Estimating Simple Functions on the Union of Data Streams

Phillip B. Gibbons

Information Sciences Research Center
Bell Laboratories
Murray Hill, NJ 07974

gibbons@research.bell-labs.com

ABSTRACT

Massive data sets often arise as physically distributed, par-
allel data streams. We present algorithms for estimating
simple functions on the union of such data streams, while
using only logarithmic space per stream. FEach processor
observes only its own stream, and communicates with the
other processors only after observing its entire stream. This
models the set-up in current network monitoring products.
Our algorithms employ a novel coordinated sampling tech-
nique to extract a sample of the union; this sample can be
used to estimate aggregate functions on the union. The
technique can also be used to estimate aggregate functions
over the distinct “labels” in one or more data streams, e.g.,
to determine the zeroth frequency moment (i.e., the number
of distinct labels) in one or more data streams. Our space
and time bounds are the best known for these problems,
and our logarithmic space bounds for coordinated sampling
contrast with polynomial lower bounds for independent sam-
pling. We relate our distributed streams model to previously
studied non-distributed (i.e., merged) streams models, pre-
senting tight bounds on the gap between the distributed and
merged models for deterministic algorithms.

1. INTRODUCTION

This paper considers the following distributed setting for
massive data sets. There are two parallel streams A =
{a1,a2,... ,an} and B = {b1,bs,... ,b,} of data items. Al-
ice observes the {a;} in order, and Bob observes the {b;}
in order. Alice and Bob each have some limited amount of
workspace, w < n bits, to be used while observing their re-
spective streams. After observing their streams, Alice and
Bob send the contents of their workspace to a Referee, who
estimates a function F' on A and B, without seeing either
stream. Note that Alice and Bob are not allowed to com-
municate with each other directly. An example function is
given in Figure 1.

We are interested in minimizing: (1) the total workspace
used by Alice and Bob, and (2) the time taken by Alice and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SPAA 2001 Crete Island Greece

Copyright 2001 ACM 1-58113-185-2/00/07 ...$5.00.

Srikanta Tirthapura

Computer Science Department
Brown University
Providence, RI 02912

snt@cs.brown.edu

Input to Alice: A ={ai1,...,an}, a stream of bits.
Input to Bob: B = {b1,... ,bn}, a stream of bits.
Referee to estimate: U(A,B) =", (a; V b;).

Application: The bits correspond to the characteristic vec-
tors of two sets A* and B* over the same domain of size n.
The function U(A, B) = |A* U B*|.

Figure 1: The union function U

Bob to process each data item. More generally, we have
t > 2 parties, each observing their respective data streams,
and a Referee estimating a function on the streams. We
denote this setting as the distributed streams model.

This model is motivated by the monitoring and charac-
terization of Internet traffic. Monitoring devices in the net-
work observe a stream of packets. Each device has a small
workspace in which to store information on its observed
stream, and the contents are periodically sent to a central
data analyzer, in order to compute aggregated statistics on
the streams. This set-up is used, e.g., in Lucent’s Interpret-
Net and Cisco’s NetFlow network monitoring products.

The distributed streams model combines features of both
streaming models (e.g., [4, 8, 9, 11, 13, 14, 16, 18]) and
communication complexity models (e.g., [20, 21]). As in
streaming models (but not communication complexity mod-
els), the data is observed once, and we seek to minimize the
workspace and the time to process each data item. How-
ever, more in line with simultaneous, 1-round communica-
tion complexity models [20, 23] and sketch models (e.g., [3,
5, 8]), the input is shared among multiple parties who com-
municate only by sending a message to a referee, who then
computes/estimates the function.

Often, it is important to consider aggregate functions on
the union of the data streams. For example, the same logical
stream of data from a source to a destination in a virtual
private network is frequently split among multiple paths in
the network, in order to improve throughput and reliability.
Network monitoring devices along each path observe only
the divided traffic. Yet, to understand the logical stream,
the characterization must be done on the union (not the
sum) of the constituent streams. More generally, a natural
partitioning of the data items exists, e.g., by (discretized)
time, by source/destination, etc., such that items within
the same partition must be specially aggregated across all
streams. For example, we would like to compute the number
of distinct IP destinations across all streams.

In this paper, we study the problem of estimating simple
functions on the union of data streams. We show how a tech-

nique we call coordinated 1-sampling can be effectively used
to estimate simple monotone functions in the distributed
streams model.

We demonstrate the technique by focusing first on the
union function U in Figure 1, in which each data item a;
and b; is a single bit and U(A,B) = > 7 (a; V b;) is the
number of 1’s in the bitwise OR of the two streams. Exact
computation of U would solve the set disjointness problem,
and hence requires 2(n) workspace, even for randomized
algorithms [21]. Because for massive data streams, linear
workspace is unacceptably large (see, e.g., [13]), we instead
seek to approzimate U to within a small relative error. Our
goal is to obtain an (e, §)-approximation scheme, defined as
follows:

DEFINITION 1. An (e, d)-approzimation scheme for a quan-

tity X is a (randomized) procedure that, given any positive
e <1 and § < 1, computes an estimate X of X that is
within a relative error of € with probability at least 1 — 6,

ie., Pr{|f(—X|< eX} >1-4.

We present two (e, §)-approximation schemes for U that
use O(Mgl"i) workspace. The first is for the public
coins setting [20], in which Alice and Bob have access to
the same random string of unbiased and fully independent
bits. This scheme is the simpler of the two, and requires
only constant time to process each data item. Note that in
practice, it may suffice to simulate the public coins in the
algorithm by having Alice and Bob use the same pseudo
random number generator, with the same starting seed of
O(log n) bits. We will refer to this model as the distributed
streams model with public coins.

Our second approximation scheme is for a stored coins
setting, in which Alice and Bob have a shared string of un-
biased and fully independent random bits, but these bits
must be stored at Alice and Bob prior to observing their
inputs. The space to store these bits must be accounted for
in their workspace bound. This scheme is more involved, as
we need to provide an explicit construction by each party
of the needed random bits from a small random string, and
analyze the scheme under the limited independence of the
constructed bits. The time to process each data item is dom-
inated by the time required to perform O(log(1/d)) multi-
plications over a finite field of ©(logn) bits. We will refer
to this model as the distributed streams model with stored
coins. Previous works on streaming models (e.g., [4, 8, 9,
11, 16, 18]) have studied settings with stored coins. Stored
coins differ from private coins (e.g., as studied in commu-
nication complexity [20, 22, 23]) in that the same random
string can be stored in all parties.

We show that our sampling technique has wider applica-
bility in streaming models by using it in an (e, §)-approx-
imation scheme for Fy (the number of distinct values) of a
sequence. Given a sequence A = {a1,...,a,} where each
item a; is an integer value in [1..m], we present an (e, d)-
approximation scheme for Fy that uses only O(W)
bits, and the time required to process each item is dominated
by the time required to perform O(log(1/4)) multiplications
over a finite field of ©(log m) bits. We note that this is an
interesting result in itself because of the importance of the
Fy function in database optimization (see, e.g., [6, 15, 26])
and in internet traffic analysis, e.g., the number of distinct
web pages requested, or the number of distinct visitors to

a website. This problem has been studied in [4, 10] and
elsewhere, but we do not know of an (e, §)-approximation
scheme for Fy whose bounds match the bounds we obtain.

Our logarithmic space bounds for union and for Fy us-
ing coordinated sampling contrast with Q(y/n) and Q(y/m)
lower bounds we present for union and Fpy, respectively, us-
ing independent sampling on each stream.

We show how to extend our scheme to the scenario studied
in [8, 18] and elsewhere in which data items are (label,value)
pairs. Unlike previous work on data streams, our sampling
technique obtains a random sample of the (distinct) labels in
a stream (or in the union of streams) of a desired target size
B in O(B) workspace, and could be used to estimate other
functions which are well-estimated with a sample of size g.
Moreover, for labels in the sample that are in more than one
stream, the referee learns the respective values from each
stream. Thus we can estimate aggregate functions over the
values associated with distinct labels in one or more data
streams, e.g., the variance in request sizes averaged over all
distinct destinations. As epitomized by the TPC bench-
marks [25], which are the primary industry benchmarks for
large scale query processing, many queries and reports seek
aggregates of values over the distinct “labels” or groups of
a data set.

Next, we consider the previously-studied streams model in
which there is only one party, who observes both streams,
and the streams are interleaved in an arbitrary order by an
adversary (e.g., [8, 11, 18]). We consider the obvious gen-
eralization of this model to ¢ > 2 streams, and refer to the
model as the merged streams model. We present a com-
parison of the relative power of the distributed and merged
streams models. We show that for any function f, the de-
terministic merged stream complexity (i.e., space bound) is
within a factor of ¢ of the deterministic ¢-party distributed
stream complexity, and that this gap is existentially tight.
We show similar results for both exact computation of f and
for approximating f to within either an absolute or relative
error €. It follows that deterministic merged streams algo-
rithms can be designed assuming that the streams are not
interleaved, at a penalty of at most ¢ (which is viewed as a
small constant). The comparison for randomized complexi-
ties remains open.

The remainder of the paper is organized as follows. Sec-
tion 2 presents preliminary results and comparisons with
previous related work. Section 3 presents our coordinated
1-sampling technique and its application in computing the
union function U. Extensions to the basic method and its
applications are discussed in Section 4. Our results compar-
ing distributed and merged stream models are in Section 5,
with conclusions following in Section 6.

2. PRELIMINARIES AND RELATED WORK

In this section, we first discuss work on related models
and then present some preliminary results for both the union
function and for the number of distinct values.

Data streams and sketches. Previous work on data
streams has studied:

e approximating a function such as the kth frequency
moment on a single stream observed by a single party
(e-g., [3, 4, 12, 16]), and

e approximating a function such as the LP-difference on

two streams observed by a single party (e.g., [8, 9, 11,
18]).

As indicated above, in these models, the single party ob-
serves either a single stream or two arbitrarily-interleaved
streams, and then estimates a given function f on the data
(f is known prior to observing the streams). The goal is to
design an (¢, d)-approximation scheme for f that minimizes
the workspace used and the time to process each item in the
sequence. The single party, two streams model can obvi-
ously be generalized to t > 2 streams, where the interleaving
of the streams is controlled by an adversary. As indicated
above we refer to this model as the merged streams model.
The small-space data structures maintained by a party are
called synopses or sketches.

A related, more offline model is the sketch model [3, 5,
8]. Each of t parties observes a distinct data set, which
it processes offline (i.e., it has random access to its entire
data set and it can use as much time and space as needed).
Each party, however, must produce a small-space synop-
sis or sketch, and only these sketches can be used to com-
pute/estimate a given function f. Previous work on the
sketch model (e.g., [3, 5, 8, 18, 19]) has studied approxima-
tion schemes for functions such as the set resemblance, the
frequency moments, the LP-difference, and the (database)
join size.

Frameworks for studying data synopses, beyond the data
stream and sketch models, were presented in [13], along with
a survey of results.

As has been observed in many of these works, algorithms
designed for one of the above models are often suited for
other such models as well. The same can be said for the
distributed streams model. For example, an (e, §)-approx-
imation scheme for a function f in the distributed streams
model trivially implies an (e, §)-approximation scheme for
f in the sketch model, with the same space bound. On
the other hand, algorithms designed for a single party are
sometimes ill-suited for the distributed streams model, e.g.,
the kth frequency moment (k > 3) algorithm of [4] requires
counting at Bob the number of occurrences of labels known
only to Alice. This paper presents several results relating
the complexity of various streams models.

Communication complexity. In communication com-
plexity models [21], unlike in streams models, the parties
have unlimited time and space with which to process their
respective inputs. One-way communication complexity re-
sults can often be related to the merged streams model,
whereas simultaneous, 1-round communication complexity
results can often be related to the distributed streams model.
Both public/common and private coin communication com-
plexity models have been studied (e.g., [22, 23]). For stream-
ing models and their applications, the dichotomy is between
public coins and stored (common) coins; this dichotomy does
not arise in communication complexity, due to the absence
of workspace constraints.

Parallel and distributed algorithms. Unlike tradi-
tional work in parallel and distributed algorithms (which is
not targeted for the network monitoring environment), in
the distributed streams model the parties/processors com-
municate only before and after reading their input. More-
over, each processor has limited (sublinear) workspace and
is permitted to read its input only once.

In the remainder of this section, we will focus on two spe-

cific functions considered in this paper: the union function
and the number of distinct values.

Union. In the distributed streams model,), a; and
>, bi can be trivially computed exactly and deterministi-
cally by Alice and Bob, respectively, using logn bits each.
Thus % times the maximum of these two is an approxima-
tion for the union, with space complexity log n and relative
error € = % Thus our focus will be on (¢, §)-approximation
schemes for € € %

For ¢t = 2 streams, the identity 2| >,(a; Vb:)| = | >, ai| +
| > bi| +1>°;(ai A b;)| can be used to obtain an (e, d)-ap-
proximation scheme for U for the distributed streams model
with stored coins from the (e, d)-approximation scheme for
the size of the symmetric difference, | >, (a; Ab;)|, in [8]. The
symmetric difference algorithm is presented for the merged
streams model in [8], but trivially extends to the distributed
streams model with stored coins. The resulting scheme uses
the same space bound as the scheme we present, but the
time to process each data item is worse: it is dominated
by the time required to perform O(log(1/6)/e?) multiplica-
tions over a finite field of @(log n) bits.! Our algorithm uses
completely different techniques and is considerably simpler.
Moreover, while our scheme extends trivially to more than
two streams, it is not known how to extend the scheme in [§]
to estimate the union function U of ¢ > 2 streams.

A crucial factor in our approach is that Alice and Bob’s
sampling is coordinated:

THEOREM 1. Consider an algorithm for the distributed
streams model in which Alice and Bob each send the referee
a random sample of (the 1-bits in) their observed stream,
where the sampling at Alice is independent of the sampling
at Bob. Then any (possibly randomized) estimator for U by
the referee that, with probability %, s within € < % relative
error requires 2(y/n) sample sizes.

ProOOF. Consider an input in which Alice and Bob each
have % 1-bits and % 0-bits. In scenario 1, there is no overlap
in the positions of the 1-bits, so that U = 5 + § = n. In
scenario 2, there is a complete overlap in the positions of the
1-bits, so that U = . We assume that Alice and Bob both
send the referee an independent sample of the positions of
their 1-bits: extending the proof to handle a mix of 0-bits
and 1-bits in a sample is straightforward (and it does not
improve the estimator). In scenario 1, there is obviously
no overlap in the positions sent to the referee. But also
in scenario 2, there is only a very small probability of any
overlap, when only o(y/n) positions are sent by Alice and
Bob to the referee. Thus, with high probability the referee
cannot distinguish between scenarios 1 and 2. Therefore,
the referee must have a deterministic or randomized proce-
dure for outputting an estimate, which either at most half
the time outputs an estimator > 2?", or at most half the
time outputs an estimator < 2?" In the former case (latter
case), it is within 1 relative error for scenario 1 (scenario 2,

3
respectively) at most half the time. []

Thus uncoordinated sampling requires Q(+/n) workspace.

Distinct counting. Consider the zeroth frequency mo-
ment (Fp) of a sequence of n items in [1..m], where m < n.
Estimating this function has been studied in the context

Note that the time per item is critical in practice, due to
the extremely high network traffic rate.

of a single stream for both public coins [7, 10, 26] and
stored coins [4]. These previous algorithms trivially extend
to the distributed streams model, but the space and/or time
bounds for an (¢, d)-approximation scheme for Fy are worse
than our algorithm’s bounds. The best previous bounds are
due to Cohen [7], which matches our space bound, but its
time bound is @(;lg) worse, and its guarantees are only for
the public coins model. The previous algorithms use prob-
abilistic counting instead of sampling: only the estimate is
obtained, not a sample that can be used for multiple esti-
mation problems.

Note that computing the union U is simply a special case
of computing Fp, in which all items within a stream are
distinct. Thus the Q(y/n) lower bound on wuncoordinated
sampling (Theorem 1) extends to Fy. More precisely, it
extends to an Q(y/m) bound, which is Q(y/n) whenever m
is ©(n). Whereas, as discussed above, estimating U becomes
nontrivial only for € < %, the presence of duplicates makes
estimating Fp to within any constant factor nontrivial, even
for a single stream.

3. COORDINATED 1-SAMPLING

Our algorithm for estimating U is based on the follow-
ing random sampling procedure. Given a p between 0 and
1, Alice and Bob decide on a randomly chosen subset S(p)
of {1,...,n} as the positions at which to sample their bit
streams. S(p) is created by selecting each number in [1..n]
independently with probability p. Both Alice and Bob know
S(p). Alice and Bob sample their streams at positions spec-
ified by S(p) and store only those positions where 1-bits
occur. Alice collects {i|i € S(p) A a; = 1} and Bob {i|i €

S(p)Ab; = 1}. Our estimate for Uis Y =]1; 2iesp)(@iVbi).
By Chernoff bounds,
Pr{Y ¢ (1—e1+eU} <2 U/ (1)

By storing only the 1-bits, the expected space used is O(U -
plogn), because the positions of an expected Up items have
to be stored (instead of np items), and storing each of them
takes log n bits.

If we choose the sampling probability p such that the prod-
uct U - p is about %ﬁﬂ, then we are assured of getting a
good estimate with high probability and moreover, the space
complexity is low. Specifically, setting U - p = 21%(22/5) im-
plies by equation 1 that Pr{Y ¢ (1 —¢,1+¢€)U} < 4. The
problem, of course, is that Alice and Bob do not know U
and hence cannot decide on the right value of p beforehand.
To solve this, we adapt the sampling probability as the al-
gorithm proceeds. Each party starts off by sampling with
probability 1. If the current sampling probability at a party
causes the stored sample to become too large, then the prob-
ability is halved and the sampling proceeds. This way, we
ensure that the space taken by the sample is never too large,
and also, as we prove later, the accuracy of our estimate
meets the required criteria. Two questions arise here:

1. How does a party switch to a lower probability of sam-
pling? When we decide to do that, some bits of the stream
have already flown by, and we cannot observe them any-
more. We must ensure that these bits are not needed in
our sample. To ensure this, we select S(p/2) from S(p) by
including each element with probability é Thus all the sam-
ple points required by the new sample, S(p/2), up through
the current data stream item are already there in the stored

sample associated with S(p).

2. What if the two parties are sampling their respective
streams at different probabilities and hence, at different po-
sitions? This is entirely possible since each party makes the
decision to change the sampling probability independently
of the other, based on the number of 1-bits in their stream
in the selected positions. But we know the following: if Al-
ice ends at probability p4 and Bob at pg, and say pa < pg,
then S(pa) C S(pn). So, the referee can determine a sample
of the sequence {a; V b;} resulting from a sampling probabil-
ity of pa. A key property we are exploiting here is that U is
monotone, so that when Alice targets p-) a; = 1082# and
Bob targets p- > b; = %é@, we have that p-U ~ r%ﬁﬁ
for1<r<2.

3.1 Public Coins Scheme

We now present our algorithm for public coins. We as-
sume that Alice and Bob have access to a hash function
e:{1,2,...,n} = {1,2,...,d = logn} such that for each
1 € {1,2,...,n}, e(i) is a random variable distributed as
Pri{e(i)=j} = 1/2/,j = 1...d — 1. We further assume
that these random variables are i.i.d.2 In Section 3.2, we
show how to relax these assumptions, at a cost to the pro-
cessing time per bit. The random sample at probability
1/2! is the set of indices which have been hashed to a value
greater than or equal to I, i.e., $(1/2') = {ile(i) > I}.

The algorithm is depicted in Figure 2, presenting the steps
for Alice, Bob, and the referee. We describe the algorithm
for Alice. (The algorithm for Bob is symmetric.) Let o =

%ﬁﬂ, and let ¢ = 84, a constant determined from the

analysis®; ¢« is the bound on the sample size. At any stage
in the execution, Alice is at a particular “level” [which is
related to her current sampling probability. At level I, she
is sampling with a probability of ;. She maintains the set
{i|(a; = 1) A (i € S(1/2'))}, thus implicitly maintaining the
value of a; for every position in S(1/2'). She starts at level
0; the level may increase as the computation proceeds. S is
her sample. When |S| overflows the sample size bound, Alice
increases her level by 1 and discards sample points that do
not belong to the current level. After she is done observing
her data stream, Alice sends her level £ and her sample S to
the referee. After receiving the level and sample from both
Alice and Bob, the referee computes the estimate.

An example is given in Figure 3, for two data streams
of n = 16 bits. In this example, Alice and Bob each have
space to store 4 integers (each integer is a position in the bit
stream). Note that Alice and Bob can also store the hash
value () for each stored position ¢, increasing the workspace
by only a o(1) factor.

THEOREM 2. For any positive ¢ < 1 and 6§ < 1, the
above algorithm is an (e, d)-approzimation scheme for U,
the size of the union of two bit streams, in the distributed
streams model with public coins. The algorithm uses O(1)
worst case expected time to process each item, and a total of
O(W) bits of workspace.

2Technically, we need to access the ith logn bit word w in
the public random string of uniform bits, and then compute
e(i) as the largest j such that the j most significant bits of
w are all 0.

3We have not attempted to minimize the constants in our
analysis.

Alice: Initialization: 1<+ 0, S < 0.
Upon receiving a;:

e If (a; = 1) and (e(¢) > 1) then // If belongs in S
// Store the positions of the 1’s in S. Position 4 is
// in the sample until the value of | exceeds e(%).

- S+ Su{@e(@))}

e If |S| > ca then // If the sample is now too large
// Shift to a higher level, i.e., a lower probability
Sle14+1
// Discard sample points that no longer belong
-S«S—{@G1-1)}

Finally: Send ! and S to the referee.
Bob: Symmetric to Alice.

Referee: The referee receives l4, Sa from Alice and Ip,
Sp from Bob. From these, the referee knows a; for all ¢ in
S(1/2'4) and b; for all i in S(1/2'8). Let I* = max(la,ln).
The referee outputs 2' - Yiesqyary(ai V bi).

Figure 2: Public coins algorithm.

PROOF. Estimation guarantees: We omit the proof of the
approximation guarantees for this model, since the proof is
similar in spirit, but simpler, than the proof for the stored
coins model given in Section 3.2.

Time complezity: Upon receiving a bit a;, Alice stores 4
if e(7) is greater than the current level, I. If storing the bit
requires Alice to move to a higher level, then she incurs the
cost of removing all the items in the sample that do not be-
long to the next level. The expected number of level changes
that any item a; = 1 survives is two. Amortized over n bits,
this gives an amortized expected cost of three operations,
one of them being the computation of e. By applying “lazy
discarding” when changing levels (as discussed in more de-
tail for our stored coins scheme), so that once |S| reaches ca,
it remains there, the amortized bound becomes an expected
bound for worst case inputs.

Space complexity: Alice and Bob each store up to ca pairs
of (¢,e(i)). Hence, the space complexity is O(a log n), which
is 0(105(1/6%). Recall that in the public coins model, we
do not account for the space required to store the shared
random bits. [

3.2 Stored Coins Scheme

The stored coins algorithm is identical to the public coins
algorithm except for the following differences: We can no
longer afford (in terms of workspace) an all powerful hash
function e that generates fully independent random vari-
ables. Instead, we settle for one that generates random
variables that are pairwise independent. But in doing so,
we lose the high probability approximation guarantee of the
public coins algorithm: an instance of the algorithm now
gives us an estimate with e relative error only with proba-
bility bounded below by % In order to get the error proba-
bility down to 8, we take the median of the values computed
by 8 = 48 log(%) parallel instances of the algorithm. Inter-
estingly, the threshold sample size at which the algorithm
shifts to a higher level is smaller than in the public coins
algorithm by a factor of ©(log(1/8). Specifically, it is c/e?,
for ¢ = 36, a constant determined by the analysis, and hence

position [1| 2 | 3 | 4 | 5| 6 | 7 | 8
A 0] 1 1 0 1 0 1 1
B 1)1 0 0 1 1 0 1
U 1)1 1 0 1 1 1 1
position | 9 [10 | 11 | 12 | 13 | 14 | 15 | 16
A ojojof1(0]1]0]|1
B ojoj1(0|0]0]0]|1
U ojoj1(1|0]1]0]|1

(a) The data streams for Alice and Bob, as well as the bitwise
contribution to U. Note that > ,a; = 8, >, b; = 7, and
U(A,B) = 11.

level | positions to be sampled
0 all
1 | {2,4,5,9,11,12,14,15,16}
2 {4,5,11,12}
3 {5,11}
4 {5}

(b) Positions selected to be sampled at each level, according
to the hash function e. (Levels 3 and 4 will not be needed.)

Alice
bits received action current sample | level
a1 to ar sample {2,3,5,7} 0
as change levels {2,5} 1
a9 to ais sample {2,5,12,14} 1
aie change levels {5,12} 2
send {5,12}, level=2 to the referee
Bob
bits received action current sample | level
b1 to by sample {1,2,5,6} 0
bs change levels {2,5} 1
by to bis sample {2,5,11,16} 1
send {2,5,11,16}, level=1 to the referee

(c) The computation by Alice and Bob. The current sample
column refers to the sample after receiving and processing
all the bits in the bits received column on the left. When the
size of the sample exceeds 4, Alice (Bob) changes to the next
level and discards sample points that do not belong at this
new level. Note that only the 1’s are stored in the sample.

Referee

1. Receives messages from Alice and Bob. The referee
level [is the max of the two levels, i.e., I = 2.

2. Subsamples Bob’s sample to level 2. Bob’s new sam-
ple is Sp = {5,11}, level=2. Alice’s is Sa = {5, 12},
level=2.

3. Outputs |Sa U Sp|-2' =12 as the estimate.

(d) The computation by the referee.

Figure 3: An example computation.

we use o = 1/¢2.

Let ex denote the hash function used by instance k of the
algorithm. For every k, er is a mapping from {1...n} to
{0...d =logn}, such that for 0 <1 < (d—1), Pr{ex(¢) =1}
= 2,% er (i) is computed as follows: we consider the num-
bers {1...n} as members of the field G = GF(2¢). In a
preprocessing step, we choose g and r uniformly and in-
dependently at random from G and store them with Alice
and Bob. In order to compute ey (i), Alice (Bob) computes
T = qr - i + rk, all operations being performed in G. We
represent x as a d-bit vector and then e(7) is the largest
Jj such that the j most significant bits of = are zero (i.e.,
j=d—|logz| —1). Clearly, ex(i) € [0..d]. The two proper-
ties of ey, that we use are: (1) z is distributed uniformly over
G. Hence the probability that ex(z) equals I (where [< d)
is exactly 21% (2) The mapping is pairwise independent,
i.e., for distinct ¢ and j, Pr{(ex(?) = k1) A (ex(j) = k2)} =
Pr {ek(z) = kl} - Pr {ek(]) = kz}

THEOREM 3. For any positive e < 1 and § < 1, the above
algorithm is an (e, 8)-approzimation scheme for U, the size
of the union of the two bit streams, in the distributed streams
model with stored coins. The algorithm uses a worst case
ezpected O(log(1/4d)) finite field operations to process each

item, and a total of O(W) bits of workspace.

PROOF. Estimation guarantees: The detailed proof is pre-
sented below.

Time complexity: We first analyze the time taken to pro-
cess a bit by an instance, Ay, of the algorithm at Alice. For
each 1-bit a;, A does the following: (1) Compute e (i) and
determine whether the item should be stored. (2) If there
is no space to store the item, then move to higher level and
evict those that do not belong at the higher level.

We store the sample Sj, as an array Si[1..d] of linked lists,
with Si[#] containing all those elements j for which ey (5) = 4,
i.e., those which “die” at level . Upon receiving a bit, it is
inserted into the appropriate list (if it is a 1). When the al-
gorithm needs to move to the next level, it simply deletes all
the elements that are in the list corresponding to the current
level. Because every element is inserted and deleted exactly
once from this data structure, the total work done over all
the n elements is O(n) plus the time for the computation of
er(i),i =1,...,n. If we assume that we can multiply and
add two logn bit numbers in GF'(n) in constant time, then
this would give us an amortized constant time per bit for
Ay. Hence the time complexity of this algorithm is O(3)
amortized, which is O(log(1/4)).

We can use lazy discarding when changing levels, so that
once | Sk | reaches ca, we discard stored items from discarded
levels one at a time as needed to make room for a new item.
The linked lists by level enable the algorithm to discard the
next item to be discarded in constant expected time. It
is constant expected time instead of constant deterministic
time because when all the items in a level have been dis-
carded, we need to find the next level with items to discard,
and it is possible that we first have to skip over some empty
levels. Before sending their samples to the referee, Alice
and Bob discard any remaining stored items from discarded
levels. Note that even for the worst case input streams, the
algorithm is constant expected time per instance per bit.

Space complezity: Each of the 8 instances of the algorithm
stores up to ca positions at a time, where each position is
between 1 and n. Storing a hash function e, requires logn

space, since we need to store g and rx, both of which are
members of GF(n). Thus, each instance of the algorithm
needs space O(calogn + logn), which is 0(1%%3) Since
there are (3 instances, the space needed at each of Alice and
Bob is O(W). O

Proof of the estimation guarantees. If we could en-
sure that Alice and Bob stop at the correct level, then the
desired estimation guarantees would follow from Chernoff
bounds. However, Alice and Bob decide when to stop chang-
ing levels based on the outcome of random trials during the
course of observing their streams, and hence may stop at
incorrect levels, and make correspondingly bad estimates.
Thus, a more careful proof is needed.

Let 14 denote the set {ila; = 1}, i.e., the positions of
the 1-bits in Alice’s stream. Similarly, let 15 = {i|b; = 1},
and let 1y = {ila; = 1V b; = 1}. The referee is trying
to estimate the size of 1y. The random variable computed
by the kth instance of the algorithm, zj, is described with
the help of the following process: We place the numbers
1...nin “levels” {0...d} by placing i in every level from 0
through (and including) ex(%). For ! € [0..d] and 7 € [1..n],
we define random variables Xj;, as follows. X;; = 1 if ¢ was
placed in level [and 0 otherwise. For every level | € [0..d],
we define X; = Zielu Xy and X = Zieu Xy and X8 =
ZielB Xi;. Note that X is greater than or equal to both
X7 and X7P.

Here is how the algorithm fits into this process: Alice stops
at level [4, where [4 is the lowest numbered level I such that
X,A < ca. Similarly, Bob stops at level Ig. If 4 or [p equals
d, the algorithm quits. Otherwise it returns the estimate
2k = 27 - X where f = max{la,l5}. For every ! € [0..d—1],
we define level I to be bad if 2' X; & [(1 — €)U, (1 + €)U]. Let
B; denote the event that level i is bad. Let S; denote the
event that the algorithm stops in level ¢ (i.e., f equals 7).

LEMMA 1. The probability that the kth instance of the al-
gorithm fails to produce an estimate which is within a factor
€ of U is less than %

ProoF. The kth instance fails to do so in the following
cases:

e |4 or lp equals d, i.e., f = max{la,l} = d and the
algorithm quits, or more likely,

e fisless than d, but f is a bad level, i.e., for some level
k, the events Sy and By, are both true.

Let P denote the probability that the algorithm fails. P
is less than the sum of the probabilities of the above events.
Thus P < Pr{2/X; ¢ (1-€)U,(1+€)U)} + Pr{S;} =
Y4 Pr{S; A B;} + Pr{Si}

Let level I denote the first level such that E[X;] < Ca,
for C = 24, a constant determined from the analysis. Note
that [is less than d, because E[Xy] = &7 = £ <1 < Co.
We split the above sum as follows:

l d—1
P = > Pr{SiAB}+) Pr{SiAB}+Pr{Ss}
i=0 i=l+1

1 d—1
> Pr{Bi}+ > Pr{Si}+Pr{S}
i=0

i=l+1

IA

= Y Pr{B}+ > Pr{S}

i=0 i=l+1

The idea here is that the first few levels (until [) are likely
to have good estimates and it is unlikely that we stop in
a later level (I + 1 onwards). Note that if U < ca, the
algorithm collects all the 1-bits in both streams and hence
there is no error. So assume that U > ca.

To complete the proof, we prove a series of four lemmas
(Lemmas 3-6 below) We first show that fori=0,...,d-1,
we have E[X;] = & and Var[X;] = Z (1 — %). Then we
use Chebyshev’s inequality to show that Pr{B;} < £

Ue2”
Thus 22:0 Pr{B;} < % Because [is the first level
such that % < Ca and ¢ > C, we have that 2% > 2?

Thus Y._ Pr{B;} < & = 1. Next, we observe that
>4 141 Pr{Si} = Pr{X; > ca}. Then we use Chebyshev’s
again and the fact that E[X,] < Ca to show that this is less
than (C—)g < z. Thus, P < % + % = %, completing the

proof of Lemma 1. O

Using Lemma 1 and Chernoff bounds, we prove the fol-
lowing lemma, which completes the proof of Theorem 3:

LEMMA 2. The median of the set {zx|lk = 1,...,8} is
within an € relative error of U with probability > 1 — 4.

PROOF. The median fails to be an (e, d) estimator of U
if more than /2 instances of the algorithm fail. We know
from Lemma 1 that the probability of each instance failing
is less than 1/3. By Chernoff bounds, the probability the
algorithm fails is less than exp(—3/48), i.e., less than 4,
because 3 = 481log(1/4). O

Details of the four lemmas. We conclude this section
by stating and proving the four lemmas used to complete
the proof of Lemma, 1.

IA

LEMMA 3. For a given l, the random variables {X;;|1
1 < n} are pairwise independent.

ProOF. For distinct ¢, j, Pr{(X; =1) A (X;; =1)} =
Pr{(e(i) > 1) A (e(4) > 1)} = Pr{e(i) > I}-Pr{e(j) > I} =
Pr{X;; =1}-Pr {X;; = 1}, because e(¢) and e(j) are pair-
wise independent. Similar proofs for the other cases show
that the X;;’s are pairwise independent. [

LeEMMA 4. Forl € [0..d — 1], E[X;] = & and Var{X)] =

o (1=30)-
PROOF.

EX)]=E[Y_ Xul= > E[Xy]=|lv| E[Xu]

i€ly i€ly

where we have used linearity of expectation. E[X};] is the
probablhty that 7 made it to level I, which i 1s Pr{ex(i) > 1},
ie., % 51+ Since |1y| is U, we have E[Xi] = 7

Since the Xy;’s are pairwise 1ndependent (Lemma 3), the
variance of the sum is the sum of variances.

U 1
> Var[Xy] = [1u] - Var[X;] = o (1 - i)

i€ly

Var Xl

O

LEMMA 5. 3! Pr{B;} <1/6

PRrROOF. Let pr and op denote the mean and standard
deviation of X}, respectively. Then,

Pr{Bi} = Pr{| Xy — px| > epr}

Using Chebyshev’s inequality, Pr {| Xy — pi| > tor} < %2
and substituting t = £, we get:

(2)

Substituting values of px and of from Lemma 4 in equa-
tion 2, we get

ok 1 2k
< —(1 — — [
Pr{B;} < 62(1 2k) < e

ol+1 _q ol+1

ZPI‘{B}<Z _T<U€2

Because [is the first level such that 2—1"; < Ca, we have

. o 2 5. (Recall that we have assumed

U > ca.) Thus, Y!_ Pr{B;} < &.
We choose C' = 24 and Lemma 5 is proved. [

Lemma 6. 37, Pr{S:} <1/6

PrOOF. The sum El 141 Pr {Si} is the probability that
the algorithm stops in level [+ 1 or greater (because the S;’s
are mutually exclusive). This is exactly the probability that
at level [, we still have more than ca 1’s, i.e., the probability
that X; > ca.

Pr{X;>ca} = Pr{X;—w >ca—w}
< Pr{X;—m >ca—Ca}
< 9
T (c—0)a?

The second inequality holds because p; < Cea, while the
third inequality holds by Chebyshev’s inequality.

From Lemma 4 we have o] = U(%l)(l — 2%) < 2% Since
E[X;] < Ca, we have 221 < Ca. Using this in the above
expression, we have:

C Ce?
Pr{X; >ca} < c—0’a = c— 0P
2
= % by choosing ¢=36,C =24
1 .
< 5 since e€<1

O

4. EXTENSIONS AND APPLICATIONS

In this section, we highlight a few of the extensions and
applications of coordinated 1-sampling.

More general scenarios. The public coins and stored
coins algorithms of Section 3 can be extended in the follow-
ing three ways:

1. The same algorithms can be used for ¢t > 2 parties.

2. The same algorithms can be used when the bits do
not arrive in the same order to Alice and Bob. In this
scenario, Alice observes pairs (¢,a;) and Bob observes
pairs (4, b;), where an adversary controls the order of
the pairs in each data stream.

3. The same algorithms can be used when only the 1-
bits appear in the data stream: Alice and Bob each
observe an unordered sequence of the positions of the
1-bits in their respective streams. The time bounds
in Theorems 2 and 3 are per observed bit. The space
bounds have a factor that is a logarithm of the domain
size for position numbers.

In all cases, the algorithms obtain the same approximation
guarantees, the same per item time bounds, and the same
per stream space bounds as before. Let A, (A;) be the
public coins (stored coins, respectively) algorithm from Sec-
tion 3 generalized to ¢ > 2 parties. Then, for example, we
have the following corollary to Theorems 2 and 3:

COROLLARY 1. Constidert sets from a domain of size m,
where each data stream consists of the elements in a set
arriving in an order controlled by an adversary. For any
positive € < 1 and 6 < 1, A, (As) is an (e,0)-approz-
imation scheme for the union of these t sets, in the dis-
tributed streams model with public coins (stored coins, re-
spectively). The algorithm uses worst case expected O(1)
time (O(log(1/9)) finite field operations, respectively) to pro-
cess each item, and O(bg(lé#) bits of workspace per
stream.

Unlike previous work on data streams, our coordinated
1-sampling approach obtains a random sample of the union,
of a target size p in O(p) workspace, along with a scaling
factor.

Estimating Fy and related functions. The approach
can be extended to obtain a random sample of the distinct
values (“labels”) in the data streams, even when a label
can appear multiple times within a stream. To estimate the
number of distinct labels Fp, we must ensure that each label
is stored at most once in the sample collected at a party and
we need some additional data structures for this. We store
the at most ca labels present in the sample in a hash table
of size ©(a), using the label as a key. (This is in addition to
storing each label 7 in the linked list for e(¢).) This enables
constant expected look-up time. More generally, we can
store in the hash table entry for each label in the sample an
accumulation value for that label relevant to the function
being estimated, e.g., the number of occurrences of the label
within the stream. (We could also store e(i), if desired.)
Maintaining a distinct labels sample in the presence of new
data is useful for approximate query answering systems for
data warehouses, such as the Aqua system [1, 2].

Average interarrival gap. Our relative error approx-
imation of U permits a relative error approximation of the
average interarrival gap I in the union of multiple streams,
for the common case where time is discretized, i.e.,

= number of time slots

size of union

Set resemblance. The set resemblance r(A, B) of two
sets A and B is the size of their intersection divided by the

size of their union. Set resemblance is used by Alta Vista to
eliminate near-duplicate pages from search results [5]. Co-
ordinated 1-sampling can be used to approximate the set
resemblance, using the identity:

|A[+|B]
[AU B

‘We match the asymptotic space bounds and approximation
guarantees of the best previous approaches (e.g., [5, 7, 17]),
while improving the time bounds by a factor of ©(1/¢?).
Note that for set resemblance, the guarantees are in terms
of an absolute and not a relative error. This is unavoidable,
due to known lower bounds [8].

r(A,B) = 1

General values. Our algorithm can also be generalized
for the case when the a;’s and b;’s are not binary, but are
integers in the range {0,...,M — 1}, and the function to
be estimated is g(A, B) = .7, max{a;,b;}. We can obtain
the same asymptotic space bound as the boolean case (as
long as M is at most polynomial in n), at the cost of the
time bound, as follows. Let Y (z, M) (where 0 < z < M) be
the unary representation of x, with enough zeros added to
the right to make the length of the representation exactly
M. For example, Y (5,8) = 11111000. We observe that
U (z,M),Y(y, M)) = max(z,y), where z,y < M. Hence,
we can treat the integer stream A = {a;|i = 1,...,n} as
a bit stream Y (A) formed by concatenating the bit streams
{Y(as, M)|i =1, ... ,n} and similarly for B, and then apply
the binary input algorithm.

5. COMPARISON OF MODELS

In this section we compare the power of different stream-
ing models on distributed data sets, and use ideas from com-
munication complexity to derive relationships between these
models for deterministic algorithms.

The deterministic merged stream complezity of a func-
tion f, denoted by DM (f), is the minimum workspace re-
quired by a deterministic algorithm to compute (exactly)
the function f(Xi,...,X:) when t streams Xi,...,X; are
observed by a single party, but interleaved arbitrarily. Sim-
ilarly, the deterministic distributed stream complexity of f,
denoted by DD, (f) is the minimum workspace required by
a deterministic algorithm to compute (exactly) the function
f(Xa,...,X:) in the distributed streams model. In both the
distributed and merged stream models, arbitrary pre- and
post-processing resources (both space and time) are permit-
ted, and only the resources used while observing the streams
are counted towards the complexity. Note that in the dis-
tributed streams model, the space complexity is the sum of
the workspace used at all the parties.

THEOREM 4. For any t > 1 and any function f, (1)
DM,(f) < DDy(f); (2) DDi(f) < t- DMy(f); and (3)
the factor of t bound is existentially tight, i.e., there exists
a function g for which DD;(g) =t - DM:(g).

PROOF. (1) In the merged streams model, we can simu-
late the independent parties of a distributed streams proto-
col, within the same space bounds.

(2) The proof adapts techniques from communication com-
plexity [21]. Given any protocol P, in the merged stream
model which can compute f in space s, we will show a proto-
col P; in the distributed stream model which can compute
f in space t - s. Suppose all of stream X; was given to

P,, before any item of another stream. Let hq(X1) denote
the “synopsis” of X; computed by P, after it has seen X;.
Similarly, define ha(X2),...,h:(X¢). In Py, the ith party
computes h;(X;). The space complexity of this algorithm
is t - s. Consider the “truth table” of f, which is a table of
size HE:I D;, where Dq X - -+ x Dy is the domain of f, and
the ith dimension is labeled by each z € D;. The fact that
h;(z) can be stored in space s means that we can partition
the rows along the ith dimension into 2° classes such that if
y and z are in the same class (i.e., h;(y) = h;(z)) then for
any other inputs, f(...,zi = y,...) = f(...,zi = z,...).
It is clear that if we know the classes to which each z; be-
longs, then the value of f is uniquely determined. Thus,
because the referee receives h;(xz;) for all 4, he can compute
f(mla"' ,.Tt)-

(3) Let g be the (exact) Hamming distance between t = 2
sequences, A and B, of n bits each. (This argument can be
generalized to ¢ > 2.) An item of a stream is a pair (¢,v),
denoting that v is the value of the ¢th bit in the correspond-
ing sequence; an adversary controls the order of the pairs.
In the merged streams model, we use an array r[1..n] of bits,
initialized to zero. Upon receiving (%,v) in A or in B, we set
rli] = r[i] ® v. We compute Y7, 7[¢] in a post-processing
step, and output the result. Thus DM»(g) < n.

We now show that DD»(g) > 2 -n. If we use < 2n space,
then at least one of the entities (say Alice) uses space less
than n bits. Because there are 2" different bit sequences
of length n, there exist two distinct sequences, say = and
y, for which Alice has the same workspace contents and
hence sends the same message to the referee. Consider two
instances of the problem, one in which A = B = z and
the other in which A = y and B = z. The messages sent
by both Alice and Bob to the referee are the same in both
cases and the referee will return the same value, which is a
contradiction. []

We next compare the complexity of merged streams vs.
deterministic streams for deterministic approximation al-
gorithms. For € > 0, we define the e-approzimate merged
stream complezity of a function f to be the minimum work-
space required by a deterministic algorithm to compute the
function f(Xi,...,X;) within an error of e. There are two
versions of this, one with absolute error of ¢ which we de-
note by DM{*"*(f) and one with relative error of e, de-
noted by DM ' (f). We define the distributed stream
analogs of these similarly, and denote them by DD: " (f)
and DD{"(f).

THEOREM 5. For t > 1 and any function f, we have
(1)DM;**(f) < DDy (f) and (2)DD{"*(f) <t -
DM (f).

PROOF. We prove (2) since the proof of (1) is clear. We
are given a merged stream protocol P, which computes f
within an absolute error of € in space s = DM (f). We
describe the proof for the case of ¢ = 2; this can be readily
generalized for ¢ > 2.

The proof is a generalization of the proof in part (2) of
Theorem 4, and again adapts techniques from communica-
tion complexity [21]. Suppose all of stream X; was given to
Py, before any item of another stream. Let h1(X1) denote
the synopsis of X; computed by P, after it has seen Xj.
Similarly, define ha(X2). The distributed streams protocol

is simple: Alice computes hi(X1), Bob computes ha(X>),
and the referee computes a function g(hi(X1), h2(X2)), ex-
plained below. The protocol is shown to have error less than
2¢. It is clear that the space required is 2s.

As above, we can think of f as a table, which has a row
for each value of X; and a column for each value of X,. We
can divide the rows of f into 2° “row-classes”, such that
for two points in the table (r1,¢) and (r2,c¢) if r1 and r2
belong to the same row-class (i.e., h1(r1) = hi(r2)), then the
protocol returns the same value for both the points. Since
the protocol’s error is at most ¢, it follows that |f(r1,c) —
f(r2,¢)] < 2e. Similarly, we can divide the columns also
into “column-classes” such that for two points (r,c1) and
(r,c2), if c1 and ¢z belong to the same column-class (i.e.,
ha(c1) = ha(cz2)), then [f(r,c1) — f(r,c2)| < 2e.

We now describe g(z,y). Consider the rectangle R(z,y)
with rows {r|h1(r) = z} and columns {c|h2(c) = y}. This is
a set of the points all of which return the same value g(z,y)
in the distributed streams protocol. Let (2, ym) denote the
minimum element in this rectangle and (za,yn) the max-
imum element. Then g(z,y) = [f(zm,ym) + f(Zm,ym)]/2.
‘We show that for any point in the rectangle, returning g(z,y)
will result in error at most 2e. We know that f(zar,ym) —
f(@m,ym) < 2¢, because hi(x,) = hi(xzam). Similarly,
flznmr, ymr) = f(zmr, ym) < 2¢. Thus, f(zam, yu) = f(@m, Ym)
< 4g, i.e., the maximum and minimum elements of the rect-
angle are only 4e apart. This implies that no element in the
rectangle is farther than 2e from the mean of these two ele-
ments, which is g(z,y). Thus, the error of returning g(x,y)
for the whole rectangle is at most 2e. [

THEOREM 6. For the approzimate relative error scenario,
for any function f which is positive non-zero everywhere,

DD " (f) < 2- DM§" ! (f), where € = 2<.

PROOF. The proof is similar to the proof of Theorem 5,
except that we use g(z,y) = /f@r, yu) F(@m,ym). O

6. CONCLUSIONS

This paper presented a simple technique, called coordi-
nated 1-sampling, for estimating functions on the union of
data streams. Although simple, this technique improves
upon the best known space and/or time bounds for esti-
mating various important functions on one or more data
streams, and unlike the previous probabilistic counting ap-
proaches, it provides not just an estimate for one function,
but a sample that can be used for estimating multiple func-
tions. A careful analysis is presented of its approximation
guarantees for the Union function. We also presented expo-
nential gaps between coordinated and uncoordinated sam-
pling for estimating both the Union and the number of dis-
tinct values Fp. Finally, we motivated and formulated the
distributed streams model, and presented tight bounds com-
paring it to previously studied streams models for determin-
istic algorithms.

An open problem is to determine the complexity of merged
streams vs. distributed streams for randomized algorithms
in both the public coins and stored coins models. Kremer et
al. [20] presented a proof that for any boolean function, the
randomized simultaneous communication complexity with
public coins is linear in the sum of the two one-way (Alice-to-
Bob and Bob-to-Alice) communication complexities. How-
ever, we recently uncovered a flaw in their proof, which was

subsequently confirmed by the authors [24]. Because of the
connections between (a) merged streams and one-way com-
munication and (b) distributed streams and simultaneous
communication, any result relating communication models
will likely lead to a similar result for the streams models,
and perhaps vice-versa.

Acknowledgments.

The second author would like to

acknowledge Aravind Srinivasan and Eli Upfal for helpful
discussions.

7.
[1]

[2

—

3]

[4]

[10

[11]

[12]

REFERENCES

S. Acharya, P. B. Gibbons, V. Poosala, and

S. Ramaswamy. The Aqua approximate query
answering system. In Proc. ACM SIGMOD
International Conf. on Management of Data, pages
574-576, June 1999. Demo paper.

S. Acharya, P. B. Gibbons, V. Poosala, and

S. Ramaswamy. Join synopses for approximate query
answering. In Proc. ACM SIGMOD International
Conf. on Management of Data, pages 275-286, June
1999.

N. Alon, P. B. Gibbons, Y. Matias, and M. Szegedy.
Tracking algorithms for join and self-join sizes. In
Proc. 18th ACM Symp. on Principles of Database
Systems, pages 1-11, May 1999. Full version to appear
in JCSS special issue for PODS’99.

N. Alon, Y. Matias, and M. Szegedy. The space
complexity of approximating the frequency moments.
In Proc. 28th ACM Symp. on the Theory of
Computing, pages 20-29, May 1996. Full version to
appear in JCSS special issue for STOC’96.

A. Z. Broder, M. Charikar, A. M. Frieze, and

M. Mitzenmacher. Min-wise independent
permutations. In Proc. 30th ACM Symp. on the
Theory of Computing, pages 327-336, May 1998. Full
version to appear in JCSS special issue for STOC’98.
M. Charikar, S. Chaudhuri, R. Motwani, and

V. Narasayya. Towards estimation error guarantees for
distinct values. In Proc. 19th ACM Symp. on
Principles of Database Systems, pages 268-279, May
2000.

E. Cohen. Size-estimation framework with applications
to transitive closure and reachability. J. of Computer
and System Sciences, 55(3):441-453, 1997.

J. Feigenbaum, S. Kannan, M. Strauss, and

M. Viswanathan. An approximate L'-difference
algorithm for massive data streams. In Proc. 40th
IEEE Symp. on Foundations of Computer Science,
pages 501-511, Oct. 1999.

J. Feigenbaum, S. Kannan, M. Strauss, and

M. Viswanathan. Testing and spot-checking of data
streams. Technical report, AT&T Shannon
Laboratories, Florham Park, NJ, July 1999.

P. Flajolet and G. N. Martin. Probabilistic counting
algorithms for data base applications. J. Computer
and System Sciences, 31:182-209, 1985.

J. Fong and M. Strauss. An approximate LP-difference
algorithm for massive data streams. In Proc. 17th
Symp. on Theoretical Aspects of Computer Science,
LNCS 1770, pages 193—204. Springer, Feb. 2000.

P. B. Gibbons and Y. Matias. New sampling-based
summary statistics for improving approximate query

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

(21]

(22]

(23]

[24]

25]

[26]

answers. In Proc. ACM SIGMOD International

Conf. on Management of Data, pages 331-342, June
1998.

P. B. Gibbons and Y. Matias. Synopsis data structures
for massive data sets. In J. M. Abello and J. S. Vitter,
editors, External Memory Algorithms, pages 39-70.
AMS, 1999. DIMACS: Series in Discrete Mathematics
and Theoretical Computer Science, Vol. 50. A two
page summary appeared as a short paper in SODA’99.
S. Guha, N. Mishra, R. Motwani, and L. O’Callaghan.
Clustering data streams. In Proc. 41st IEEE Symp. on
Foundations of Computer Science, pages 359-366,
Nov. 2000.

P. J. Haas, J. F. Naughton, S. Seshadri, and L. Stokes.
Sampling-based estimation of the number of distinct
values of an attribute. In Proc. 21st International
Conf. on Very Large Data Bases, pages 311-322, Sept.
1995.

M. R. Henzinger, P. Raghavan, and S. Rajagopalan.
Computing on data streams. Technical report, Digital
Systems Research Center, Palo Alto, CA, May 1998.
P. Indyk. A small approximately min-wise
independent family of hash functions. Technical
report, Stanford University, Palo Alto, CA, Nov. 1998.
P. Indyk. Stable distributions, pseudorandom
generators, embeddings and data stream computation.
In Proc. 41st IEEE Symp. on Foundations of
Computer Science, pages 189-197, Nov. 2000.

P. Indyk, N. Koudas, and S. Muthukrishnan.
Identifying representative trends in massive time series
datasets using sketches. In Proc. 26th International
Conf. on Very Large Databases, pages 363-372, Sept.
2000.

I. Kremer, N. Nisan, and D. Ron. On randomized
one-round communication complexity. Computational
Complezity, 8(1):21-49, 1999. Preliminary version in
STOC’95.

E. Kushilevitz and N. Nisan. Communication
Complezity. Cambridge University Press, Cambridge,
UK, 1997.

I. Newman. Private vs. common random bits in
communication complexity. Information Processing
Letters, 39:67-71, 1991.

I. Newman and M. Szegedy. Public vs. private coin
flips in one round communication games. In Proc. 28th
ACM Symp. on the Theory of Computing, pages
561-570, May 1996.

N. Nisan and D. Ron. Private communication,
October-November 2000.

Transaction processing performance council (TPC).
TPC Benchmarks, 2000. URL: www.tpc.org.

K.-Y. Whang, B. T. Vander-Zanden, and H. M.
Taylor. A linear-time probabilistic counting algorithm
for database applications. ACM Transactions on
Database Systems, 15(2):208-229, 1990.

This research was sponsored in part by National Science
Foundation (NSF) grant no. CCR-0122581.

beatrice

beatrice
This research was sponsored in part by National Science Foundation (NSF) grant no. CCR-0122581.

