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Abstract. Language-based security leverages program analysis and pro-
gram rewriting to enforce security policies. The approach promises effi-
cient enforcement of fine-grained access control policies and depends on a
trusted computing base of only modest size. This paper surveys progress
and prospects for the area, giving overviews of in-lined reference moni-
tors, certifying compilers, and advances in type theory.

1 Introduction

The increasing dependence by industry, government, and society on networked
information systems means that successful attacks could soon have widespread
and devastating consequences. Integrity and availability now join secrecy as cru-
cial security policies, not just for the military but also for the ever-growing
numbers of businesses and individuals that use the Internet. But current sys-
tems lack the technology base needed to address these new computer-security
needs [16].

For the past few years, we and others have been exploring the extent to which
techniques from programming languages—compilers, automated program anal-
ysis, type checking, and program rewriting—can help enforce security policies in
networked computing systems. This paper explains why this language-based se-
curity approach is considered so promising, some things that already have been
accomplished, and what might be expected. But the paper also can be seen as a
testament to research successes in programming languages, giving evidence that
the area is poised to have an impact far beyond its traditional scope.

Section 2 discusses two computer security principles that suggest the fo-
cus on language-based security is sensible. Then, section 3 discusses the imple-
mentation of reference monitors for policy enforcement. Three language-based
security paradigms—in-lined reference monitors, type systems, and certifying
compilers—are the subject of section 4. Some concluding remarks appear in
section 5.

2 Some Classic Principles

Work in language-based security is best understood in terms of two classic com-
puter security principles [15]:



Principle of Least Privilege. Throughout execution, each principal should
be accorded the minimum access necessary to accomplish its task.

Minimal Trusted Computing Base. Assurance that an enforcement mech-
anism behaves as intended is greatest when the mechanism is small and
simple.

These principles were first articulated over twenty-five years ago, at a time
when economics dictated that computer hardware be shared and, therefore,
user computations had to be protected from each other. Since it was kernel-
implemented abstractions that were being shared, security policies for isolating
user computations were formulated in terms of operating system objects. More-
over, in those days, the operating system kernel itself was small and simple. The
kernel thus constituted a minimal trusted computing base that instantiated the
Principle of Least Privilege.

Computing systems have changed radically in twenty-five years. Operating
system kernels are no longer simple or small. The source code for Windows 2000,
for example, comprises millions of lines of code. One reason today’s operating
systems are so large is to support basic services (e.g., windowing, graphics,
distributed file systems) needed for the varied tasks they now perform. But an-
other reason is performance—subsystems are no longer isolated from each other
to avoid expensive context switches during execution. For example, the graphics
subsystem of Windows is largely contained within the kernel’s address space(!)
to reduce the cost of invoking common drawing routines. So operating system
kernels today constitute an unmanageably large and complicated computing
base—a far cry from the minimal trusted computing base we seek.

Moreover, today’s operating system kernels enforce only coarse-grained poli-
cies.

– Almost all code for a given machine is run on behalf of a single user, and
principals are equated with users. Consequently, virtually all code runs as a
single principal under a single policy (i .e., a single set of access permissions).

– Many resources are not implemented by the operating systems kernel. Thus,
the kernel is unable to enforce the policies needed for protecting most of the
system’s resources.

This status quo allows viruses, such as Melissa and the Love Bug, to propagate by
hiding within an email message a script that is transparently invoked by the mail-
viewer application (without an opportunity for the kernel to intercede) when
the message is opened.1 In short, today’s operating systems do not and cannot
enforce policies concerning application-implemented resources, and individual
subsystems lack the clear boundaries that would enable policies concerning the
resources they manage to be enforced.

1 Because the script runs with all the privileges of the user that received the mes-
sage, the virus is able to read the user’s address book and forward copies of itself,
masquerading as personal mail from a trusted friend.



Though ignored today, Principle of Least Privilege and Minimal Trusted
Computing Base, remain sound and sensible principles, as they are independent
of system architecture, computer speed, and the other dimensions of computer
systems that have undergone radical change. Traditional operating system in-
stantiations of these principles might no longer be feasible, but that does not
preclude using other approaches to policy enforcement. Language-based security
is one such approach.

3 The Case for Language-Based Security

A reference monitor observes execution of a target system and halts that sys-
tem whenever it is about to violate some security policy of concern. Security
mechanisms found in hardware and system software typically either implement
reference monitors directly or are intended to facilitate the implementation of
reference monitors. For example, an operating system might mediate access to
files and other abstractions it supports, thereby implementing a reference moni-
tor for policies concerning those objects. As another example, the context switch
(trap) caused whenever a system call instruction is executed forces a transfer of
control, thereby facilitating invocation of a reference monitor whenever a system
call is executed.

To do its job, a reference monitor must be protected from subversion by the
target systems it monitors. Memory protection hardware, which ensures that
execution by one program cannot corrupt the instructions or data of another, is
commonly used for this purpose. But placing the reference monitor and target
systems in separate address spaces has a performance cost and restricts what
policies can be enforced.

– The performance cost results from the overhead due to context switches
associated with transferring control to the reference monitor from within
the target systems. The reference monitor must receive control whenever a
target system participates in an event relevant to the security policy being
enforced. In addition, data must be copied between address spaces.

– The restrictions on what policies can be enforced arise from the means by
which target system events cause the reference monitor to be invoked, since
this restricts the vocabulary of events that can be involved in security poli-
cies. Security policies that govern operating system calls, for example, are
feasible because traps accompany systems calls.

The power of the Principle of Least Privilege depends on having flexible and
general notions of principal and minimum access. Any interface—not just the
user/kernel interface—might define the objects governed by a security policy.
And an expressive notion of principal is needed if enforcement decisions might
depend on, among other things, the current state of the machine, past execution
history, who authored the code, on who’s behalf is the code executing, and so
on.



Language-based security, being based on program analysis and program rewrit-
ing, supports the flexible and general notions of principal and minimum access
needed in order the instantiate the Principle of Least Privilege. In particular,
software, being universal, can always provide the same functionality (if not per-
formance) as a reference monitor. An interpreter, for instance, could include not
only the same checks as found in hardware or kernel-based protection mech-
anisms but also could implement additional checks involving the application’s
current and past states.

The only question, then, is one of performance. If the overhead of unadul-
terated interpretation is too great, then compilation technology, such as just-in-
time compilers, partial evaluation, run-time code generation, and profile-driven
feedback optimization, can be brought to bear. Moreover, program analysis,
including type-checking, dataflow analysis, abstract interpretation, and proof-
checking, can be used to reason statically about the run-time behavior of code
and eliminate unnecessary run-time policy enforcement checks.

Beyond supporting functionality equivalent to hardware and kernel-supported
reference monitoring, the language-based approach to security offers other ben-
efits. First, language-based security yields policy enforcement solutions that can
be easily extended or changed to meet new, application-specific demands. Sec-
ond, if a high-level language (such as Java or ML) is the starting point, then
linguistic structures, such as modules, abstract data types, and classes, allow
programmers to specify and encapsulate application-specific abstractions. These
same structures can then provide a vocabulary for formulating fine-grained secu-
rity policies. Language-based security is not, however, restricted to systems that
have been programmed in high-level languages. In fact, much work is directed
at enforcing policies on object code because (i) the trusted computing base is
smaller without a compiler and (ii) policies can then be enforced on programs
for which no source code is available.

EM Security Policies

A program analyzer operating on program text (source or object code) has
more information available about how that program could behave than does
a reference monitor observing a single execution.2 This is because the program
text is a terse representation of all possible behaviors and, therefore, contains
information—about alternatives and the future—not available in any single ex-
ecution. It would thus seem that, ignoring questions of decidability, program
analysis can enforce policies that reference monitors cannot. To make the rela-
tionship precise, the class of security policies that reference monitors can enforce
was characterized in [17], as follows.

A security policy defines execution that, for one reason or another, has been
deemed unacceptable. Let EM (for Execution Monitoring) be the class of secu-
rity policies that can be enforced by monitoring execution of a target system and
2 We are assuming that a reference monitor sees only security-relevant actions and

values. Once the entire state of the system becomes available, then the reference
monitor would have access to the program text.



terminating execution that is about to violate the security policy being enforced.
Clearly, EM includes those policies that can be enforced by security kernels, ref-
erence monitors, firewalls, and most other operating system and hardware-based
enforcement mechanisms that have appeared in the literature. Target systems
may be objects, modules, processes, subsystems, or entire systems; the execution
steps monitored may range from fine-grained actions (such as memory accesses)
to higher-level operations (such as method calls) to operations that change the
security-configuration and thus restrict subsequent execution.

Mechanisms that use more information than would be available only from
monitoring a target system’s execution are, by definition, excluded from EM. In-
formation provided to an EM mechanism is thus insufficient for predicting future
steps the target system might take, alternative possible executions, or all possi-
ble target system executions. Therefore, compilers and theorem-provers, which
analyze a static representation of a target system to deduce information about
all of its possible executions, are not considered EM mechanisms. Also excluded
from EM are mechanisms that modify a target system before executing it. The
modified target system would have to be “equivalent” to the original (except
for aborting executions that would violate the security policy of interest), so a
definition for “equivalent” is thus required to analyze this class of mechanisms.

We represent target system executions by finite and infinite sequences, where
Ψ denotes a universe of all possible finite and infinite sequences. The manner
in which executions are represented is irrelevant here. Finite and infinite se-
quences of atomic actions, of higher-level system steps, of program states, or
of state/action pairs are all plausible alternatives. A target system S defines a
subset ΣS of Ψ corresponding to the executions of S.

A characterization of EM-enforceable security policies is interesting only if
the definition being used for “security policy” is broad enough so that it does
not exclude things usually considered security policies.3 Also, the definition must
be independent of how EM is defined, for otherwise the characterization of EM-
enforceable security policies would be a tautology, hence uninteresting. We there-
fore adopt the following.

Definition of Security Policy: A security policy is specified by giving a pred-
icate on sets of executions. A target system S satisfies security policy P if
and only if P(ΣS ) equals true.

By definition, enforcement mechanisms in EM work by monitoring execution
of the target. Thus, any security policy P that can be enforced using a mechanism
from EM must be specified by a predicate of the form

P(Π) : (∀σ ∈ Π: ̂P(σ)) (1)

where ̂P is a predicate on (individual) executions. ̂P formalizes the criteria used
by the enforcement mechanism for deciding to terminate an execution that would
otherwise violate the policy being enforced. In [1] and the literature on linear-
time concurrent program verification, a set of executions is called a property if
3 However, there is no harm in being liberal about what is considered a security policy.



set membership is determined by each element alone and not by other members
of the set. Using that terminology, we conclude from (1) that a security policy
must be a property in order for that policy to have an enforcement mechanism
in EM.

Not every security policy is a property. Some security policies cannot be de-
fined using criteria that individual executions must each satisfy in isolation. For
example, information flow policies often characterize sets that are not proper-
ties (as proved in [10]). Whether information flows from variable x to y in a
given execution depends, in part, on what values y takes in other possible execu-
tions (and whether those values are correlated with the value of x). A predicate
to specify such sets of executions cannot be constructed only using predicates
defined on single executions in isolation.

Not every property is EM-enforceable. Enforcement mechanisms in EM can-
not base decisions on possible future execution, since that information is, by def-
inition, not available to such a mechanism. Consider security policy P of (1), and
suppose σ′ is the prefix of some finite or infinite execution σ where ̂P(σ) = true
and ̂P(σ′) = false hold. Because execution of a target system might terminate
before σ′ is extended into σ, an enforcement mechanism for P must prohibit σ′

(even though supersequence σ satisfies ̂P).
We can formalize this requirement as follows. For σ a finite or infinite exe-

cution having i or more steps, and τ ′ a finite execution, let

σ[..i] denote the prefix of σ involving its first i steps
τ ′ σ denote execution τ ′ followed by execution σ

and define Π− to be the set of all finite prefixes of elements in set Π of finite
and/or infinite sequences. Then, the above requirement for P—that P is prefix
closed—is:

(∀τ ′ ∈ Ψ− : ¬ ̂P(τ ′) ⇒ (∀σ ∈ Ψ: ¬ ̂P(τ ′σ))) (2)

Finally, note that any execution rejected by an enforcement mechanism must
be rejected after a finite period. This is formalized by:

(∀σ ∈ Ψ : ¬ ̂P(σ) ⇒ (∃i : ¬ ̂P(σ[..i]))) (3)

Security policies satisfying (1), (2), and (3) are safety properties [8], proper-
ties stipulating that no “bad thing” happens during any execution. Formally, a
property Γ is defined in [9] to be a safety property if and only if, for any finite
or infinite execution σ,

σ 6∈ Γ ⇒ (∃i : (∀τ ∈ Ψ: σ[..i ] τ 6∈ Γ)) (4)

holds. This means that Γ is a safety property if and only if Γ can be characterized
using a set of finite executions that are prefixes of all executions excluded from
Γ. Clearly, a security policy P satisfying (1), (2), and (3) has such a set of finite
prefixes—the set of prefixes τ ′ ∈ Ψ− such that ¬ ̂P(τ ′) holds—so P is satisfied
by sets that are safety properties according to (4).

The above analysis of enforcement mechanisms in EM has established:



Non EM-Enforceable Security Policies: If the set of executions for a secu-
rity policy P is not a safety property, then an enforcement mechanism from
EM does not exist for P.

One consequence is that ruling-out additional executions never causes an EM-
enforceable policy to be violated, since ruling-out executions never invalidates
a safety property. Thus, an EM enforcement mechanism for any security policy
P ′ satisfying P ′ ⇒ P also enforces security policy P. However, a stronger policy
P ′ might proscribe executions that do not violate P , so using P ′ is not without
potentially significant adverse consequences. The limit case, where P ′ is satisfied
only by the empty set, illustrates this problem.

Second, Non EM-Enforceable Security Policies implies that EM mechanisms
compose in a natural way. When multiple EM mechanisms are used in tandem,
the policy enforced by the aggregate is the conjunction of the policies that are
enforced by each mechanism in isolation. This is attractive, because it enables
complex policies to be decomposed into conjuncts, with a separate mechanism
used to enforce each of the component policies.

We can use the Non EM-Enforceable Security Policies result to see whether
or not a given security policy might be enforced using a reference monitor (or
some other form of execution monitoring). For example, access control policies,
which restrict what operations principals can perform on objects, define safety
properties. (The set of proscribed partial executions contains those partial ex-
ecutions ending with an unacceptable operation being attempted.) Information
flow policies do not define sets that are properties (as discussed above). And,
availability policies, if taken to mean that no principal is forever denied use of
some given resource, is not a safety property—any partial execution can be ex-
tended in a way that allows a principal to access the resource, so the defining
set of proscribed partial executions that every safety property must have is ab-
sent. Thus we conclude that access control policies can be enforced by reference
monitors but neither information flow nor availability policies (as we formulated
them) can be.

4 Enforcing Security Policies

The building blocks of language-based security are program rewriting and pro-
gram analysis. By rewriting a program, we can ensure that the result is incapable
of exhibiting behavior disallowed by some security policy at hand. And by ana-
lyzing a program, we ensure only those programs that cannot violate the policy
are ever given an opportunity to be executed.

That is the theory. Actual embodiments of the language-based security vision
invariably combine program rewriting and program analysis. Today’s research
efforts can be grouped into two schools. One—in-lined reference monitors—
takes program rewriting as a starting point; the other—type-safe programming
languages—takes program analysis, as a starting point. In what follows, we dis-
cuss the strengths and weaknesses of each of these schools. We then discuss
an emerging approach—certifying compilation—and how the combination of all



three techniques (rewriting, analysis, and certification) yield a comprehensive
security framework.

4.1 In-lined Reference Monitors

An alternative to placing the reference monitor and the target system in sep-
arate address spaces is to modify the target system code, effectively merging
the reference monitor in-line. This is, in effect, what is done by software-fault
isolation (SFI), which enforces the security policy that prevents reads, writes,
or branches to memory locations outside of certain predefined memory regions
associated with a target system [20]. But a reference monitor for any EM secu-
rity policy could be merged into a target application, provided the target can be
prevented from circumventing the merged code.

Specifying such an in-lined reference monitor (IRM) involves defining [6]

– security events, the policy-relevant operations that must be mediated by the
reference monitor;

– security state, information stored about earlier security events that is used
to determine which security events can be allowed to proceed; and

– security updates, program fragments that are executed in response to security
events and that update the security state, signal security violations, and/or
take other remedial action (e.g., block execution).

A load-time, trusted IRM rewriter merges checking code into the application
itself, using program analysis and program rewriting to protect the integrity
of those checks. The IRM rewriter thus produces a secured application, which is
guaranteed not to take steps violating the security policy being enforced. Notice,
with the IRM approach, the conjunction of two policies can be enforced by
passing the target application through the IRM rewriter twice in succession—
once for each policy. And also, by keeping policy separate from program, the
approach makes it easier to reason about and evolve the security of a system.

Experiments with two generations of IRM enforcement suggest that the ap-
proach is quite promising. SASI (Security Automata SFI Implementation), the
first generation, comprised two realizations [5]. One transformed Intel x86 assem-
bly language; the other transformed Java Virtual Machine Language (JVML).
Second generation IRM enforcement tools PoET/PSLang, (Policy Enforcement
Toolkit/Policy Specification Language) transformed JVML [6].

The x86 SASI prototype works with assembly language output of the GNU
gcc C compiler. Object code produced by gcc observes certain register-usage
conventions, is not self-modifying, and is guaranteed to satisfy two assumptions:

– Program behavior is insensitive to adding stutter-steps (e.g., nop’s).

– Variables and branch-targets are restricted to the set of labels identified by
gcc during compilation.



These restrictions considerably simplify the task of preventing code for checking
and for security updates from being corrupted by the target system. In particular,
it suffices to apply x86 SASI with the simple memory-protection policy enforced
by SFI in order to obtain target-system object code that cannot subvert merged-
in security state or security updates.

The JVML SASI prototype exploits the type safety of JVML programs to
prevent merged-in variables and state from being corrupted by the target system
in which it resides. In particular, variables that JVML SASI adds to a JVML
object program are inaccessible to that program by virtue of their names and
types; and code that JVML SASI adds cannot be circumvented because JVML
type-safety prevents jumps to unlabeled instructions—these code fragments are
constructed so they do not contain labels.4

The type-safety of JVML also empowers the JVML SASI user who is formu-
lating a security policy that concerns application abstractions. JVML instruc-
tions contain information about classes, objects, methods, threads, and types.
This information is made available (though platform-specific functions) to the
author of a security policy. Security policies for JVML SASI thus can define per-
missible computations in terms of these application abstractions. In contrast,
x86 code will contain virtually no information about a C program it represents,
so the author of a security policy for x86 SASI may be forced to synthesize
application events from sequences of assembly language instructions.

Experience with the SASI prototypes has proved quite instructive. A refer-
ence monitor that checks every machine language instruction initially seemed
like a powerful basis for defining application-specific security policies. But we
learned from SASI that, in practice, this power is difficult to harness. Most x86
object code, for example, does not make explicit the application abstractions
that are being manipulated by that code. There is no explicit notion of a “func-
tion” in x86 assembly language, and “function calls” are found by searching for
code sequences resembling the target system’s calling convention. The author of
a security policy thus finds it necessary to embed a disassembler (or event syn-
thesizer) within a security policy description. This is awkward and error-prone.

One solution would be to obtain IRM enforcement by rewriting high-level
language programs rather than object code. Security updates could be merged
into the high-level language program (say) for the target system rather than
being merged into the object code produced by a compiler. But this is unattrac-
tive because an IRM rewriter that modifies high-level language programs adds
a compiler to the trusted computing base. The approach taken in JVML SASI
seemed the more promising, and it (along with a desire for a friendlier language
for policy specification) was the motivation for PoET/PSLang. The lesson is to
rely on annotations of the object code that are easily checked and that expose
application abstractions. And that approach is not limited to JVML code or

4 JVML SASI security policies must also rule out indirect ways of compromising the
variables or circumventing the code added for policy enforcement. For example,
JVML’s dynamic class loading and program reflection must be disallowed.



even to type-safe high-level languages. Object code for x86 could include the
necessary annotations by using TAL [11] (discussed below).

4.2 Type Systems

Type-safe programming languages, such as ML, Modula, Scheme, or Java, en-
sure that operations are only applied to appropriate values. They do so by guar-
anteeing a number of inter-related safety properties, including memory safety
(programs can only access appropriate memory locations) and control safety
(programs can only transfer control to appropriate program points).

Type systems that support type abstraction then allow programmers to spec-
ify new, abstract types along with signatures for operations that prevent unau-
thorized code from applying the wrong operations to the wrong values. For
example, even if we represent file descriptors as integers, we can use type ab-
straction to ensure that only integers created by our implementation are passed
to file-descriptor routines. In this respect, type systems, like IRMs, can be used
to enforce a wider class of fine-grained, application-specific access policies than
operating systems. In addition, abstract type signatures provide the means to
enrich the vocabulary of an enforcement mechanism in an application-specific
way.

The key idea underlying the use of type systems to enforce security policies
is to shift the burden of proving that a program complies with a policy from the
code recipient (the end user) to the code producer (the programmer). Not only
are familiar run-time mechanisms (e.g., address space isolation) insufficiently
expressive for enforcing fine-grained security policies but, to the extent that
they work at all, these mechanisms impose the burden of enforcement on the end
user through the imposition of dynamic checks. In contrast, type-based methods
impose on the programmer the burden of demonstrating compliance with a given
security policy. The programmer must write the program in conformance with
the type system; the end user need only type check the code to ensure that it is
safe to execute.

The only run-time checks required in a type-based framework are those nec-
essary for ensuring soundness of the type system itself. For example, the type
systems of most commonly-used programming languages do not attempt to en-
force value-range restrictions, such as the requirement that the index into an
array is within bounds. Instead, any integer-valued index is deemed acceptable
but a run-time check is imposed to ensure that memory safety is preserved.

However, it is important to note that the need to dynamically check val-
ues, such as array indices, is not inherent to type systems. Rather, the logics
underlying today’s type systems are too weak, so programmers are unable to
express the conditions necessary to ensure soundness statically. This is largely a
matter of convenience, though. It is possible to construct arbitrarily expressive
type systems with the power of any logic. Such type systems generally require
sophisticated theorem provers and programmer guidance in the construction of a
proof of type soundness. For example, recent work on dependent type systems [3,
21] extends type checking to include the expression of value-range restrictions



sufficient to ensure that array bounds checks may (in many cases) be eliminated,
but programmers must add additional typing annotations (e.g., loop invariants)
to aid the type checker.

Fundamentally, the only limitation on the expressiveness of a type system
is the effort one is willing to expend demonstrating type correctness. Keep in
mind that this is a matter of proof—the programmer must demonstrate to the
checker that the program complies with the safety requirements of the type
system. In practice, it is common to restrict attention to type systems for which
checking is computable with a reasonable complexity bound, but more advanced
programming systems such as NuPRL [3] impose no such restrictions and admit
arbitrary theorem proving for demonstrating type safety.

In summary, advances in the design of type systems now make it possible to
express useful security properties and to enforce them in a lightweight fashion,
all the while minimizing the burden on the end user to enforce memory and
control safety.

4.3 Certifying Compilers

Until recently, the primary weakness of type-based approaches to ensuring safety
has been that they relied on

High-Level Language Assumption. The program must be written in a pro-
gramming language having a well-defined type system and operational se-
mantics.

In particular, the programmer is obliged to write code in the high-level language,
and the end user is obliged to correctly implement both its type system (so
that programs can be type checked) and its operational semantics (so that it
can be executed). These consequences would have questionable utility if they
substantially increased the size of the trusted computing base or they reduced
the flexibility with which systems could be implemented. But they don’t have
to. Recent developments in compiler technology are rapidly obviating the High-
Level Language Assumption without sacrificing the advantages of type-based
approaches. We now turn to that work.

A certifying compiler is a compiler that, when given source code satisfying
a particular security policy, not only produces object code but also produces a
certificate—machine-checkable evidence that the object code respects the policy.
For example, Sun’s javac compiler takes Java source code that satisfies a type-
safety policy, and it produces JVML code that respects type-safety. In this case,
the “certificate” is the type information embedded within the JVML bytecodes.

Certifying compilers are an important tool for policy enforcement because
they do their job from outside the trusted computing base. To verify that the
output object code of a certifying compiler respects some policy, an automated
certificate checker (that is part of the trusted computing base) is employed. The
certificate checker analyzes the output of the certifying compiler and verifies that
this object code is consistent with the characterization given in a certificate.



For example, a JVML bytecode verifier can ensure that bytecodes are type-safe
independent of the Java compiler that produced them.

Replacing a trusted compiler with an untrusted certifying compiler plus a
trusted certificate checker is advantageous because a certificate checker, including
type-checkers or proof-checkers, is typically much smaller and simpler than a
program that performs the analysis and transformations needed to generate
certified code. Thus, the resulting architecture has a smaller trusted computing
base than would an architecture that employed a trusted compiler or analysis.

Java is perhaps the most widely disseminated example of this certifying com-
piler architecture. But the policy supported by the Java architecture is restricted
to a relatively primitive form of type-safety, and the bytecode language is still
high-level, requiring either an interpreter or just-in-time compiler for execution.

The general approach of certifying compilation is really quite versatile. For
instance, building on the earlier work of the TIL compiler [19], Morrisett et al .
showed that it is possible to systematically build type-based, certifying compil-
ers for high-level languages that produce Typed Assembly Language (TAL) for
concrete machines (as opposed to virtual machines) [12]. Furthermore, the type
system of TAL supports some of the refinements, such as value ranges, needed
to avoid the overhead of dynamic checks. Nonetheless, as it stands today, the
set of security policies that TAL can enforce are essentially those that can be
realized through traditional notions of type-safety.

Perhaps the most aggressive instance of certifying compilers was developed
by Necula and Lee, who were the first to move beyond implicit typing annota-
tions and develop an architecture in which certificates were explicit. The result,
called Proof-Carrying Code (PCC) [13, 14], enjoys a number of advantages over
previous work. In particular, the axioms, inference rules, and proofs of PCC are
represented as terms in a meta-logical programming language called LF [7], and
certificate checking corresponds to LF type-checking. The advantages of using a
meta-logical language are twofold:

– It is relatively simple to customize the logic by adding new axioms or infer-
ence rules.

– Meta-logical type checkers can be quite small, so in principle a PCC-based
system can have an extremely small trusted computing base. For example,
Necula implemented an LF type checker that is about 6 pages of C code [13].

Finally, unlike the JVML or TAL, PCC is not limited to enforcing traditional
notions of type safety. It is also not limited to EM policies. Rather, as long as
the logic is expressive enough to state the desired policy, and as long as the
certifying compiler can construct a proof in that logic that the code will respect
the policy, then a PCC-based system can check conformance.

4.4 Putting the Technologies Together

Combine in-lined reference monitors, type systems, and certifying compilers—
the key approaches to language-based security—and the sum will be greater



than the parts. In what follows, we discuss the remarkable synergies among
these approaches.

Integrating IRM enforcement with Type Systems. Static type systems are
particularly well-suited for enforcing security policies that have been negotiated
in advance. Furthermore, enforcement through static checking usually involves
less overhead than a more dynamic approach. And finally, static type systems
hold the promise of enforcing liveness properties (e.g., termination) and polices
that are not properties (e.g., absence of information flow)—things that refer-
ence monitors cannot enforce. However, static type systems are ill-suited for the
enforcement of policies that depend upon things that can be detected at runtime
but cannot be ascertained during program development. Also, it may be simpler
to insert a dynamic check than to have a programmer develop an explicit proof
that the check is not needed. Consequently, by combining IRMs with advanced
type systems, we have both the opportunity to enforce a wider class of policies
and more flexibility in choosing an appropriate enforcement mechanism.

Extending IRM enforcement with Certifying Compilers. Program rewrit-
ing without subsequent optimization generally leads to systems exhibiting poor
performance. However, an IRM rewriter could reduce the performance impact
of added checking code by inserting checks only where there is some chance
that a security update actually needs to be performed. For example, in enforc-
ing a policy that stipulates messages are never sent after certain files have been
read, an IRM rewriter needn’t insert code before and after every instruction. A
small amount of simple analysis would allow insertions to be limited to those
instructions involving file reads and message sends; and a global analysis might
allow more aggressive optimizations. Optimization technology, then, can recover
performance for the IRM approach.

But an IRM rewriter that contains a global optimizer is larger and more
complicated than one that does not. Any optimizations had better always be
done correctly, too, since bugs might make it possible for the security policy at
hand to be violated. So, optimization routines—just like the rest of the IRM
rewriter—are part of the trusted computing base. In the interest of keeping the
trusted computing base small, we should hesitate to employ a complicated IRM
rewriter.

Must an IRM architecture sacrifice performance on the alter of minimizing
the trusted computing base? Not if the analysis and optimization are done with
the lesson of certifying compilers in mind. An IRM rewriter can add checking
code and security updates and then do analysis and optimization to remove un-
necessary checking code, provided the IRM rewriter produces a certificate along
with the modified object code. That certificate should describe what code was
added everywhere and the analysis that allowed code to be deleted, thereby
enabling a certificate checker (in the trusted computing base) to establish in-
dependently that the output of the IRM rewriter will indeed never violate the
security policy of interest. Thus, the IRM rewriter is extended if ideas from
certifying compilers are adopted.



Extending Certifying Compilers with IRM enforcement. Certifying com-
pilers are limited to analysis that can be done automatically. And, unfortunately,
there are deep mathematical reasons why certain program analysis cannot be
automated—analysis that would be necessary for policies much simpler than
found in class EM. Must a certifying compiler architecture sacrifice expressive-
ness on the alter of automation?

In theory, it would seem so. But in practice, much analysis becomes possible
when program rewriting is first allowed. This is an instance of the familiar trade-
off between static and dynamic checks during type checking. For instance, rather
than verifying at compile time that a given array index never goes out of bounds,
it is a simple matter to have the compiler emit a run-time check. Static analysis
of the modified program is guaranteed to establish that the array access is never
out of bounds (because the added check prevents it from being so).

The power of a certifying compilers is thus amplified by the capacity to do
program rewriting. In the limit, what is needed is the means to modify a program
and obtain one in which a given security policy is not violated—exactly what
an IRM rewriter does. Thus, the power of certifying compilers is extended if
deployed in concert with an IRM rewriter.

5 Concluding Remarks

In-lined reference monitors, certifying compilers, and advanced type systems are
promising approaches to system security. Each allows rich instantiations of the
Principle of Least Privilege; each depends on only a minimal trusted computing
base, despite the ever-growing sizes for today’s operating systems, compilers,
and programming environments.

The idea of using languages and compilers to help enforce security policies is
not new. The Burroughs B-5000 system required applications to be written in a
high-level language (Algol), and the Berkeley SDS-940 system employed object-
code rewriting as part of its system profiler. More recently, the SPIN [2], Vino
[22, 18], and Exokernel [4] extensible operating systems have relied on language
technology to protect a base system from a limited set of attacks by extensions.

What is new in so-called language-based security enforcement is the degree
to which language semantics provides the leverage. The goal is to obtain inte-
grated mechanisms that work for both high-level and low-level languages; that
are applicable to an extremely broad class of fine-grained security policies; and
that allow flexible allocation of work and trust among the elements responsible
for enforcement.
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