation, updates
to W take at most n® time. To efficiently find an active triple, we maintain a pointer
for each index ¢ € I that points to an element of W in an active triple for L;. After
a Double-Exchange that does not increase W, this takes at most linear time to update.
After a Double-Exchange that increases W, this may need to be updated for all ¢ € I,
and thus takes at most n? time. Thus, per augmentation, this takes O(n3) time. After
augmenting ¢ on P, the endpoints of P may be removed from S or 7.

After each augmentation, we also update the expression x = 3 ;c; A\;y; to recover
the affine independence of y;’s. The bottleneck in this procedure is the time spent for
computing the coefficients yu;, as described in Section 3.2. Since |I| < 2n by Lemma 3.5,
this takes O(n®) arithmetic operations. If performed correctly, the encoding length of
the numbers generated by Gaussian elimination is bounded by a polynomial in the size
of the input (which includes the maximum encoding length of the function values) [5].
In addition, since the resulting multipliers A = (); | ¢ € I) are a basic solution to the
system H\ = z where the columns of H correspond to extreme bases y;, their size is also
bounded by a polynomial in the input size. Thus SFM is a polynomial-time algorithm
with O(n®log M) arithmetic steps. ]

The previous best known pseudopolynomial time bound is O(n®M log(nM)) due to
Cunningham [3]. Theorem 3.7 shows that our scaling algorithm is faster than this even
if M is fixed as a constant.
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In this section, we have shown a weakly polynomial-time algorithm for minimizing
integer-valued submodular functions. The integrality of a submodular function f guar-
antees that if we have a base = € B(f) and a subset X of V such that f(X) — 2~ (V) is
less than one, X is a minimizer of f. Except for this we have not used the integrality of
f. Tt follows that for any real-valued submodular function f : 2V — R, if we are given
a positive lower bound e for the difference between the second minimum and the mini-
mum value of f, the present algorithm works for the submodular function (1/e€)f with
an O(n®log(M/¢€)) bound on the number of steps, where M = max{|f(X)| | X C V}.

4. A Strongly Polynomial Algorithm

This section presents a strongly polynomial algorithm for minimizing a real-valued sub-
modular function f : 2V — R. The main idea is to show via Lemma, 4.1 below that after
O(logn) scaling phases, the algorithm detects either a new element that is contained in
every minimizer of f, a new element that is not contained in any minimizer of f, or a
new vertex pair (u, v) such that v is in every minimizer of f containing u. Since there are
O(n?) such detections, after O(n?logn) scaling phases, the algorithm finds a minimizer
of f.

Lemma 4.1: At the end of the §-scaling phase in SFM(f), the following hold.
(a) If z(w) < —n?s, then w is contained in every minimizer of f.
(b) If z(w) > n?6, then w is not contained in any minimizer of f.

Proof. By Lemma 3.2, z7 (V) > f(W) — n?§ holds at the end of the d-scaling phase.
For any minimizer X of f, we have f(W) > f(X) > z(X) > 2= (X). Thus, z=(V) >
F(W)—=n?§ > 27 (X) —n?s. Therefore, if z(w) < —n?d, then w € X. On the other hand,
(X)) >z (V) > f(W) —n?6 > z(X) — n?. Therefore, if z(w) > n?j, then w ¢ X. W

The strongly polynomial algorithm, denoted SPM(f), maintains a subset X C V that
is included in every minimizer of f, a vertex set U = {uy,---,u,} corresponding to a
partition {V3,---,V;} of V\X into pairwise disjoint nonempty subsets, a submodular
function f defined on 2Y, and a directed acyclic graph D = (U, F). Each arc in F is
an ordered pair (u,w) of vertices u and w in U such that w is in every minimizer of f
containing u. For u € U, let I'(u) denote the corresponding set of the partition of V\ X.
For example, I'(u;) = V;. For Y C U, we also denote I'(Y) = Uyey I'(uw). Throughout
the algorithm, we keep a correspondence between minimizers of f and f so that any
minimizer of f is represented as X U I'(W) for some minimizer W of f. Initially, the
algorithm assigns U :=V, F := (), f := f, and X := (), which clearly satisfy the above
properties.

13



Let R(u) denote the set of the vertices reachable from u € U in D. We denote by Ju
the contraction of f by R(u), i.e., the submodular function on ground set U\ R(u) defined
by

fuY) = f(Y UR(u)) — f(R(u)), VY CU\R(u). (4.1)

A linear ordering (ui,- -, us) of U is called consistent with D if (u;,u;) € F' implies
that j < 4. The extreme base generated by a consistent linear ordering is also called
consuistent.

-~ o~

Lemma 4.2: Any consistent extreme basey € B(f) satisfies y(u) < f(R(u))—F(R(w)\{u})
for each u € U.

Proof. The consistent extreme base y satisfies y(u) = f| (Y) - F(Y\{u}) for some ¥ D
R(u). The claim then follows from the submodularity of f. [
The building block of the strongly polynomial algorithm is the subroutine Fix( f,D ,1)
which performs O(logn) scaling phases starting with 6 = 7, and an extreme base y €
B(f) that is consistent with D for submodular function f. The subroutine Fix(f, D, )
is invoked only if F(U) > n/3 or there is a subset ¥ C U such that f(Y) < —p5/3.
Fix(f, D,n) performs scaling phases until § < n/3n®. Then, if f(U) > 1/3, at least one
element w € U satisfies z(w) > n®0 at the end of the last scaling phase. By Lemma 4.1
(b), such an element w is not contained in any minimizer of f. Otherwise, f(Y) < —7/3
and at least one element w € Y satisfies z(w) < —n2§ at the end of the last scaling
phase. By Lemma 4.1 (a), such an element w is contained in every minimizer of f.

The choice of 7 in each call to Fix is determined so that (i) Lemma 4.1 may be invoked
for a new element w after O(logn) phases, and (ii) the number of augmentations in the
first phase is not too large. This is accomplished by setting 7 as in (4.2). We explain
why (i) holds below, and why (ii) holds in the proof of Theorem 4.3.

n = max{f(R(u)) - f(Rw)\{u}) | v € U}. (4.2)

Lemma, 4.2 implies that y(v) < 7 for any y € B(f) consistent with D.

If n <0, then an extreme base y € B( ) consistent with D satisfies y(u) < 0 for each
u € U. In this case y~(U) = y(U) = f(U), which implies that U minimizes f by the
weak duality in Lemma 2.1. Therefore, the algorithm returns U as a minimizer of f .

If 7 > 0, then let u be an element that attalns the maxnnum in the rlght hand side of
(4.2). Then, since 7 = f(R(u)) - f(R(u)\{u}) = Ru)\{u}) +(f(R(u)) - (U)),
at least one of the three values, f(U), —f(R(u )\{u}) and f(R(w)) — f(U), is greater
than or equal to 1/3. Hence we consider the following three cases.

If f(U) > n/3 > 0, the algorithm applies Fix( f,D,n) to find a new element w that
is not in any minimizer of f In this case, it suffices to minimize the function f among
those subsets that do not contain any vertex v with w € R(v). Thus the algorithm deletes
{v|w e R(v)} from U.
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If f(R(u)\{u}) < —n/3 < 0, the algorithm applies Fix(f, D, 7) to find a new element
w in every minimizer of f. In this case, every minimizer of f includes R(w). Thus it
suffices to minimize the submodular function fw, defined on the smaller underlying set
U\R(w) as in (4.1); so the algorithm sets f := f,.

Otherwise (fu(U\R(u)) = F(U) — f(R(x)) < —n/3 < 0), the algorithm applies
Fix(fu, Du,n) where D, is defined as D restricted to U\R(v). In this case, Fix(fy, Dy, )
finds an element w € U\R(u) that is contained in every minimizer of f,. Thus the
algorithm adds (u,w) to F. If this creates a cycle in D, then the arcs of the cycle imply
that either every element in the cycle is contained in a minimizer of f , Or every element
in the cycle is not contained in any minimizer. Thus, the algorithm contracts the cycle
to a single vertex and modifies U and f by regarding the contracted vertex set as a single
vertex.

This algorithm is summarized in Figure 3.

Theorem 4.3: Algorithm SPM is a strongly polynomial algorithm that performs O(n' logn)
function evaluations and arithmetic operations.

Proof. Each time we call the procedure Fix, the algorithm adds a new arc to D or deletes
a set of vertices. This can happen at most O(n?) times. Each call to Fix takes O(logn)
phases. By Lemma 3.4, each phase after the first phase has O(n?) augmentations.

To bound the number of augmentations in the first phase, recall that the choice
of 77 implies that y(v) < 7 for any extreme base y € B(f) consistent with D. By
submodularity of f, any extreme base y € B( fu) consistent with D, satisfies y(t) <
Fu(R®) — Fu(REN{t}) < F(R@®) — F(RE\{t}) < n for each t € U\R(u). Thus for
Fix(f, D,n) or Fix(fy, Dy,n), we have y*(V) < nn. Since the number of augmentations
in a §-phase is bounded by y*(U)/é, the number of augmentations in the first phase of
any call to Fix is bounded by n.

Since the proof of Theorem 3.7 shows that the number of arithmetic operations and
function evaluations per augmentation is O(n?), this yields an O(n”logn) bound on the
total number of steps.

When applied to rational-valued submodular functions, SPM works in the space of
polynomial size. In particular, as noted earlier, the encoding length of the numbers
generated in the Gaussian elimination is bounded by a polynomial in the input size
(including the maximum encoding length of the function values) [5], and so is the size of
the resulting multipliers \. Thus SPM is a strongly polynomial algorithm. [ |

5. Removing Gaussian Elimination

The algorithms described in Sections 3 and 4 both employ Gaussian elimination to get
a representation of x as a convex combination of a small number of extreme bases. This
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SPM(f):

Initialization:
X0 UV, fef,F«0
While U # 0 do

1+ max{f(R(u)) — f(R(u)\{u}) | u € U}
Let v € U attain the maximum above.
If n <0 then
X+ XUI(U)
Return X.
Else

o~

If f(U) > n/3 then
w « Fix(f, D, 7) [ w not in any minimizer. |
Delete {v | w € R(v)} from U.
Else if f(R(u)\{u}) < —7/3 then
w « Fix(f, D, 7) [ w in every minimizer. |
U+ U\R(w)
[ fu
X + X UT(R(w))
Else
w 4 Fix(fu, Dy, n) [ w in every minimizer containing u. |
If uw € R(w) then
Contract {v | v € R(w), u € R(v)} to a single vertex.
Else F + F U {(u,w)}
Return X.
End.

Figure 3: A strongly polynomial algorithm for submodular function minimization.

step is, however, not necessary to obtain the polynomiality. We explain here the effect

of removing this step.

The size of the set I in the convex combination representation of z increases by at most
n — 1 per augmentation, due to Lemma 3.5. The number of augmentations per scaling
phase is not affected by the size of I (see the proof of Lemma 3.4), and hence remains
O(n?). Thus the total number of bases introduced during the algorithm is bounded by
n times the number of augmentations. For the scaling algorithm SFM(f) described in

Section 3, this is O(n®log M).

The size of I does affect the work per augmentation, however. In particular, it
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affects the number of calls to Double-Exchange during the search for an augmentation. In
the proof of Lemma 3.6, it is explained that the number of Double-Exchange operations
before augmentation per extreme base in I is at most n?. Thus, the total work per
augmentation in the algorithm without Reduce is O(n°log M). Thus the number of
arithmetic operations and function evaluations used by this more combinatorial version
of SFM(f) is bounded by O(n”log® M).

The strongly polynomial algorithm SPM(f) described in Section 4 does not depend
on reducing the size of I for strong polynomiality. If this step is omitted, the number of
extreme bases in I may grow to O(n3logn) in an iteration of Fix. Since each call to Fix
starts with a single extreme base, the size of I will remain bounded throughout SPM(f)
by O(n®logn). This will increase the the work per augmentation to O(n®logn). Thus
an overall bound on the number of steps is O(n° log® n).

In contrast, if the linear algebraic step were omitted in the strongly polynomial algo-
rithm described in [36], the size of I could become exponential in n.

6. Conclusion

This paper has presented a strongly polynomial algorithm for minimizing submodular
functions defined on Boolean lattices: all subsets of the ground set V. Several related
problems have been shown to require algorithms for minimizing submodular functions
on restricted families of subsets [22, 24]. These problems have combinatorial solutions
modulo an oracle for submodular function minimization on distributive lattices. Our
algorithms can be extended to minimize submodular functions defined on distributive
lattices.

Consider a submodular function f : D — R defined on a distributive lattice D
represented by a poset P on V. Then the associated base polyhedron is unbounded in
general.

An easy way to minimize such a function f is to consider the reduction of f by a
sufficiently large vector. As described in [20, p. 56], we can compute an upper bound M
on |f(X)| among X € D. Let f be the rank function of the reduction by a vector with
each component being equal to M. The submodular function f is defined on 2V and
the set of minimizers of f coincides with that of f. Thus, we may apply our algorithms.
However, each evaluation of the function value of f requires O(n?) elementary operations
in addition to a single call for the evaluation of f. Schrijver [36] describes a similar
method to solve this problem.

Alternatively, we can slightly extend the algorithms in Sections 3 and 4 by keep-
ing the base z € B(f) as a convex combination of extreme bases y;’s plus a vector in
the characteristic cone of B(f). The latter can be represented as a boundary of a non-
negative flow in the Hasse diagram of P. This extension enables us to minimize f in
O(n® min{log n M, n?logn}) time, where M is an upper bound on |f(X)| among X € D.
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Submodular functions defined on modular lattices naturally arise in linear algebra.
Minimization of such functions has a significant application to canonical forms of parti-
tioned matrices [27, 31]. It remains an interesting open problem to develop an efficient
algorithm for minimizing submodular functions on modular lattices, even for those spe-
cific functions that arise from partitioned matrices.
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