
A Type-Theoretic Interpretation of Standard ML�

Robert Harper and Christopher Stone

frwh,cstoneg@cs.cmu.edu

School of Computer Science

Carnegie Mellon University

5000 Forbes Avenue

Pittsburgh, PA 15213-3891

1 Introduction

It has been nearly twenty years since Robin Milner introduced ML as the metalanguage of the LCF interactive
theorem prover [5]. His elegant use of abstract types to ensure validity of machine-generated proofs, combined
with his innovative and exible polymorphic type discipline, and supported by his rigorous proof of soundness
for the language, inspired a large body of research into the type structure of programming languages.1 As a
design tool type theory gives substance to informal ideas such as \orthogonality" and \safety" and provides
a framework for evaluating and comparing languages. As an implementation tool type theory provides
a framework for structuring compilers and supports the use of e�cient data representations even in the
presence of polymorphism [28, 27].

Milner's work on ML culminated in his ambitious proposal for Standard ML [17] that sought to extend ML
to a full-scale programming language supporting functional and imperative programming and an expressive
module system. Standard ML presented a serious challenge to rigorous formalization of its static and dynamic
semantics. These challenges were met in The De�nition of Standard ML (hereafter, The De�nition), which
provided a precise de�nition of the static and dynamic semantics in a uniform relational framework. A
key di�culty in the formulation of the static semantics of Standard ML is to manage the propagation of
type information in a program so as to support data abstraction while avoiding excessive notational burdens
on the programmer. This is achieved in The De�nition through the use of \generative stamps". Roughly
speaking, each type is assigned a unique \stamp" that serves as proxy for the underlying representation
of that type. This ensures that two abstract types with the same representation are distinguished from
one another, and facilitates the use of type inference-based techniques in the semantics of modules. The
stamp formalism does not inhibit the dynamic semantics of the language because types are erased prior to
execution. Consequently, no management of stamps is required at run-time.

Much recent research on both the metatheory and implementation of programming languages is based
on an explicitly-typed interpretation in which the dynamic semantics is de�ned on typed, rather than type-
erased, programs [28, 2]. From a semantic viewpoint programs are seen as intrinsically typed, and hence
fundamental relations such as operational equivalence are de�ned so as to limit the set of observations to
those that make type sense. From an implementation viewpoint types are used to determine the behavior
of primitive operations (such as array subscripting) and to perform storage management at run-time. The

�This research was sponsored in part by the Advanced Research Projects Agency CSTO under the title \The Fox Project:
Advanced Languages for Systems Software", ARPA Order No. C533, issued by ESC/ENS under Contract No. F19628-95-C-
0050, and in part by the National Science Foundation under Grant No. CCR-9502674. The second author was also partly
supported by the US Army Research O�ce under Grant No. DAAH04-94-G-0289. The views and conclusions contained in this
document are those of the authors and should not be interpreted as representing o�cial policies, either expressed or implied,
of the Advanced Research Projects Agency, the U.S. Government or the National Science Foundation.

1See Cardelli's overview of type systems [3] for a comprehensive survey and references to the literature.

1

untyped interpretation is a special case of the typed interpretation in which we consider only one (typically
recursive) type. Thus there is no loss of generality in considering the explicitly-typed case.

While there has been considerable progress in developing a type-theoretic account of programming lan-
guages, a complete treatment of fully-featured languages such as Standard ML has thus far not been achieved.
One obstacle is scale: Standard ML has a rich collection of mechanisms that must be accounted for in any for-
mal treatment. More signi�cantly, Standard ML presents a number of challenges to a type-theoretic account,
principally the module system. For example, it is not immediately clear how to extend the generative stamps
formalism of The De�nition to an explicitly-typed setting. The main di�culty is that in a typed framework
the underlying representation of an abstract type must be exposed at run-time. Consequently, an explicit
association between stamps and their implementation types must be maintained in a typed semantics. Other
aspects of Standard ML, including recursive datatype declarations, pattern matching, polymorphic equality,
and \generative" functors, also present signi�cant challenges for a type-theoretic interpretation.

In this paper we outline an interpretation of Standard ML in a typed framework. The interpretation
takes the form of a translation from Standard ML into an explicitly-typed �-calculus. The target of the
translation we call the internal language, or IL; the source language is then called the external language, or
EL. The external language considered here is the 1997 dialect of Standard ML, as described in the revised
De�nition [18]. The internal language is derived from the XML language of Harper and Mitchell [9], but
with a richer collection of primitive types and a more expressive module system based on the translucent
sum [8], or manifest type [13], formalism. The internal language is given a type-passing dynamic semantics
in the form of a transition system between states of an abstract machine.

The translation is presented by a set of inference rules reminiscent of the static semantics given in The
De�nition, with the internal language playing the role of static semantic objects. The translation rules
typically de�ne the translation of a phrase in terms of the translation of its constituent phrases, subject to
context-sensitive constraints expressed by the internal language type system. Type propagation is controlled
by a combination of the translucent sum formalism together with the representation of abstract types as
modules with opaque type components. The internal language ensures that abstraction is respected, and,
moreover, provides the requisite association of an abstract type with its underlying representation.

The interpretation may be viewed as an alternative to The De�nition in which the \static semantic
objects" have been formalized as expressions of a typed �-calculus and in which the elaboration relation has
been generalized to a translation into the internal language. From this point of view the internal language
plays a role analogous to Scott's LAMBDA language for denotational semantics [25]. The meaning of a
Standard ML program is de�ned by interpretation into the internal language, which is given meaning by
some other means. In our setting the semantics of the internal language is given by a sound operational
semantics, but we conjecture that it would also be feasible to give it a domain-theoretic interpretation as in
denotational semantics.

The interpretation may also be viewed as a declarative speci�cation of the elaboration rules for type-
based compilers for Standard ML such as TIL [28] and SML/NJ [26]. The front-end of the TIL compiler
is a \determinization" of elaboration rules described below, using standard methods such as uni�cation to
defer non-deterministic choices until the context resolves any ambiguity. Preliminary results indicate that
basing a compiler on a typed interpretation has numerous advantages, both in terms of expressive power
(resolving a long-standing di�culty with the compilation of functors in Standard ML) and e�ciency (leading
to signi�cant improvements in space and time requirements).

The internal language is intended to capture the fundamental constructs shared by many programming
languages. We conjecture that languages such as Caml, Haskell, and Scheme could be interpreted into an
internal language substantially similar to the one we give here. For example, we may translate Scheme
expressions into internal language expressions of a �xed recursive sum type. Correspondingly, the primitive
operations dispatch on the form values, much as actual Scheme implementations analyze tag bits at run-
time. The interpretation framework neatly handles Scheme's decision to leave the evaluation order of function
arguments unspeci�ed | the translation rules can rely on the indeterminacy of the relational framework to
\choose" an evaluation order at each application expression. Direct approaches to the semantics of Scheme
have great di�culty accounting for this aspect of the language.

2

Judgment... Meaning...

` decs ok decs is well-formed
decs ` dec ok dec is well-formed

decs ` bnd : dec bnd has declaration dec

decs ` knd : Kind knd is well-formed

decs ` con : knd con has kind knd

decs ` con � con 0 : knd constructor equivalence at kind knd

decs ` exp : con exp has type con

decs ` sdecs ok sdecs is well-formed
decs ` sig : Sig sig is well-formed

decs ` sdecs � sdecs 0 component-wise subtyping
decs ` sig � sig 0 : Sig signature subtyping

decs ` sdecs � sdecs 0 component-wise equivalence
decs ` sig � sig 0 : Sig signature equivalence

decs ` sbnds : sdecs sbnds has declaration list sdecs
decs ` mod : sig mod has signature sig

decs ` exp # con exp is valuable with type con
decs ` mod # sig mod is valuable with signature sig

Figure 1: Judgments of the Internal Language Static Semantics

2 The Internal Language

The internal language is an explicitly-typed �-calculus with two levels, a core level and a module level. The
two levels are linked by the ability to declare a module within a core-level expression. The internal language
is based loosely on Harper and Mitchell's XML language [9], but with a treatment of modules derived from
Harper and Lillibridge's [8, 15] translucent sum formalism and Leroy's manifest type system [13].

This section consists of a brief overview of the internal language. The language is de�ned by a set
of inference rules for deriving the judgment forms given in Figure 1. A selection of the rules is given in
Appendix B; the remainder can be found in a companion technical report [11]. For further background and
motivation the reader is urged to consult the references cited above.

2.1 Constructors and Kinds

The syntax of constructors and kinds is given in Figure 2. Kinds classify constructors. Constructors of
kind
 are called types. Kinds are closed under formation of record kinds and function kinds.

The internal language types include various base types, record types, sum types, partial and total function
types, recursive types, reference types, tag types, and a type of tagged values. There is no subtyping at
the core level, which is consistent with the lack of subtyping in the SML core language. Most of the type
constructors are relatively standard, except for total function types, tag types, and the type of tagged values.

We borrow from the computational �-calculus [20] an abstract notion of \de�nedness", called valuability,
and the closely-associated notion of \totality" for functions. Valuability of core- and module-level expressions
is expressed by a judgment form expressing that the given expression may be evaluated without engendering
any computational e�ect. For decidability reasons, the rules de�ne a conservative approximation of valua-
bility. The approximation is strong enough to express the \value restriction" on polymorphism [31, 12] in
Standard ML, as discussed in Section 3. In particular, all canonical forms are valuable, as are all variables
(the dynamic semantics is call-by-value), and any application of a total function to a valuable argument.

3

con ::= var type variables rdecs ::= � empty
j Int jFloat jChar j � � � base types j rdecs ; rdec sequence
j frdecsg record type rdec ::= lab:con record �eld type
j con Ref reference type
j con*con 0 partial function type knd ::=
 kind of types
j con!con 0 total function type j flab1:knd1; : : :g record kinds
j Tagged extensible sum type j knd)knd 0 function kinds
j con Tag exception-tag type
j �hlabi (lab1 7!con1; : : :) (labelled) sum type
j modv:lab module projection
j �var :knd :con constructor function
j � con constructor �xed-point
j con con 0 constructor application
j flab1=con1; : : : g constructor records

Figure 2: Constructors and Kinds

Total functions include primitives such as record �eld selection and those partial functions whose bodies are
deemed valuable.

The internal language type Tagged is a type of dynamically-tagged values, corresponding to the external
language type exn. The dynamically-generated tags are similar to the \names" considered by Pitts and
Stark [22], except that we associate a type with each name to ensure type safety. Tags of values of type con
are themselves values of type con Tag.

2.2 Expressions

The syntax of internal language expressions is given in Figure 3. Expressions are annotated with su�cient
type information to ensure that each expression has a unique type.

Most of the expression forms are familiar from the �-calculus literature. The treatment of functions
is somewhat unusual, in order to account for mutually-recursive functions in a call-by-value setting. An
expression of the form

�x var 01(var 1:con1):con
0
1 7!exp1;

...
var 0n(varn:conn):con

0
n 7!expn

end

represents a \tuple" of n mutually-recursive functions. This expression, as well as any projection from it, is
valuable.

New exception tags of type con Tag are created using the expression form new tag. An expression injected
into the type Tagged with a particular tag by the tag form. The corresponding \projection" iftagof checks
for a speci�ed tag and if found extracts the underlying value.

Reference types are built into the internal language to avoid unnatural encodings. The operations ref,
get, and set of the internal language correspond directly to the operations ref, !, and :=, respectively, of
SML.

For similar reasons an exception mechanism is built into the internal language. Exceptions carry values
of a speci�c type, which is taken here to be the type Tagged to be consistent with Standard ML, but we note
that there is no essential connection between the type Tagged and the exception mechanism per se. We could
as well consider exception values of any �xed type, or even have several di�erent exception mechanisms, each
carrying values of a type speci�c to that form of exception.

The core and module levels of the language are linked by the expression form for module component
selection mod :lab. Allowing mod to be an arbitrary module means that \let-polymorphism" is de�nable in
our internal language. More importantly, the bindings that may occur in a such let are exactly those that

4

exp ::= scon constants j injcon
lab

exp injection into sum
j var variables j projconlab exp sum projection
j loc memory locations j casecon exp of exp1; : : : end sum case analysis
j tag exception tags j new tag[con] extend type Tagged

j �x fbnds end recursive functions j tag(exp; exp) injection into Tagged

j exp exp0 application j iftagof exp is exp0 tag analysis
j frbndsg record expression then exp 00 else exp 000

j �lab exp record projection j exp1=Intexp2; : : : base equalities
j handle exp with exp 0 handle exception j mod :lab module projection
j raisecon exp raise exception
j refcon exp new ref cell rbnds ::= � empty
j get exp dereference j rbnds ; rbnd sequence
j set (exp; exp0) assignment rbnd ::= lab=exp record �eld binding
j rollcon exp coerce to � type
j unrollcon exp coerce from � type fbnds ::= � empty
j @ exp coerce total to partial j fbnds ; fbnd sequence

fbnd ::= var 0(var :con):con 0 7!exp function binding
labs ::= lab j labs :lab sequence of labels
path ::= var j var :labs quali�ed variable

Figure 3: Expressions

may occur in a structure, and we have the ability to de�ne modules within an expression. This is exploited
heavily in the interpretation of Standard ML given in Section 3.

2.3 Modules and Signatures

The module language is based on the translucent sum (or manifest type) formalism [8, 13]. The syntax for
modules and signatures is given in Figure 4. The basic form of module is a structure, which consists of a
sequence of constructor, expression, and module bindings. Structure signatures consist of a corresponding
sequence of constructor, expression, and module declarations. The module system is closed under formation
of functors, which are functions mapping modules to modules. Functor signatures are dependent function
types describing the result of a functor in terms of its argument. Modules are \second-class" | there are
no conditional module expressions, nor may modules be stored in reference cells or returned from core-level
functions.

The main characteristic of the internal language module calculus is the reliance on signatures to mediate
inter-module dependencies | the formation of a module expression relies only on the interface, and not the
implementation, of any modules on which it depends. Propagation of type sharing information is managed
by the selective exposure of type information in a signature through the use of transparent and opaque type
speci�cations. Translucent sums may be seen as a generalized form of existential type [19] that a�ords
�ne-grained control over the \degree" of abstractness of a type. They may also be seen as a variant of the
\dependent sum" type [16], adopting the exible \projection" notation for component selection, but avoiding
implementation dependencies.

Structure signatures consist of a sequence of constructor, value, and module declarations. Constructor
declarations may either be opaque (specifying only a kind) or transparent (specifying the identity of the
constructor). Value declarations specify the type of a value component, and module declarations specify the
signature of a module component. Each declaration speci�es an internal name and an external name for that
component. The internal name is used to express dependencies of one declaration on another. For example,
the type of a value component may refer (via the internal name) to a type declared earlier in the signature,
or the de�nition of a constructor may refer to previously-declared constructors. Internal names are bound
variables introduced at the point of declaration; they may be freely renamed within their scope without

5

mod ::= var module variable sig ::= [sdecs] structure signature
j [sbnds] structure j (var :sig)*sig 0 partial functor signature
j �var :sig :mod functor j (var :sig)!sig 0 total functor signature
j mod mod 0 functor application
j mod :lab structure projection sdecs ::= � structure �eld dec.
j mod :sig signature ascription j sdecs ; sdec

sdec ::= lab:dec
sbnds ::= � structure �eld bindings

j sbnds ; sbnd decs ::= � declaration lists
sbnd ::= lab:bnd j decs; dec

dec ::= var :con expression variable dec.
bnd ::= var=con constructor binding j var :sig module variable dec.

j var=exp expression binding j var :knd opaque type dec.
j var=mod module binding j var :knd=con transparent type dec.

j loc:con typed locations
j tag :con typed exception tag

Figure 4: Modules and Signatures

changing the meaning of the signature. The external name of a component is a label; structure components
are accessed using these labels. External names are not variables and may not be renamed without changing
the meaning of the signature. For example, the signature [T.t:
; U.u:
=t�t;X.x:u]; describes a module
with two type components, with external names T and U, and internal names t and u, respectively, and
one value component, with external name X and internal name x. The type component U is de�ned to be
equal to the product of the T component with itself, and the X component has type U. Notice that the
dependencies are expressed using the internal names.

Every module value possesses a most-speci�c signature in which the identity of all type components is
propagated using transparent type bindings. For example, the most speci�c signature for the structure

[T.t=Int; U.u=Int�Int; X.x=(3; 4)]

is given by

[T.t:
=Int; U.u:
=Int�Int; X.x:Int� Int]:

Modules may be given less-speci�c signatures using subsumption | the signature of a module may be
weakened to a \larger" signature in the sub-signature ordering. This ordering is a non-coercive, forgetful
ordering in which signatures may be weakened by neglecting type de�nitions, rendering opaque one or more
transparent components. For example, using subsumption we may assign the less informative signatures
[T.t:
; U.u:
=t�t;X.x:u] and [T.t:
=Int; U.u:
; X.x:u] to the module expression given above.

A module may be \sealed" by signature ascription. The module expression mod :sig is well-formed if mod
has the signature sig (possibly through a use of subsumption). Then mod :sig has most-speci�c signature
sig . In practice we use ascription to make type components of a module abstract.

Parameterized modules, or functors, are written using the familiar �-notation; there are no recursive
functors. Functor signatures are a form of \� type" (dependent function type) in which the signature
of the result depends on the argument to the functor. This is used to express the propagation of type
sharing properties from the argument to the result, without relying on exposure of the implementation of
the functor. The sub-signature relation is extended to functor signatures in the usual way, contravariantly in
the domain and covariantly in the codomain [2]. Only non-dependent functors may be applied to arguments;
the dependency must �rst be eliminated through the use of the sub-signature and signature equivalence
relations. In the general translucent sum calculus this may not be possible for all arguments; however we
have made syntactic restrictions in our IL so that the dependency can always be eliminated.

6

expv ::= scon modv ::= path
j loc j [sbndsv]
j tag j �var :sig :mod
j path
j frbndsvg bndv ::= var=expv
j �x fbnds end j var=modv
j �k �x fbnds end j var=con
j injconi expv
j tag(tag ; expv) sbndsv ::= �
j rollcon expv j sbndsv; sbndv
j @ expv

sbndv ::= lab:bndv
rbndsv ::= �

j rbndsv; rbndv
rbndv ::= lab=expv

val ::= expv
j modv
j con

Figure 5: Internal Language Values

For example, suppose we have a functor

f : (u:[T.t:
; X.x:t])*[T 0.t0:
=u:T�u:T ;X 0.x0:t0]

and we wish to apply this functor to a structure with signature [T.t:
=Float; X.x:Float]: This is possible
because by subsumption f also satis�es the non-dependent signature:

u:[T.t:
=Float; X.x:Float]*[T 0.t0:
=Float�Float; X 0.x0:Float�Float]:

Thus the application will have signature [T 0.t0:
=Float�Float; X 0.x0:Float�Float].

As in the core language, module expressions are categorized as valuable or non-valuable. Functors whose
bodies are valuable module expressions are said to be total ; all others are partial. Modules whose components
are all valuable are themselves valuable, as are all module variables, and all selections of module components
from valuable modules. An ascription of a signature to a module, written mod :sig , is valuable if the
underlying module is valuable, but is not a value. Since type components may only be selected from module
values, this ensures that abstraction boundaries are respected. Speci�cally, if a signature is ascribed to a
module, then its abstract type components may only be accessed by �rst binding that module to a variable,
then selecting from that variable. This ensures that the abstraction boundary imposed by the ascription is
respected, and ascribing the same signature to the same module will yield incompatible abstract types.

2.4 Dynamic Semantics

The dynamic semantics of the internal language is a call-by-value operational semantics presented as a
rewriting relation between states of an abstract machine. The presentation is strongly inuenced by the
work of Plotkin [23] and Wright and Felleisen [32], but is departure from the framework of The De�nition
of Standard ML. The state-machine presentation avoids the need for implicit evaluation rules for handling
exceptions, and supports a natural interpretation of type soundness that does not rely on arti�cial \wrong"
transitions. We prefer to use substitution, rather than environments, because this allows us to regard values
as particular forms of expression; this also simpli�es the statement of soundness, particularly in the presence
of references. We maintain a store for assignable cells and dynamically-generated tags, as in The De�nition,
but, in addition, we maintain an explicit store- and tag-typing context, in keeping with our explicitly-typed
framework.

Each state � of the abstract machine is a triple of the form (�; �; exp), where

7

E ::= E exp j tag(E; exp)
j expv E j tag(expv; E)
j frbndsv; lab=E; rbndsg j iftagof E is exp then exp0 else exp00

j �lab E j iftagof expv isE then exp0 else exp 00

j handleE with exp j E=conexp
j raisecon E j expv=conE
j refcon E j [sbndsv; lab.var=E; sbnds]
j getE j Emod
j set (E; exp) j modv E
j set (expv; E) j E:lab
j rollcon E j E:sig
j unrollcon E []
j injconi E
j projconi E
j casecon E of exp1; : : : ; expn end

Figure 6: Evaluation Contexts

� � is a typing context (decs) for locations and tags created at run-time. This maintains a record of what
exception tags and locations have already been allocated, and is also used in our soundness proofs.

� � is a �nite mapping from locations typed in � to expression values (expv). The syntax of all values
appears in Figure 5.

� exp is an expression.

A state is terminal if it has one of the following forms:

(�; �; expv) normal termination
(�; �; raisecon expv) uncaught exception

All other states are nonterminal. We let �t range over terminal states.
The dynamic semantics is a transition relation � ,! �0 between states, de�ned by the rules given in

Appendix C. As usual, we denote the reexive, transitive closure of ,! by ,!�. The rules de�ning the
relation have the form

(�; �; exp) ,! (�0; �0; exp0);

possibly with some side conditions. The rules make use of the notion of an \evaluation context", an expression
or module with a single \hole", written [] (see Figure 6). The expression E[phrase] is the expression resulting
from replacing the hole in E by phrase . We use R to denote an expression context constructed from the
grammar in Figure 6 without the form handleE with exp.

Most of the rules of the dynamic semantics are straightforward interpretations of the constructs of the
internal language. Exceptions are handled using explicit \jumps" though evaluation contexts that do not
involve exception handlers. This is achieved by relying on a form of pattern-matching to capture the informal
idea of jumping to the nearest enclosing exception handler. Tags and reference cells are explicitly allocated
during evaluation, and their types are maintained in the state. Uses of the sub-signature relation have no
run-time signi�cance; control over type sharing properties is entirely a matter of static checking.

As a technical convenience, for the purpose of the dynamic semantics we include a CHAM-like struc-
tural equivalence rule for structures, extending the standard equivalence of terms or modules up to alpha-
conversion. This is generated by the schema

[sbnds ; lab.var=val ; sbnds 0] � [sbnds ; lab.var=val ; fval=vargsbnds 0]

which allows us to remove dependencies between �elds in a structure when the dependency is on a �eld
carrying a value. Factoring out such substitutions separately simpli�es the dynamic semantics, but is not
critical to the framework.

8

We have given a high-level operational semantics in that types are propagated, but never normalized or
examined at run-time. To describe primitives which do intensional type analysis [10] we could re�ne the
semantics to perform normalization computations at the constructor level as well.

2.5 Properties of the Internal Language

In order to relate the static and dynamic semantics, we must �rst state some technical properties of the
operational semantics.

We de�ne two states to be equivalent, written

(�; �; exp) �= (�0; �0; exp0);

if they are component-wise equal up to consistent renaming of the locations and exception tags appearing
in � and of bound variables in the expression component.

Proposition 1 (Determinacy of Evaluation)
The following properties hold:

1. If � is terminal and � �= �0, then �0 is also terminal.

2. If � ,! �1 and � �= �0, then there exists a state �0
1
�= �1 such that �0 ,! �0

1.

3. If �1 ,! �0
1, �2 ,! �0

2 and �1
�= �2 then �0

1
�= �0

2.

4. If � ,!� �t and � ,!� �0
t then �t

�= �0
t.

The following proposition states that internal language judgments are preserved under substitution of
values for free variables in a typing judgment, where a value is de�ned syntactically in Figure 5 to be a
phrase in evaluated form.

Proposition 2 (Decomposition & Replacement)
1. If decs ` E[exp] : con and exp is closed, then decs ` exp : con 0 for some type con 0. Furthermore, if

decs ` exp 0 : con 0 where exp 0 is closed, then decs ` E[exp0] : con.

2. If decs ` E[mod] : con and mod is closed, then decs ` mod : sig for some signature sig . Furthermore,

if decs ` mod 0 : sig where mod 0 is closed, then decs ` E[mod 0] : con.

Following Harper [7] and Wright and Felleisen [32], we say that a store � is well-formed with respect to
a context �, written � ` �, if

8loc 2 BV(�); if � ` loc : con Ref then � ` �(x) : con :

This formulation of store typing avoids the need for complex maximal �xed point constructions [29].
Fix a base type ans of answers to which a complete, closed program might evaluate.2 We say that a

machine state is well-formed, written
` (�; �; exp);

if and only if � ` exp : ans , exp has no free (expression, constructor, or module) variables, and � ` �.
Well-formedness of a state is preserved by evaluation.

Proposition 3 (Preservation)
If ` (�; �; exp) and (�; �; exp) ,! (�0; �0; exp0) then ` (�0; �0; exp0).

Evaluation can never \get stuck": if a well-formed state is not terminal, then there is always an applicable
transition to another (well-formed) state. The proof relies on a characterization of the shapes of closed values
of each type.

2A reasonable choice might be String, or Unit if we model all I/O by updating the store; the particular choice does not a�ect
our results.

9

Proposition 4 (Canonical Forms)
1. Assume � ` expv

0 : con 0 where expv
0 is closed.

If con 0 is of the form: : : then expv
0 is of the form: : :

con1*con2 �k �x fbnds end
con1!con2 �1 �x fbnd end

flab1:con1; � � � ; labn:conng

�
flab1=expv1; � � � ; labn=expvng
�x fbnds end

�hlabii (lab1 7!con1; : : : ; labn 7!conn) inj
�(lab1 7!con1;:::;labn 7!conn)
labi

expv

(�i (� con)) con
0 roll(�i (� con)) con0

expv
Tagged tag(tag ; expv)
con Ref loc
base type scon

2. Assume � ` modv
0 : sig 0 where modv

0 is closed.

If sig 0 is of the form: : : then modv
0 is of the form: : :

[sdecs] [sbndsv]
var :sig*sig 0 �var :sig :mod
var :sig!sig 0 �var :sig :mod

Proposition 5 (Progress)
Let � = (�; �; exp). If ` � then either � is terminal or there exists a state �0 such that � ,! �0.

3 Elaboration of Standard ML into the Internal Language

The type-theoretic interpretation of Standard ML takes the form of a set of inference rules for deriving
elaboration judgments of the form

� ` EL-phrase ; phrase : class :

Here EL-phrase is a phrase of the Standard ML abstract syntax, phrase is its translation into the internal
language, and class is an internal-language kind, type, or signature classifying phrase . The context �
associates external names and classi�ers to internal names. A complete list of the judgment forms constituting
the interpretation are given in Figure 7.

The elaboration of Standard ML into the internal language involves the following major steps:

1. Identi�er resolution. External-language identi�ers are translated into internal-language paths ac-
cording to the scoping rules of Standard ML. Re-de�ned identi�ers are renamed to avoid conicts.

2. Type checking and type reconstruction. The elaboration rules ensure that the translation of an
external-language phrase is well-formed with a speci�ed classi�er (kind, type, or signature). Implicit
type information | such as type labels on variables and polymorphic abstraction and instantiation |
is made explicit. Polymorphic abstractions are represented as internal-language functors.

3. Datatype and pattern-matching translation. Datatype declarations are translated into modules
with an opaque implementation type and operations for creating and destructuring values of this type.
Patterns are compiled into uses of these operations, along with record projections and equality tests.

4. Equality compilation. For types that admit equality, a canonical equality operation is generated
and passed as required. Equality polymorphic operations are represented as functors taking the type
together with the associated equality operation. Datatypes that admit equality are equipped with an
equality operation.

10

Judgment... Meaning...
� ` expr ; exp : con expression
� ` match ; exp : con pattern match
� ` strdec ; sbnds : sdecs declaration
� ` strexp ; mod : sig structure expression
� ` spec ; sdecs signature speci�cation
� ` sigexp ; sig : Sig signature expression
� ` ty ; con :
 type expression
� ` tybind ; sbnds : sdecs type de�nition
� ` datbind ; sbnds : sdecs datatype de�nition

� c̀tx labs ; path : class lookup in �
decs ; path :sig s̀ig labs ; labs 0 : class lookup in signature

decs ìnst; [sbndsv] : [sdecs
0] polymorphic instantiation

� ` pat (exp : con else exp0 ;
sbnds : sbnds

pattern compilation

decs èq con ; expv equality compilation

decs s̀ub path : sig0 � sig ; mod : sig 0 coercion compilation
sig ẁt labs := con : knd ; sig 0 : Sig impose de�nition
sig s̀h labs := labs 0 : knd ; sig 0 : Sig impose sharing

Figure 7: Judgment forms for the Elaboration

5. Signature matching. The instantiation ordering | arising from the presence or absence of type
de�nitions in signatures | is managed by the sub-signature relation of the internal language. The
enrichment ordering | arising from the ability in Standard ML to drop or re-order module components
| is handled by an explicit coercion operation generated by the elaborator. Since we are working with
an explicitly-typed internal language, polymorphic instantiation in signature matching is also managed
by explicit coercion.

6. Sharing expansion. Uses of type sharing speci�cations are expanded into uses of type de�nitions
in signatures [14]. The where type construct of Standard ML is translated by explicitly \patching"
internal-language signatures.

7. Generativity and persistence. In Standard ML type identi�ers may persist beyond their appar-
ent scope of de�nition. This is managed here by the restriction to \named form" programs at the
module level (according to which all modules must be bound to identi�ers before use), and an explicit
mechanism for retaining types through renaming when they appear to go out of scope.

The elaboration rules use a number of \derived forms" in the internal language; these are shown in
Appendix D.1. Speci�cs of the elaboration process are discussed in more detail in the remainder of this
section.

3.1 Identi�er Resolution

A fundamental task of elaboration is associating internal-language paths to external-language identi�ers.
Since the external language permits shadowing of identi�ers, we cannot assume a �xed correspondence
between Standard ML identi�ers and internal-language variables. Therefore we translate identi�ers into
internal-language paths, and the correspondence is maintained by an elaboration context. This context is
essentially a sequence of internal-language structure �eld bindings, but with the possibility of duplicated
labels due to shadowing. We may regard elaboration contexts as declaration lists by dropping the labels

11

from the components (turning each sdec into its underlying dec); in this way the formation rules of the
internal language determine validity of elaboration contexts.

We postulate an injection � of ML identi�ers into internal-language labels. The range of this mapping
is assumed co-in�nite in the set of labels, ensuring that we may choose arbitrarily many new labels not in
the range of this mapping. We further assume that the labels \eq", \expose", \it," and \tag" are outside
of the range of this mapping, and that identically-named identi�ers from di�erent external language names-
paces (expression identi�ers, type identi�ers, signature identi�ers, structure identi�ers, etc.) are mapped to
distinct labels. On the other hand, we assume a single namespace for external-language variables, datatype
constructors, and exception constructors; in Standard ML these distinctions are not syntactically apparent
and making this distinction falls to the elaboration itself.

The translation of an (possibly overbarred) long identi�er into an path is expressed by the judgment

� c̀tx labs ; path : class;

which looks up the sequence of labels labs in the elaboration context � and returns a path path with classi�er
class . The lookup rules describe a sequential search3 from right-to-left, subject to a simple convention, called
the star convention, for handling \open" structures. Labels marked with an asterisk are treated as names
of open structures, whose bindings are implicitly available for use in a Standard ML phrase. A second set of
lookup rules expresses identi�er search within a structure; these rules are also used in translating Standard
ML long identi�ers. Thus, for example, we have the translation

X.x:Int; L.l:[X :Char] c̀tx X ; x : Int;

but, in contrast, when L is open we have

X.x:Int; L�.l:[X :Char] c̀tx X ; l:X : Char:

3.2 Expressions and Declarations

The general form of elaboration judgment for expressions is

� ` expr ; exp : con

where expr is an external-language expression, and exp is the corresponding internal-language expression
having type con. These elaboration rules are shown in full in Appendix D.2. Identi�ers are translated using
the lookup rules mentioned above, and if found to be polymorphic are immediately instantiated (polymor-
phism is discussed in more detail below). Datatype constructors (functions with total types) are translated
to user-level functions (with partial types) when used as values. Application translates to internal-language
application, with a check to ensure that the translated application is well-formed. Record expressions are
translated to internal-language records. Since Standard ML identi�es record types under permutation of
�elds, the translation reorders these �elds into a canonical order while preserving the order of evaluation.
Explicit type constraints are veri�ed, but do not appear in the translation. The exception expressions raise
and handle translate into their internal-language equivalents. Function abstractions in the EL translate
to function abstractions in the IL, wrapped to raise the Match exception in the case of pattern match fail-
ure. Equality comparisons invoke the equality compiler (also described below) to generate the appropriate
equality operation.

An important invariant of the translation is that \syntactic values" in the Standard ML sense are trans-
lated to valuable expressions. This is necessary to enforce the value restriction on polymorphism, according
to which only syntactic values may be polymorphically generalized. However, our treatment of pattern
matching leads to a minor discrepancy between the interpretation given here and The De�nition of Standard
ML, as discussed in Section 3.5 below.

The general form of elaboration judgment for declarations is

� ` strdec ; sbnds : sdecs :

3In our compiler implementation, a more e�cient algorithm is used.

12

�
list.list :
)
;

eq:(s:[T �:[T.t:
; eq:t�t*Bool]])![it:list (s:T �:T)�list (s:T �:T)*Bool]

Nil:(s:[T :
])![it:list (s:T)];

Cons:(s:[T :
])![it:s:T�list (s:T)!list (s:T)];

expose:(s:[T :
])![it:list (s:T)!�(Unit; s:T � list (s:T))]
�

Figure 8: The signature siglist

A selection of such judgments is shown in Appendix D.5. Each external-language declaration is translated
into structure �eld bindings. For simple bindings, there is exactly one �eld binding for each identi�er bound.
In more complex cases | such as complex patterns or datatype declarations | the result contains not
only bindings for the identi�ers explicitly involved in the declaration, but also \internal" �elds used by the
elaborator itself.

The open declaration (Rule 108) is regarded as the declaration of an \anonymous" substructure; this
is implicitly opened for identi�er lookup using the \star convention" discussed above. In implementation
terms this means that an open declaration requires only constant time and space, rather than time and
space proportional to the size of the opened structure. To account for shadowing, declaration sequencing
goes beyond simple concatenation of bindings by renaming �elds corresponding to shadowed identi�ers.

3.3 Polymorphism

Polymorphism is interpreted by explicit type abstraction and type application [9]. However, we do not treat
type abstraction and application as a primitive notion (as in the polymorphic �-calculus [4, 24]). Instead, we
represent a polymorphic value as an internal-language functor abstracted on a structure whose components
are types, yielding a structure with a single component labeled \it" for the value itself. This representation
is consistent with the \second class" nature of both polymorphic values and modules in Standard ML. It is
especially natural in the presence of equality type variables, which we regard as structures consisting of a
type and the corresponding equality operation (see Section 3.6 for further details).

For example, the polymorphic identity function is translated4 to the functor

�(s:[T :
]):[it=�(x:s:T):x]

with signature
(s:[T :
])![it:s:T*s:T]:

Note that the functor is given a total functor type, expressing the fact that type instantiation does not en-
gender an e�ect. This is consistent with the \value restriction" on polymorphism in Standard ML, according
to which only syntactic values may be polymorphically abstracted.

3.4 Datatype Declarations

The treatment of datatypes is technically complex, but conceptually straightforward. A datatype declaration
elaborates to a structure consisting of a type together with operations to create and analyze values of
the type. If the datatype admits equality, then the structure contains an equality function as well. The
underlying implementation type is de�ned to be a recursive sum type, with one summand corresponding to
each constructor in the declaration. The constructors are represented by total functions that inject values
into the appropriate summand of the recursive type. The analysis operation exposes values of the abstract
type as values of a corresponding sum type. The structure is \sealed" with a signature derived from the
datatype declaration in which the implementation type is held abstract, and the operations described above
are declared as operations on that abstract type. Holding the implementation type abstract captures the

4We have simpli�ed the translation slightly for the sake of readability.

13

[list.list=��l:
)
:��:
:�
�
Nil7!Unit; Cons7!��l �

�
;

eq=� � �;

Nil=�s:[T :
]:[it=rolllist (s:T) (inj
Unit+s:T�list (s:T)

Nil
fg)];

Cons=�s:[T :
]:[it=�(x:s:T�list (s:T)): rolllist (s:T) (inj
Unit+s:T�list (s:T)

Cons
x)];

expose=�s:[T :
]:[it=�(x:list (s:T)):unrolllist (s:T) x]
�

Figure 9: The structure modlist

\generativity" of datatype declarations in Standard ML; the declared type is \new" in the sense that it is
represented by a path that is, by �-conversion, distinct from all previous types in the program. Analogously,
datatype speci�cations (which may occur in signatures) are elaborated into the same signature used to seal
the structure resulting from elaboration of the corresponding datatype declaration.

The treatment of datatypes is best illustrated by example. Viewed as a speci�cation, the Standard ML
phrase

datatype 'a list = Nil | Cons of 'a * 'a list.

elaborates to the signature siglist given in Figure 8. Viewed as a declaration, this phrase elaborates into
the sealed structure modlist:siglist, where modlist is given in Figure 9.

The signature siglist describes a structure with �ve components, one corresponding to the list type
constructor itself, one for list equality, two for the constructors, and one for deconstructing values of this
type. The list type constructor is represented by a type operator of kind
)
. The operation eq is the
equality function on lists; it takes a type T and an equality for values of type T , and returns the equality
function for values of type listT . The value constructor Nil is the polymorphic total function that, when
given a type, creates the empty list of that type. Similarly Cons is the polymorphic total function to add an
element to the front of a list. The polymorphic function expose exposes the underlying implementation of
the datatype as a sum type for the purposes of destructuring.

The structure modlist implements the signature siglist. The implementation is relatively straight-
forward, following the informal discussion above. We have elided the de�nition of equality on lists, but it
corresponds directly to the obvious recursive de�nition which can be generated mechanically.

The account of datatypes given here di�ers from that in Standard ML in that we do not provide an
equal operation for \non-uniform" datatypes, for which we would need polymorphic recursion, which is not
admitted in Standard ML or in our internal language. For example, the following declaration is legal in
Standard ML, and the declared type admits equality:

datatype 'a t = A of 'a | B of ('a * 'a) t

Although this is an admissible declaration according to our elaboration rules, it does not admit equality in
the translation due to the absence of polymorphic recursion.5

3.5 Pattern Compilation

Pattern compilation is the process of translating pattern-matching bindings and clausal functions into the
more rudimentary mechanisms of the internal language. Given a target pattern, a candidate internal-language
expression, and a failure exception, the pattern compiler generates a sequence of bindings corresponding to
the result of matching the candidate against the target. The expected evaluation order is preserved, and an
exception is raised if the match does not succeed; these bindings then become the �elds of a structure.

Clausal functions are handled by exception propagation (see Appendix D.3). Each clause is compiled
into a function that, when applied, matches the argument against the pattern of the clause, and continues
with the expression part of the clause in the case that the match succeeds, and fails otherwise. Alternation

5It is a questionable feature of Standard ML that such types admit equality such that the equality operation they admit is
not de�nable in SML itself.

14

is handled by generating a function that calls the compilation of the �rst alternative, yielding its result on
success, and passing the argument to the second in the case of failure. Upon failure of the last clause, the
internal failure is turned into a Match exception. In the case of a val binding there is no alternative to
failure; a Bind exception is raised immediately.

The pattern-compiler given here is unsophisticated, doing sequential search among the patterns and
within the patterns until a complete match is found. More e�cient algorithms based on decision tree heuris-
tics are routinely used in Standard ML compilers. We present a \reference" implementation of pattern
compilation so as to avoid undue commitments to speci�c strategies, to admit generalizations of pattern
matching that may engender e�ects (such as forcing memoized suspensions [21]), and for the sake of per-
spicuity of the translation.

There is a subtle, but important, interaction between pattern compilation and the value restriction on
polymorphism. In the revised De�nition, the determination of whether or not a variable is generalizable is
made based only upon the syntactic form of the right-hand side of a val binding (the value restriction for
polymorphism); it does not matter whether or not the left-hand side is a complex pattern. However, since the
pattern match may not succeed, the \true" binding of the variable (after pattern compilation) in a pattern
may involve the application of a partial destructuring operation to that value, possibly raising an exception.
For example, if y is an EL identi�er bound to a polymorphic list value (e.g., Cons(fn x => x, Nil)) then
under Standard ML the binding val (Cons (x,xs)) = y will make the variables x and xs polymorphic
since y is a syntactic value. In contrast we assess the valuability of the binding of an identi�er after pattern
compilation. Any variable whose \true" binding is not valuable may not be generalized. In particular, the
code generated by the pattern compiler will test whether y really is a Cons, and will raise an exception
otherwise. Allowing y to be polymorphic would delay any Bind exception would be delayed until one of the
functors created for x or xs was instantiated. We therefore do not generalize such identi�ers.

We note that due to the value restriction, and more generally the de�nition of total functor, we are
guaranteed that a polymorphic value with a sum type has a single �xed tag. In more conventional notation,
there is an isomorphism between 8�:(�1 + �2) and (8�:�1) + (8�:�2). Therefore, one could imagine handling
polymorphism for refutable patterns by checking the tag once (by instantiating at some arbitrary type), and
either raising a Bind exception or using projection from the sum as a total operation on this value thereafter.
A weakness of our internal language is that this cannot be expressed; it is unclear how it might be cleanly
modi�ed to account for this anomaly.

3.6 Equality Compilation

Polymorphic equality, equality type variables, and eqtype speci�cations are all elaborated into explicit uses
of equality functions. The idea is to de�ne a canonical equality operation at each closed type, and to
associate with each type variable or eqtype constructor an equality operation to be supplied by the caller.
In the case of equality type variables, polymorphic instantiation provides (passes at run-time) the equality
operation based on the instance. In the case of eqtype speci�cations, the signature matching generates the
equality test when the signature is ascribed. There is no need for separate \equality attributes" in our IL;
a type admits equality if and only if the equality compiler is able to generate an equality operation for it.
Our approach is related to the compilation of overloading in Haskell [30] and to the treatment of equality
proposed by Gunter, Gunter and MacQueen [6].

The judgment � èq con ; expv expresses that � ` expv : con�con*Bool is the equality function for type
con. These equality functions are the obvious structural equalities for immutable types (primitive equality
functions at base types, component-wise equality for record types, a recursively-de�ned equality function for
recursive types, etc.) and primitive pointer equality for reference types.

3.7 Signature Matching

Signature matching is divided into two relations, instantiation, which handles type sharing relationships
between modules, and enrichment, which handles dropping, re-ordering, and instantiation of components of
a module. The instantiation relation is captured by the sub-signature relation of the internal language. It is
non-coercive in the sense that it has no signi�cance during evaluation. The enrichment relation is handled

15

by the elaboration rules, which introduce coercions that are executed during evaluation. These coercions
drop components and introduce polymorphic instantiations to build a structure satisfying a less restrictive
signature than that of a given module. Separating the coercive aspects from the internal-language subtyping
relation guarantees that the number and order of components in a structure is apparent from its signature.

In one particular case, the coercion introduces, rather than eliminates, components of a structure. This
arises because of eqtype speci�cations: the equality compiler must be invoked to determine the appropriate
equality function for that type. For example, ascribing the opaque signature

sig eqtype T end

to a structure having EL signature

sig type T = int end

augments the structure containing the type component (equal to Int) with an equality function (on integers).

3.8 Type Generativity

One of the more subtle aspects of Standard ML goes under the heading of \type generativity". Roughly
speaking, generativity captures the informal idea that a datatype declaration introduces a \new" type,
distinct from all others, despite possible structural similarities. This aspect of generativity may be regarded
as a form of data abstraction. Indeed, in Section 3.4 we relied on opaque signature ascription in the internal
language to ensure that the implementation type of a datatype is held abstract.

This basic conception of type generativity must be extended to account for the generative behavior of
functors. Datatype generativity interacts with functor instantiation in such a way that each application
of a functor that declares a datatype introduces a \new copy" of that datatype, distinct from all other
instances introduced by the same functor (and all types otherwise introduced). Following Leroy [14] we
capture this behavior by imposing the requirement that module expressions be restricted to \named form".
This means that every non-trivial module expression must be bound to a module identi�er before it can
be used. This restriction is reected in the grammar by, e.g., the requirement that functor arguments be
structure identi�ers, rather than arbitrary structure expressions. There is no loss of generality in assuming
that programs are written in named form; we can make a prepass introduces bindings for non-trivial module
expression [14]. The practical e�ect of the restriction to named form is that the result of every functor
application is bound to module variable, which thereafter serves as the \unique name" of that instance of
the functor application. Consequently, opaque types (including datatypes) selected from that instance are
unique.

A second subtlety of the Standard ML type system is that types may escape their (apparent) scope.
Provided that programs are in named form, this phenomenon can arise in only one way, through the use
of local declarations and module-level let expressions. For example, the following declaration is legal in
Standard ML, and results in a binding whose type involves a \hidden" type constructor:

local

datatype t = A | B

in

val x = A

end

The declaration of the datatype t is \hidden"; only the variable x is exported by the declaration. In our
type-theoretic internal language, we clearly cannot allow the binding of x to escape the scope of the binding
for the type t. Instead we export the type t along with x, but rename it to a variant that lies outside of
the \overbar" mapping, ensuring that the type cannot conict with any user-de�ned type in the external
language.6 Thus, the \information hiding" of the local construct is implemented entirely by the elaborator,
and has no signi�cance at the level of the internal language.

6More precisely, the \hidden" part of a local declaration is represented by a substructure with an inaccessible name, and
the references to hidden identi�ers are replaced by accesses to the substructure. Conicts are avoided by �-conversion of the
internal name of the structure.

16

A closely-related phenomenon arises in connection with the transparent ascription mechanism of Standard
ML, whereby signature ascriptions hide components, but not the identities, of types. By hiding a type
component that is required to express the type of a value component or the type sharing properties of
another type component, we encounter a situation similar to a local declaration. For example, in the code

functor F(M : sig type 'a con end) : sig type t end =

struct

datatype d = D

type t = d con

end

we would like to express that the type returned by F is the result of applying the argument type constructor
to a datatype. We could then deduce solely from the functor's signature that applying it to the structure

struct type 'a con = int end

yields a structure containing the type int. However, since the transparent ascription \hides" the datatype
d, we cannot refer to this in describing the returned t component. The behavior of this functor on types
cannot be expressed in a Standard ML signature.

However, the restriction to named form entails that the ascription generate a module-level let expression,
which is then translated into type theory by renaming, rather than dropping, the hidden component d.
Named form and component renaming ensures that the exact behavior of all (�rst-order) functors is always
expressible in the internal-language signature of the translated functor.

Note that the simple renaming mechanism we have outlined here is not \safe for space complexity" [1].
In particular, the elaboration given here retains not only the hidden type components that are required for
subsequent speci�cations, but also type components that are not so required, and value components, which
are never required. However, these components may be easily eliminated by a process similar to dead code
elimination in a compiler. In practice we would retain only those hidden type components that are necessary
to ensure that the translation is well-formed.

3.9 Properties of the Elaborator

The minimal requirement for the elaborator is that the elaboration of external-language code yields well-
formed internal-language code:

Proposition 6 (Well-formed translation)
If ` � ok and � ` EL-phrase; phrase : class then � ` phrase : class .

The elaboration rules in the Appendix D assume a structure variable basis which represents the initial
basis for programs. For our purposes here, it su�ces to assume a structure with signature sig

basis
, given by

[Bind
�
:[tag:Unit Tag; Bind:Tagged];

Match
�
:[tag:Unit Tag; Match:Tagged];

fail� :[tag:Unit Tag; fail:Tagged];

bool
�
:[bool.b:
=�(Unit;Unit);
eq:b�b*Bool;
false:b;
true:b;
expose:b!�(Unit;Unit)]:

The interpretation of Standard ML we have outlined above relies on a relational presentation of what is
essentially a translation function. The relational framework allows us to avoid overspecifying the translation,
and admits a clean separation between \algorithmic" and \de�nitional" considerations. However, we incur
the obligation to demonstrate that the interpretation is coherent in the sense that all interpretations of a
Standard ML program yield internal-language expressions with the same observable behavior. We conjecture
that the translation we have given is coherent:

17

Conjecture 7 (Coherence)
If

basis�.basis :sigbasis ` expr ; exp : ans

basis�.basis :sigbasis ` expr ; exp 0 : ans

(�; �; let basis=modbasis in exp end) ,!
� �t

then for some terminal state �0
t
�= �t,

(�; �; let basis=modbasis in exp
0 end) ,!� �0

t:

4 Summary

We have given a brief overview of an interpretation of Standard ML into a typed �-calculus. A fully detailed
account of the interpretation appears in a companion technical report [11]. The complete interpretation
consists of approximately 270 inference rules, of which approximately 140 form the typing rules and dynamic
semantics of the internal language (120 rules and 20 rules, respectively), with the remaining 130 rules being
the interpretation itself. Of these approximately 10 rules are concerned with signature matching, 8 with
equality compilation, 25 with identi�er lookup, and 12 with pattern compilation. By contrast The De�nition
of Standard ML consists of approximately 190 rules, of which approximately 100 are for the static semantics,
the remainder being for the dynamic semantics. Note, however, that the dynamic semantics has \implicit"
rules for handling exceptions, making it di�cult to give a precise count.

Our internal language is formalized using relatively standard techniques. The type checking rules rely
on conventions such as implicit �-conversion of binding operators to avoid identi�er conicts, and relies on
de�nitional equality relations and a sub-typing relations to de�ne the type system. The operational semantics
is de�ned by a transition relation on states of an abstract machine, and does not rely on implicit rules for
exception propagation. It can be easily extended to account for control operators such as call-with-current-
continuation. The internal language admits a clean formulation of the soundness theorem that does not
rely on instrumentation of the rules with explicit \wrong" transitions. To state soundness in the framework
of The De�nition requires that the dynamic semantics be instrumented with such error transitions, which
would signi�cantly increase the number of rules required. Finally, we note that the internal language does
not rely on any external global \admissibility" conditions as are imposed on the static semantic objects of
The De�nition.

The translation from Standard ML into the internal language is, at times, rather complex. The single
most complicated rule | for handling datatype declarations | requires one page in its complete form.
The complexity is easily explained: a single datatype declaration introduces n mutually recursive type
constructors, each with its own arity, and each introducing ki value constructors, each of which may or
may not take an argument. Unravelling these complexities into the simple orthogonal mechanisms of the
internal language is clearly a rather complicated a�air. Other sources of complexity are the use of rules
to de�ne identi�er lookup and signature patching, the introduction of coercions for signature matching, the
compilation of equality types into modules consisting of a type and an equality operation, and the compilation
of patterns into primitive projections.

How might the presentation be simpli�ed? The use of rules for identi�er lookup and signature specializa-
tion is a matter of presentation. We could easily have de�ned these at the metalevel of the semantics, rather
than give explicit rules. Equality compilation introduces considerable complexity. Since we are working in
an explicitly-typed framework we could have postulated in the internal language a primitive polymorphic
equality operation that dispatches on types. We chose not to do so primarily because the elaborator would
nevertheless have to check for admissibility of equality at compile time to ensure that invalid uses of equality
are rejected during type checking. It is only marginally more complicated to equip equality types with their
equality operation and eliminate equality at non-base types from the internal language entirely. We see
no plausible alternative to the coercive interpretation of signature matching. One might consider enriching
the internal language with a coercive pre-order on signatures corresponding to the enrichment ordering, but
to do so would require unnatural, ML-speci�c extensions such as implicit polymorphic instantiation during
signature matching. The treatment of datatypes and pattern matching appears to be essentially forced

18

since the association between an abstract type and its representation must be made explicit in the dynamic
semantics, and this is what is accomplished here. We consider it an important direction for further research
to determine if a simpler treatment of datatypes can be given in an explicitly-typed framework.

The interpretation we have given here follows The De�nition by clearly separating de�nitional from
algorithmic issues. The rules exploit the indeterminacy of the relational framework for the sake of simplicity
and concision. The internal language type system is used to express context-sensitive formation constraints.
An implementation must resolve these indeterminacies and must de�ne algorithms for the internal language
type system. A thorough treatment of these matters lies beyond the scope of this work.

The type-theoretic interpretation has both advantages and disadvantages as an alternative to The Def-
inition. The primary disadvantage is that the dynamic semantics of Standard ML must be understood by
translation into the internal language. Since the translation rules are not fully determinate, this raises the
question of coherence of the translation, which we conjecture to hold for the translation given here. There is
also the psychological question of whether the kind of translation we give here can serve as a useful reference
for programmers. As a tool for compiler-writers, both The De�nition and the interpretation we propose
here have contributed directly to the construction of practical implementations of Standard ML. In this
regard the two accounts complement one another | di�erent compiler technologies correspond to di�erent
interpretations of the language.

References

[1] Andrew W. Appel. Compiling with Continua-
tions. Cambridge University Press, 1992.

[2] Luca Cardelli. Typeful programming. In E. J.
Neuhold and M. Paul, editors, Formal Descrip-
tion of Programming Concepts. Springer-Verlag,
1991.

[3] Luca Cardelli. Type systems. In Allen B. Tucker
Jr., editor, Handbook of Computer Science and
Engineering, pages 2208{2236. CRC Press, 1997.

[4] Jean-Yves Girard. Une extension de
l'interpr�etation de G�odel �a l'analyse, et son
application �a l'�elimination des coupures dans
l'analyse et la th�eorie des types. In Jens Erik
Fenstad, editor, Second Scandinavian Logic
Symposium, volume 63 of Studies in Logic and
the Foundations of Mathematics, pages 63{92.
North-Holland, 1971.

[5] Michael J. Gordon, Robin Milner, and Christo-
pher P. Wadsworth. Edinburgh LCF: a mech-
anised logic of computation, volume LNCS 78.
Springer-Verlag, 1979.

[6] Carl A. Gunter, Elsa L. Gunter, and David B.
MacQueen. An abstract interpretation for ML
equality kinds. LNCS 526, pages 112{130, 1991.

[7] Robert Harper. A simpli�ed account of poly-
morphic references. Technical Report CMU-CS-
93-169, School of Computer Science, Carnegie
Mellon University, 1993.

[8] Robert Harper and Mark Lillibridge. A type-
theoretic approach to higher-order modules with
sharing. In 21st ACM Symposium on Princi-
ples of Programming Languages, pages 123{137,
1994.

[9] Robert Harper and John C. Mitchell. On the
type structure of Standard ML. ACM Transac-
tions on Programming Languages and Systems,
15(2):211{252, 1993.

[10] Robert Harper and Greg Morrisett. Compiling
polymorphism using intensional type analysis.
In 22nd ACM Symposium on Principles of Pro-
gramming Languages, pages 130{141, 1995.

[11] Robert Harper and Christopher Stone. An inter-
pretation of Standard ML in type theory. Techni-
cal Report CMU-CS-97-147, School of Computer
Science, Carnegie Mellon University, 1997.

[12] Xavier Leroy. Polymorphism by name for refer-
ences and continuations. In 20th ACM Sympo-
sium on Principles of Programming Languages,
pages 220{231, 1993.

[13] Xavier Leroy. Manifest types, modules, and sep-
arate compilation. In 21st ACM Symposium
on Principles of Programming Languages, pages
109{122, 1994.

[14] Xavier Leroy. A syntactic theory of type gener-
ativity and sharing. Journal of Functional Pro-
gramming, 6(5):667{698, 1996.

[15] Mark Lillibridge. Translucent Sums: A Founda-
tion for Higher-Order Module Systems. PhD the-
sis, School of Computer Science, Carnegie Mel-
lon University, 1997.

19

[16] David MacQueen. Using dependent types to ex-
press modular structure. In 13th ACM Sympo-
sium on Principles of Programming Languages,
pages 277{286, 1986.

[17] Robin Milner. A proposal for Standard ML. In
1984 ACM Symposium on LISP and Functional
Programming, pages 184{197, 1984.

[18] Robin Milner, Mads Tofte, Robert Harper, and
Dave MacQueen. The De�nition of Standard ML
(Revised). MIT Press, 1997.

[19] John C. Mitchell and Gordon Plotkin. Abstract
types have existential type. ACM Transac-
tions on Programming Languages and Systems,
10(3):470{502, 1988.

[20] Eugenio Moggi. Notions of computation
and monads. Information and Computation,
93(1):55{92, July 1991.

[21] Chris Okasaki. Purely Functional Data Struc-
tures. PhD thesis, School of Computer Science,
Carnegie Mellon University, 1996.

[22] Andrew M. Pitts and Ian D. B. Stark. Observ-
able properties of higher order functions that
dynamically create local names, or: What's
new? InMathematical Foundations of Computer
Science, 18th International Symposium, volume
711 of LNCS, pages 122{141. Springer-Verlag,
Berlin, 1993.

[23] Gordon D. Plotkin. A structural approach to
operational semantics. Technical Report DAIMI
FN{19, Aarhus University, September 1981.

[24] John C. Reynolds. Towards a theory of type
structure. In B. Robinet, editor, Programming
Symposium, Proceedings, Colloque sur la Pro-
grammation, volume 19 of LNCS, pages 408{425,
1974.

[25] Dana S. Scott. Data types as lattices. SIAM
Journal on Computing, 5:522{587, September
1976.

[26] Zhong Shao. An overview of the FLINT/ML
compiler. In 1997 ACM SIGPLAN Workshop
on Types in Compilation (TIC'97), June 1997.

[27] Zhong Shao and Andrew W. Appel. A type-
based compiler for Standard ML. In ACM SIG-
PLAN '95 Conference on Programming Lan-
guage Design and Implementation, pages 116{
129, 1995.

[28] David Tarditi, Greg Morrisett, Perry Cheng,
Chris Stone, Robert Harper, and Peter Lee.
TIL: A type-directed optimizing compiler for
ML. In ACM SIGPLAN '96 Conference on
Programming Language Design and Implemen-
tation, pages 181{192, 1996.

[29] Mads Tofte. Type inference for polymorphic ref-
erences. Information and Computation, 89(1):1{
34, November 1990.

[30] Philip Wadler and Stephen Blott. How to make
ad-hoc polymorphism less ad-hoc. In 16th ACM
Symposium on Principles of Programming Lan-
guages, pages 60{76, 1989.

[31] Andrew Wright. Simple imperative polymor-
phism. Journal of Lisp and Symbolic Compu-
tation, 8(4):343{355, December 1995.

[32] Andrew Wright and Matthias Felleisen. A syn-
tactic approach to type soundness. Technical Re-
port TR91-160, Dept. of Computer Science, Rice
University, 1991.

20

A External Language Syntax

A.1 Abstract Syntax

expr ::= scon
j longid
j {lab1 = expr1, � � � ,labn = exprn}
j let strdec in expr end

j expr expr 0

j expr : ty
j expr handle match
j raise expr
j fn match
j expr1 = expr2

mrule ::= pat => expr
match ::= mrule

j mrule | match

strdec ::= �
j val (tyvar1, � � � ,tyvarn) pat = exp
j val (tyvar1, � � � ,tyvarn) rec pat = exp
j strdec1 strdec2
j open longid 1 � � � longidn

j exception id
j exception id of ty
j exception id = longid
j local strdec1 in strdec2 end

j type tybind
j datatype datbind
j datatype (tyvar1, � � �,tyvarn) tycon =

datatype (tyvar1, � � �,tyvarn) longtycon
j structure strbind
j functor funbind

tybind ::= h(tyvar1, � � �,tyvarn)i tycon = ty hhand tybind ii
datbind ::= (tyvar 1, � � � ,tyvarn) tycon = conbind

hand datbind i
conbind ::= id hof tyi hh| conbindii

strexp ::= longstrid
j struct strdec end

j longfunid (longstrid)
j longstrid : sigexp
j longstrid :> sigexp
j let strdec in strexp end

spec ::= �
j val id : ty
j type typdesc
j eqtype etypdesc
j datatype datbind
j datatype (tyvar1, � � �,tyvarn) tycon 0 =
datatype (tyvar 1, � � � ,tyvarn) longtycon

j exception id
j exception id of ty
j structure strid : sigexp
j functor funid (strid : sigexp) : sigexp 0

j include sigexp
j spec1 spec2
j spec sharing type longid 1 = longid 2

typdesc ::= h(tyvar 1, � � �,tyvarn)i tycon
hhand typdescii

j h(tyvar 1, � � �,tyvarn)i tycon = ty
hhand typdescii

etypdesc ::= h(tyvar 1, � � �,tyvarn)i tycon
hhand etypdescii

sigexp ::= sig spec end

j sigexp where type

h(tyvar 1, � � � ,tyvarn)i longtycon = ty

pat ::= scon
j longid
j
j pat : ty
j longid pat
j {lab1 = pat1, � � � ,labn = patnh,...i}
j pat1 as pat2
j ref pat

ty ::= base
j tyvar
j {lab1 : expr 1, � � � ,labn : exprn}
j h(ty1, � � � ,tyn)i longtycon
j ty -> ty 0

strbind ::= strid = strexp hand strbindi
funbind ::= funid (strid : sigexp) = strexp

hand funbindi

This grammar has a few minor di�erences from
that speci�ed in the revised De�nition. We have
simpli�ed the grammar by removing some of the dis-
tinctions made solely for the purposes of the parser,
which are inappropriate for abstract syntax. The
most signi�cant di�erence is the restricted form we

21

allow for structure expressions (strexp); Standard ML
programs can always be put into this form by a sim-
ple prepass. We also extend the grammar to allow
for module de�nitions local to an expression, and for
functor speci�cations in signatures. We also do not
support abstype here; in the presence of local mod-
ule de�nitions and the opaque (:>) signature ascrip-
tion, abstype is redundant. For simplicity, we as-
sume that signature declarations are syntactic sugar
which have been \inlined away." See the De�nition
for further syntactic restrictions information on how
derived forms desugar into the above grammar. As
in the De�nition, we use the convention that angle
brackets and double angle brackets mark optional
components of a rule or syntactic item.

B Internal Language Static Se-
mantics (excerpt)

B.1 Constructor Equivalence

` decs ok
decs = decs 0; var :knd=con; decs 00

decs ` var � con : knd
(1)

decs ` modv : [sdecs ; lab:knd=con; sdecs
0]

BV(sdecs) \ FV(con) = ;

decs ` modv:lab � con : knd
(2)

decs ` con1 � con2 :
 decs ` con 01 � con 02 :

decs ` con1*con 01 � con2*con 02 :

(3)

decs ` con1 � con2 :
 decs ` con 01 � con 02 :

decs ` con1!con 01 � con2!con 02 :

(4)

decs ` con � con 0 :

decs ` con Ref � con 0 Ref :

(5)

decs ` con � con 0 :

decs ` con Tag � con 0 Tag :

(6)

lab1; : : : ; labn distinct
8i 2 1::n : decs ` con i � con 0i :

decs ` flab1:con1; � � � ; labn:conng �
flab1:con 01; � � � ; labn:con

0
ng :

(7)

decs ` con � con 0 : knd)knd

decs ` � con � � con 0 : knd
(8)

hi 2 1::ni
8i 2 1::n : decs ` coni � con 0i :

decs ` �hlabii (lab1 7!con1; : : : ; labn 7!conn) �
�hlabii (lab1 7!con 01; : : : ; labn 7!con 0n) :

(9)

decs ` con1 � con2 : knd
0)knd

decs ` con 01 � con 02 : knd
0

decs ` con1 con2 � con 01 con
0
2 : knd

(10)

decs ; var :knd 0 ` con : knd decs ` con : knd 0

decs ` (�var :knd 0:con) con 0 � fcon 0=vargcon : knd
(11)

decs ` con : knd

decs ` con � con : knd
(12)

decs ` con 0 � con : knd

decs ` con � con 0 : knd
(13)

decs ` con � con 0 : knd
decs ` con 0 � con 00 : knd

decs ` con � con 00 : knd
(14)

B.2 Well-formed Expressions

` decs ok
decs = decs 0; var :con ; decs 00

decs ` var : con
(15)

` decs ok
decs = decs 0; loc:con ; decs 00

decs ` loc : con
(16)

` decs ok
decs = decs 0; tag :con; decs 00

decs ` tag : con
(17)

decs ` exp : con 0*con decs ` exp0 : con 0

decs ` exp exp0 : con
(18)

decs ` exp : con 0!con decs ` exp0 : con 0

decs ` exp exp0 : con
(19)

8i 2 1::n :
decs ; (var 0j :conj*con 0j)

n
j=1; var i:con i ` expi : con

0
i

decs ` �x (var 0i(var i:coni):con
0
i 7!expi)

n
i=1 end :

f1:con1*con 01; : : : ; n:conn*con 0ng
(20)

22

var 0 62 FVexp
decs ; var :con ` exp # con 0

decs ` �x var 0(var :con):con 0 7!exp end :
f1:con!con 0g

(21)

lab1; � � � ; labn distinct
8i 2 1::n : decs ` expi : coni

decs ` flab1=exp1; � � � ; labn=expng :
flab1:con1; � � � ; labn:conng

(22)

decs ` exp : frdecs ; lab:con; rdecs 0g

decs ` �lab exp : con
(23)

decs ` exp : con decs ` exp 0 : Tagged*con

decs ` handle exp with exp0 : con
(24)

decs ` exp : Tagged decs ` con :

decs ` raisecon exp : con
(25)

decs ` con :

decs ` new tag[con] : con Tag
(26)

decs ` exp : con

decs ` refcon exp : con Ref
(27)

decs ` exp : con Ref

decs ` get exp : con
(28)

decs ` exp : con Ref

decs ` exp 0 : con

decs ` set (exp; exp0) : Unit
(29)

decs ` con � (�lab (� con
0)) hcon 00i :

decs ` exp : (�lab (con
0 (� con 0))) hcon 00i

decs ` rollcon exp : con
(30)

decs ` con � (�lab (� con
0)) hcon 00i :

decs ` exp : con

decs ` unrollcon exp : (�lab (con 0 (� con 0))) hcon 00i
(31)

decs ` exp : con!con 0

decs ` @ exp : con*con 0
(32)

i 2 1::n
con = �labi

(lab1 7!con1; : : : ; labn 7!conn)
decs ` exp : coni

decs ` injconlabi
exp : con

(33)

i 2 1::n
decs ` exp : �labi

(lab1 7!con1; : : : ; labn 7!conn)

decs ` proj
�labi

(lab1 7!con1;:::;labn 7!conn)

labi
exp : con i

(34)

n � 1
con = �(lab1 7!con1; : : : ; labn 7!conn)

decs ` exp : con
8i 2 1::n :
decs ` expi : �labi (lab1 7!con1; : : : ; labn 7!conn)*con 0

decs ` casecon exp of exp1; : : : ; expn end : con 0

(35)

decs ` exp : con Tag decs ` exp0 : con

decs ` tag(exp; exp 0) : Tagged
(36)

decs ` exp : Tagged decs ` exp0 : con Tag

decs ` exp 00 : con*con 0 decs ` exp000 : con 0

decs ` iftagof exp is exp 0 then exp 00 else exp 000 : con 0

(37)

decs ` mod : [sdecs ; lab:con; sdecs 0]
BV(sdecs) \ FV(con) = ;

decs ` mod :lab : con
(38)

decs ` exp : con 0 decs ` con � con 0 :

decs ` exp : con
(39)

B.3 Signature Subtyping

decs ` � � �
(40)

decs ; var :knd=con ` sdecs � sdecs 0

decs ` lab.var :knd=con ; sdecs � lab.var :knd ; sdecs 0

(41)

decs ` sig � sig 0 : Sig
decs ; var :sig ` sdecs � sdecs 0

decs ` lab.var :sig ; sdecs � lab.var :sig 0; sdecs 0

(42)

decs ` lab:dec � lab:dec0

decs ; dec ` sdecs � sdecs 0

decs ` lab.dec; sdecs � lab.dec0; sdecs 0
(43)

23

decs ` sdecs � sdecs 0

decs ` [sdecs] � [sdecs 0] : Sig
(44)

decs ` sig2 � sig1 : Sig
decs ; var :sig2 ` sig 01 � sig 02 : Sig

decs ` var :sig1*sig 01 � var :sig2*sig 02 : Sig
(45)

decs ` sig2 � sig1 : Sig decs ; var :sig2 ` sig 01 � sig 02 : Sig

decs ` var :sig1!sig 01 � var :sig2*sig 02 : Sig
(46)

decs ` sig2 � sig1 : Sig decs ; var :sig2 ` sig 01 � sig 02 : Sig

decs ` var :sig1!sig 01 � var :sig2!sig 02 : Sig
(47)

B.4 Well-formed Modules

decs ` � : �
(48)

decs ` bnd : dec decs ; dec ` sbnds : sdecs

decs ` lab.bnd ; sbnds : lab.dec; sdecs
(49)

` decs ok
decs = decs0; var :sig ; decs 00

decs ` var : sig
(50)

decs ` sbnds : sdecs

decs ` [sbnds] : [sdecs]
(51)

decs ; var :sig ` mod : sig 0

decs ` �var :sig :mod : var :sig*sig 0
(52)

decs ; var :sig ` mod # sig 0

decs ` �var :sig :mod : var :sig!sig 0
(53)

decs ` mod : sig 0*sig decs ` mod 0 : sig 0

decs ` mod mod 0 : sig
(54)

decs ` mod : [sdecs ; lab:sig ; sdecs 0]
BV(sdecs) \ FV(sig) = ;

decs ` mod :lab : sig
(55)

decs ` mod : sig

decs ` mod :sig : sig
(56)

decs ` modv : [sdecs ; lab.var :knd ; sdecs
0]

decs ` modv : [sdecs ; lab.var :knd=modv:lab; sdecs
0]

(57)

decs ` modv : [sdecs ; lab.var :sig ; sdecs
0]

decs ` modv:lab : sig
0

decs ` modv : [sdecs ; lab.var :sig
0; sdecs 0]

(58)

decs ` mod : sig decs ` sig � sig 0 : Sig

decs ` mod : sig 0
(59)

B.5 Valuability Judgments

decs ` exp : con decs ` exp #

decs ` exp # con
(60)

decs ` mod : sig decs ` mod #

decs ` mod # sig
(61)

decs ` expv #
(62)

decs ` mod #

decs ` mod :lab #
(63)

decs ` exp1 # con
0!con decs ` exp2 #

decs ` exp1 exp2 #
(64)

decs ` exp1 # � � � decs ` expn #

decs ` flab1=exp1; � � � ; labn=expng #
(65)

decs ` modv #
(66)

decs ` mod # sig 0!sig decs ` mod 0 #

decs ` mod mod 0 #
(67)

decs ` mod #

decs ` mod :lab #
(68)

24

C IL Dynamic Semantics

(�; �; E[(h@ i�k expv) expv
0]) ,!

(�; �; E[f�1 expv=var1g � � � f�n expv=varngfexpv
0=var 0kgexpk])

where expv = �x (var i(var
0
i:coni):con

0
i 7!expi)

n
i=1 end

(69)

(�; �; E[�lab frbndsv; lab=expv; rbndsv
0g]) ,!

(�; �; E[expv])
(70)

(�; �; E[handle expv with exp]) ,! (�; �; E[expv])
(71)

(�; �; E[refcon expv]) ,! (�[loc:con]; �[loc 7!expv]; E[loc])
if loc 62 BV(�)

(72)

(�; �; E[get loc]) ,! (�; �; E[�(loc)]) (73)

(�; �; E[set (loc; expv)]) ,! (�; �[loc 7!expv]; E[fg])
(74)

(�; �; E[unrollcon (rollcon
0

expv)]) ,! (�; �; E[expv])
(75)

(�; �; E[new tag[con]]) ,! (�[tag :con Tag]; �; E[tag])
if tag 62 BV(�)

(76)

(�; �; E[proj (injconi expv)]) ,! (�; �; E[expv]) (77)

(�; �; E[iftagof tag(tag ; expv) is tag then exp else exp
0]) ,!

(�; �; E[exp expv])
(78)

(�; �; E[iftagof tag(tag 0; expv) is tag then exp else exp0]) ,!
(�; �; E[exp 0])
if tag 6= tag 0

(79)

(�; �; E[(�var :sig :mod)modv]) ,!
(�; �; E[fmodv=vargmod])

(80)

(�; �; E[modv :sig]) ,! (�; �; E[modv]) (81)

(�; �; E[[sbndsv; lab=val ; sbndsv
0]:lab]) ,!

(�; �; E[val])
where BV(sbndsv) \ FV(val) = ;

(82)

(�; �; E[expv =con expv
0]) ,! (�; �; E[true])

if expv and expv
0 are equal at type con

(83)

(�; �; E[expv =con expv
0]) ,! (�; �; E[false])

if expv and expv are unequal at type con
(84)

(�; �; E[handleR[raisecon expv]with exp
0]) ,!

(�; �; E[exp 0 expv])
(85)

(�; �;R[raisecon expv]) ,! (�; �; raiseans expv)
if R 6= []

(86)

25

D Elaboration (excerpts)

D.1 Derived forms

knd1� � � ��kndn 7! f1:knd1; : : : ; n:kndng
kndn 7! f1:knd ; : : : ; n:kndg

Unit 7! fg
Boolhlabi 7! �hlabi

�
true7!Unit; false7!Unit

�
con1 � � � � � conn 7! f1=con1; � � � ; n=conng
�(var 1; : : : ; varn):con 7!
�var :
n:(f�1 var=var1g � � � f�n var=varngcon)

(con1; : : : ; conn) 7! f1=con1; : : : ; n=conng

(exp1; � � � ; expn) 7! f1=exp1; � � � ; n=expng
�(var :con):con 0:exp 7!
�1 �x var

0(var :con):con 0 7!exp end

var 0 62 FV(exp)
�(var 1:con1; : : : ; varn:conn):con:exp 7!
�(var :con1� � � ��conn):con:

f�1 var=var1g � � � f�n var=varngexp
var 62 FVexp

let bnd1; : : : ; bndn in exp end 7!
[1=bnd1; : : : ; n=bndn; (n+1)=exp]:(n+1)

catchcon exp with exp0 7!
handle exp with (�var :Tagged:

iftagof var is basis :fail�:tag
then�var :Unit:exp 0 else raisecon var

var 62 FV(exp0)

false 7! injBool

false
fg

if exp1 then exp2 else exp3 7!
caseBool exp1 of end

�var:Boolfalse:exp3; �var:Booltrue:exp2
var 62 FV(exp2; exp3)

exp1 and exp2 7! if exp1 then exp2 else false

D.2 Expressions

� ` scon ; scon : type(scon)
(87)

Rule 87: We assume a meta-level function type
which gives the IL type of each constant.

� c̀tx longid ; path : con
Rule 89 does not apply.

� ` longid ; path : con
(88)

Rule 88: Monomorphic variables.

� c̀tx longid ; path : con!con 0

� ` longid ; @ (path) : con*con 0
(89)

Rule 88: Monomorphic value constructors.

� c̀tx longid ; path : sig![it:con]
� ìnst; mod : sig

Rule 91 does not apply.

� ` longid ; path(mod):it : con
(90)

Rule 90: Polymorphic variables. The module
mod is the structure of types (and equality func-
tions) that we \guess" to instantiate the poly-
morphism.

� c̀tx longid ; path : sig![it:con!con 0]
� ìnst; mod : sig

� ` longid ; @ (path(mod):it) : con*con 0
(91)

Rule 91: Polymorphic value constructors.

� a permutation of 1::n
var1; � � � ; varn 62 BV(�)
lab�(1) < � � � < lab�(n)

8i 2 1::n : � ` expr i ; expi : coni

� ` {lab1 = expr1; � � � ; labn = exprn};
let var 1=exp1; : : : ; varn=expn in

flab�(1)=var�(1); � � � ; var�(n)=var�(n)g end :
flab�(1):con�(1); � � � ; lab�(n):con�(n)g

(92)

Rule 92: The order in which labels appear in
the record type is signi�cant for the IL, so in the
translation we normalize record types by sorting
the labels with some �xed ordering <. Note that
though the order of the records �elds is given by
this ordering, the components are evaluated (and
side-e�ects occur) in the order that they are listed
in the EL.

� ` strdec ; sbnds : sdecs
var 62 BV(�) �; 1�.var :[sdecs] ` expr ; exp : con 0

�; var :[sdecs] ` con 0 � con :
 � ` con :

� ` let strdec in expr end;

let var=mod in exp end : con
(93)

Rule 93: The declarations strdec are translated
into the components of a structure; the \starred
structure" convention is used here to make these
components accessible while translating expr .
Standard ML prohibits the type of the body from
depending on abstract types de�ned locally|in
particular, values created from a datatype cannot
escape the scope of that datatype.

� ` expr ; exp : con 00*con
� ` expr 0 ; exp0 : con 0

� ` con 0 � con 00 :

� ` expr expr 0 ; exp exp 0 : con
(94)

26

Rule 94: General application.

� c̀tx longid ; path : con 0!con
� ` expr 0 ; exp0 : con 0

� ` longid expr 0 ; exp exp0 : con
(95)

Rule 95: Application of monomorphic value con-
structor.

� c̀tx longid ; path : sig![it:con 0!con]
� ìnst; mod : sig

� ` expr 0 ; exp0 : con 0

� ` longid expr 0 ; (path (mod):it) exp 0 : con
(96)

Rule 96: Application of polymorphic value con-
structor.

� ` expr ; exp : con
� ` ty ; con 0 :
 � ` con � con 0 :

� ` expr : ty ; exp : con
(97)

Rule 97: Type constraints on expressions are ver-
i�ed, but do not appear in the translation.

� ` expr ; exp : con
� ` match ; exp 0 : Tagged*con 0

� ` con � con 0 :

var 62 BV(�)

� ` expr handle match ;
handle exp with
�(var :Tagged):con:
(catchcon exp 0 var with raisecon var) :

con
(98)

Rule 98: The handling expression exp0 var may
fail if the handler pattern does not match the ex-
ception raised, in which case we propagate the
exception.

� ` expr ; exp : Tagged � ` con :

� ` raise expr ; raisecon exp : con
(99)

Rule 99: The translation of a raise expression
can be given any valid type con.

var 62 BV(�)
� ` match ; exp : con1*con2

� ` fn match ;
�(var :con1):con2:
(catchcon2 exp var

with raisecon2 basis :Match
�
:Match)

:

con1*con2

(100)

Rule 100: The expression exp var will fail if the
match fails; here we turn the basis :fail�:fail ex-
ception into basis :Match

�

:Match. The resulting
function has a partial type because it can (syn-
tactically) raise an exception.

� ` expr1 ; exp1 : con1 � ` expr 2 ; exp2 : con2

� ` con1 � con2 :
 � èq con1 ; expv

� ` expr1 = expr2 ; expv (exp1; exp2) : Bool
(101)

Rule 101: Translation of equality compari-
son; expv is the equality function, having type
con�con*Bool.

D.3 Matches

var ; var 0 62 BV(�) � ` con 0 :

� ` pat (var 0 : con 0 else basis :fail�:fail; sbnds : sdecs

�; 1�.var :[sdecs] ` expr ; exp : con

� ` pat => expr ;
�(var 0:con 0):con :let var=[sbnds] in exp end : con 0*con

(102)

Rule 102:

The result of translating a match is a function
that may fail if the match fails.

var 62 BV(�)
� ` mrule ; exp : con1*con2

� ` match ; exp0 : con 01*con 02
� ` con1*con2 � con 01*con 02 :

� ` mrule | match ;
�(var :con1):con2:
catchcon exp var with exp0 var

:

con 0*con

(103)

Rule 103: The failure of pattern matching in the
�rst clause is caught, and we try again with the
next clause.

D.4 Polymorphic Instantiation

decs ` con :

hdecs èq con ; expvi

hhdecs ìnst; [sbndsv] : [sdecs]ii

decs ìnst;

[lab 0=[lab.var=conh; eq=expvi]hh; sbndsvii]
[lab 0:[lab.var :
=conh; eq:var�var*Booli]]hh; sdecsii

(104)

Rule 104 Nondeterministically choose types and
the corresponding equality functions so as to
match a fully-transparent signature.

27

D.5 Declarations

var 62 BV(�)
� ` expr ; exp : con

�; var :con ` pat (var : con else basis :Bind
�
:Bind;

sbnds : sdecs

� ` val () pat = expr ;
1.var=exp; sbnds :
1.var :con; sdecs

(105)

Rule 105: Monomorphic, non-recursive binding.

sig = [tyvar1
�
:[tyvar1:
]; � � � ; tyvarn

�
:[tyvarn:
];

1�:
; � � � ;m�:
]
�; 1�.var :sig ` expr ; exp : con

�; 1�.var :sig ` basis :Bind
�
:Bind

else pat (exp : con ;
lab1=exp1; : : : ; labn=expn :
lab1:con1; : : : ; labn=expn

8i 2 1::n :
�; 1�.var :sig ` expi # con i

sbnd 0i := labi=(var :sig)![it=expi]
sdec0i := labi:(var :sig)![it:con i]

� ` val (heqi1tyvar1; � � � ; heqintyvarn) pat = expr ;
sbnd 01; : : : ; sbnd

0
n : sdec01; : : : ; sdec

0
n

(106)

Rule 106: Polymorphic, non-recursive val bind-
ings. (For space reasons, we show a simpli�ed
version of the full rule, which must take equal-
ity type variables into account; this version has
the e�ect of only allowing polymorphism for ir-
refutable patterns.) Note that type inference
may introduce new type variables not mentioned
in the source (as in val f = fn x => x).

� ` strdec1 ; sbnds1 : sdecs1
�; sdecs1 ` strdec2 ; sbnds2 : sdecs2

� ` strdec1 strdec2 ;
sbnds1++sbnds2 : sdecs1++sdecs2

(107)

Rule 107: Sequential declarations are modelled
with a syntactic append, except we must rename
any labels (preserving the star convention) in
sbnds1=sdecs1 appearing in sbnds2=sdecs2,

8i 2 1::n : � c̀tx longstrid i ; path i : sig i
� ` open longstrid1 � � � longstridn ;

1�=path1; � � � ; n
�=pathn :

1�:sig1; � � � ; n
�=sign

(108)

� ` ty ; con :
 var 62 BV(�)

� ` exception id of ty ;

id
�
=[tag.var=new tag[con];

id=�(var 0:con):Tagged:tag(var ; var 0)]

:

id
�
:[tag.var :con Tag; id :con!Tagged]

(109)

� c̀tx longid ; path :lab : con
� ` path :tag : con 0

� ` exception id = longid ;

id
�
=[tag=path :tag; id=path :lab] :

id
�
:[tag:con 0; id :con]

(110)

Rule 110: We know that longid corresponds to
an exception constructor because of the tag com-
ponent.

var 62 BV(�)
� ` strdec1 ; sbnds1 : sdecs1

�; 1�.var :[sdecs1] ` strdec0 ; sbnds2 : sdecs2

� ` local strdec in strdec0 end;
1.var=[sbnds1]; sbnds2 : 1.var :[sbnds2]; sdecs2

(111)

Rule 111: We create a bindings for all of the dec-
larations, but the local bindings are segregated
into a substructure inaccessible from the EL.

� ` tybind ; sbnds : sdecs

� ` type tybind ; sbnds : sdecs
(112)

D.6 Structure Expressions

� c̀tx longstrid ; path : sig

� ` longstrid ; path : sig
(113)

� ` strdec ; mod : sig

� ` struct strdec end; mod : sig
(114)

� c̀tx longfunid ; pathf : (var 1:sig1)*sig2
� c̀tx longstrid ; path : sig

� s̀ub path : sig � sig1 ; mod : sig 0

� ` (var1:sig)*sig2 � sig 0*sig 00 : Sig

� ` longfunid(longstrid); (pathf :sig
0*sig 00)mod : sig 00

(115)

28

Rule 115: We insert an explicit coercion to
drop and reorder components of the argument
structure (which has signature sig), in order to
match the domain signature of the functor (sig1).
The signature sig 0 is the most-speci�c (and fully
transparent) signature of the coerced structure,
which may expose more types (is a sub-signature
of) sig1.

� c̀tx longstrid ; path : sig
� ` sigexp ; sig 0 : Sig

� s̀ub path : sig � sig 0 ; mod : sig 00

� ` longstrid : sigexp ; mod : sig 00
(116)

Rule 116: Ascribing a signature to a structure
using \:" hides components (this hiding being
accomplished here via an explicit coercion), but
allows the identity of the remaining type compo-
nents to leak through. The rules for coercions
ensure that sig 00 will be fully transparent, maxi-
mizing propagation of type information.

� c̀tx longstrid ; path : sig
� ` sigexp ; sig 0 : Sig

� s̀ub path : sig � sig 0 ; mod : sig 00

� ` longstrid : sigexp ; (mod :sig 0) : sig 0
(117)

Rule 117: Ascribing a signature to a structure
with :> not only hides components, but restricts
information about types to that which appears
in the signature.

var 62 BV(�)
� ` strdec ; sbnds : sdecs

�; 1�.var:[sdecs] ` strexp ; mod : sig

� ` let strdec in strexp end;

[1.var=[sbnds]; 2�=mod] :
[1.var :[sdecs]; 2�:sig]

(118)

D.7 Pattern Compilation

lab fresh type(scon) = con
� ` exp : con

� ` scon (exp : con else exp 0 ;

lab=if exp=conscon then fg else raiseUnit exp0 :
lab:Unit

(119)

Rule 119: Pattern match against a constant. We
need primitive equality functions for constants
which can appear in patterns.

� ` con � flab 01:con
0
1; � � � ; lab

0
k:con

0
kg :

flab1; � � � ; labng � flab01; � � � ; lab
0
ng

8i 2 1::n :
�; lab.var :con ` pat i

(�
labi

exp : con i else exp
0
; sbnds i : sdecs i

� ` {lab1 = pat1; : : : ; labn = patnh,...i}
else exp0 (exp : con ;

sbnds1; : : : ; sbndsn :
sdecs1; : : : ; sdecsn

(120)

Rule 120: Pattern match against a record of pat-
terns. Because we disallow repeated variables in
patterns, the syntactic concatenation of structure
here is well-formed.

29

beatrice
This research was sponsored in part by National Science Foundation (NSF) grant no. CCR-0122581.

beatrice

