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Abstract

In this paper, we apply data mining analysis to study the
topology of the Internet, thus creating a new processing
framework. To the best of our knowledge, this is one of the
first studies that focus on the Internet topology at the router
level, i.e., each node is a router. The size (280K nodes) and
the nature of the graph are such that new analysis methods
have to be employed. First, we suggest computationally-
expensive metrics to characterize topological properties.
Then, we present an efficient approximation algorithm that
makes the calculation of these metrics possible. Finally,
we demonstrate the initial results of our framework. For
example, we show that we can identify “central” routers,
and poorly connected or even isolated nodes. We also find
that the Internet is surprisingly resilient to random link and
router failures, having only small changes in the connectivity
for fewer than 10,000 failures. Our framework seems a
promising step towards understanding and characterizing
the Internet topology and possible other real communication
graphs such as web-graphs.

1 Introduction

In this paper, we study the topology of the Internet
at the router level. We know very little about the
Internet, despite the significance and impact of the
network in everyday life. This is especially true for
the topology of the network, which is a crucial part
of modeling and simulating the network. First, we
study the structure of the network. Using topological
properties, we manage to identify “different” parts
of the network such as central backbone routers and
areas with poor connectivity. Second, we study the
robustness of the topology to edge and node failures. In
our study, we use a novel data mining tool to process
the large topological data.
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Why can’t we model the Internet topology? There
are several reasons for that. First, the necessary data
has only recently become available. Second, the data
is so large (285K nodes) that standard processing and
visualization techniques are inadequate. Despite these
challenges, it is very important to characterize the
topology. The absence of this knowledge is one of
the reasons “Why we don’t know how to simulate the
Internet” according to Paxson and Floyd [11]. Tt is very
difficult to analyze and optimize network performance
without understanding its topology. It is analogous to
resolving traffic problems in a city without a map.

The novelty of our work lies in the use of data mining
tools in the study of the network topology. In more
detail, we use a new tool to approximate the size of the
neighbourhood of a node. This is a computationally
expensive procedure and it is made feasible by our tool
that reduces its run-time by more than a factor of 400.
Given this tool, we are able to provide results in two
main directions. First, we provide new insight in the
structure of the graph, and we classify nodes according
to their neighbourhood related properties. For example,
we show that by using our analysis framework, we can
distinguish nodes which may correspond to centrally-
located or backbone routers. Second, we study the
robustness of the network to edge and node failures.
We find that the network is robust to edge failures,
and uniformly distributed node failures. However, we
observe that failures in the central or backbone nodes
can very quickly hurt the connectivity of the network.
In our work, we use some of the novel graph metrics
proposed by Faloutsos et al [4] and we show that these
metrics can actually provide insight into the graph
structure.

In section 2 we present the background, summarize
previous work and define our novel Internet metrics.
In section 3, we highlight the approximation algorithm
that we use. In section 4, we present our results. Finally
in section 5, we present our conclusions.



2 Background/Novel Graph Metrics

We begin this section by defining the terminology that
we will use in the remainder of the paper. We also
describe the Internet router data that we will be using.

We study the network at the router level, that is, each
Internet router is represented by a node in the graph
while each link is mapped by an edge. In contrast, a lot
of previous work has concentrated on the interdomain
level of the topology where each graph node represents
a domain or Autonomous System. The router level is
a much larger and more detailed graph. We believe
that the size of this graph has made its processing
prohibitively expensive.

We list a number of graph metrics that have been
proposed in the literature only recently. Typical metrics
are average node degree and diameter. We believe
that the hop exponent, effective diameter and effective
eccentricity are much more effective in characterizing
the complexity of the Internet graph.

Definitions. Let G = (V,E) be either a directed
or undirected graph. Let d(u,v) be the shortest path
distance from node u to node v. Define the following :

Reachable set: Nodes that are within distance h of
u: S(u, h) ={v:d(u,v) < h}.

Individual neighbourhood function: Reachable
sets sizes: N(u,h) = |S(u, h)|.

Neighbourhood function: Number of pairs of
nodes within distance h: N(h) = 3", v N(u,h).

Reachable pairs: Number of pairs of nodes that
have a path connecting them: N(c0).

Effective diameter: Least distance, h, such that at
least 90% of the reachable pairs are within distance h:
minp N(h) > .9 N(c0)

Effective eccentricity: Eccentricity is to a node
as the diameter is to a graph. Least distance, A, such
that 90% of w’s reachable set are within distance h:
miny, N(u, h) > .9 N(u, o).

Hop-plot exponent: A proposed power-law in [4],
that the total number of pairs of nodes within A hops is
proportional to the number of hops raised to a constant,
H (hop-plot exponent).

We use the hop-plot exponent to characterize the
growth of the neighbourhood function. To compute it,
we apply log transforms to the neighbourhood function
and compute the least-square fitting line for the points
up to the effective diameter.

QOur real Internet graph. We use the graph that is the
result of the union of the SCAN [14] and Lucent Internet
mapping project results [13]. The SCAN project
developed a topology discovery tool called Mercator
that uses hop-limited probes — the same primitive used
in traceroute — to infer the map of the Internet [14]. The
Lucent Internet mapping project uses a single probe
location but has performed long term monitoring [8].

This merged data set represents the best map of the
Internet (at a router level) which was current as of
late 1999. The resulting graph has approximately 285K
nodes; 430K edges, a maximum degree of 1,978 and an
average degree of 3.15. It is this graph that we will use
to study the router-level Internet topology.

The neighbourhood of a node is
important for estimating the complexity of various
networking protocols such as DVMPR and QoSMIC
[3, 16]. There have been several measurements of the
Internet topology [6, 10, 7]. These studies focus on the
collection of data while the analysis appears secondary.
There has not yet been a comprehensive study of the
Internet topology at the router level. In contrast, the
interdomain level has been studied lately [15]. In a
parallel tangent, several people have studied topological
properties indirectly, through the study of scaling of
multicast trees in Internet [2, 12, 17]. Recently, Albert
et al [1] and Tauro and Faloutsos [15] studied the
fault tolerance of the Internet at the interdomain level.
Recall that our work here focuses at the router level of
the Internet.

Assumptions and limitations. The router-level Inter-
net graph contains communication links discovered over
an extended period of time. As such, it may include al-
ternative paths that were specifically created to remedy
some network failures. We believe that our results show
fundamental graph properties and not artifacts of the
data collection process. Similarly, since our work relies
on measured data, there is always some measurement
error. The main problems with Internet measurements
are a) incompleteness, b) router identification. We can
not claim or guarantee that it is most of it, but we have
reasons to believe that this data contains a substantial
and representative part of the Internet. For a discussion
on this issue see [14, 7, 8].

Previous work.

3 Approximate Neighbourhood
Function (ANF)

We have developed and evaluated an approximate
neighbourhood function (ANF) in [9]. We present the
key ideas and a simple version of the algorithm. The
algorithm is presented in sufficient detail to reproduce
the results in this paper. The underlying approach is
to iteratively compute S(u, h), the set of nodes within
at most h hops of u, using the edge set and S(u,h —1).
That is:

FOR each node u DO S(u,0) = { u }

FOR each iteration, h starting at 1
FOR each node u DO S(u,h) = S(u,h-1)
FOR each edge (u,v)

DO S(v,h) = S(v,h) U S(u,h-1)

and then the neighbourhood function is



FOR each node, u DO

M(u,0) = concatenation of k bitmasks, each with 1 bit set
(according to an exponential distribution)

FOR each distance, it, starting with 1 DO
FOR each node, u DO M(u,it) = M(u,it-1)
FOR each edge (u,v) DO M(u,it) = (M(u,it) OR M(v,it-1))
The estimate is: SUM(all u) (2°b)/(.7731xbias)
where b is the average of the least zero bits in the k bitmasks
bias, a small bias factor, is (1+.31/k)

Figure 1: In-Core Approximate Neighbourhood Function (ANF)

N(h) =" [S(u,h).

This algorithm will be horribly inefficient to use
in practice because the set operations are expensive.
Instead, we use a tool called approximate counting. An
approzimate counting algorithm takes as input a multi-
set and then estimates the number of distinct elements
in the multi-set. In [5], each possible element (for us,
that is each node) is assigned a random bit using an
exponential distribution (half the nodes get bit 0, a
quarter get bit 1, etc.). To estimate the number of
elements in a multi-set, you simply OR together the bits
that we assigned to each element. The estimate is then
close to 2%, where b is the least zero bit in the bitmask.
We can use the approximate counting idea to replace the
set operations in our simple algorithm. We use M (u, h)
to denote the bitmask approximation to |S(u, h)| and to
improve accuracy perform the approximation k times in
parallel (we fix k = 64 for the remainder of the paper).
This algorithm appears in Figure 1 and operates only
in-core. An external version of the algorithm is also
presented in [9] which allows the processing of graphs
that are much larger than available memory.

The ANF algorithm has several properties that make
it possible to perform studies on large graphs. Here we
will just list its properties, while [9] looks in detail at
its efficiency and the quality of estimation.

e Fast: Approximate the neighbourhood function of
the router level graph (285K nodes and 430K edges)
in a matter of minutes, rather than nearly a day

(436x faster).

e Accurate: The approximates have provable bounds,
generally within 5-10% of the true function for our
experiments.

¢ Individual neighbourhood functions: As a by-
product of computing the neighbourhood functions,
we compute the neighbourhood function for each
individual node.

4 Data-Mining the Internet Graph

In this section, we show how the new approximation
algorithm enables us to find interesting properties of the
Internet topology. First, we study the structure of the
network by identifying properties of the nodes. Second,
we study the robustness of the topology to component
failures.

4.1 Discovering Structure Through Node
Classification

The first application of the neighbourhood function is
to examine the individual routers in the Internet graph.
We wish to understand the connectivity richness of
different routers. Note that this corresponds loosely
to alternate paths that the node could potentially use.
That is, we know that the effective diameter of the
Internet is approximately 10 hops, but how does that
translate to the path lengths for individual nodes?

Quantifying the relationship of hopplot and
eccentricity. We conducted an experiment with
results in Figure 2 a). First we compute the individual
neighbourhood functions for all nodes in the graph.
From this, we measure the effective eccentricity of
each node and compute the hop exponent for each
individual neighbourhood function. The scatter plot
of these values indicates a strong correlation between
the eccentricity and the hop exponent (not surprising).

Classifying nodes using eccentricity. In Figure 2
b), we show the histogram of the number of nodes
with each effective eccentricity. The number of nodes
is plotted in log scale. We observe that about 10,000
routers have an effective eccentricity of at most 6 and
another 10,000 routers have an effective eccentricity of
12 or larger. The majority of the nodes have an effective
eccentricity that is close to the effective diameter of the
Internet.

Identifying pathologies of the measured data.
Our analysis can help identify pathological or incom-
plete cases in the measured data. We observe that
there are some nodes with eccentricity 1 and 2. This
would mean that a node has a degree of approximately
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Figure 2: Hop exponent and effective eccentricities of the individual neighbourhood functions for Internet routers

0.9 - 284K = 250K links. This is clearly not the case,
since the max degree of the graph is no more than 2K.
The explanation is that the graph has some discon-
nected components. Recall that we define the eccen-
tricity relative to the nodes that can be reached. For
example, an isolated pair of nodes has eccentricity 1.
We checked the data in the graph and found that this
was actually the case for the nodes reported here.

4.2 Topological Fault-tolerance

When looking at the failure behaviour of a network,
there are two contributing factors. First, network out-
ages may disconnect pairs of nodes. Second, protocol
failures may cause pairs of nodes to appear disconnected
even though a physical path exists between them. In
this section, we explore the first form of failure. Net-
work outages may involve a physical link between a pair
of routers being lost (for example, as a result of a back-
hoe breaking a network cable) or may involve a com-
puter failing completely. We are not considering the
effects of routing policies or algorithms. It is important
to understand what communication patterns are phys-
ically possible before attempting to understand what
communication is possible given a specific protocol or
policy.

4.2.1 Link Failures

We want to examine the robustness of the Internet
with respect to link failures.  Thus, we conduct
the following experiment.  We select z edges at
random and delete them. We then approximate the
neighbourhood function, the effective diameter, the
number of reachable pairs and the hop exponent using
the ANF algorithm.

The Internet is robust to link failures. The
number of reachable pairs, and the hop exponent shown
as a function of the number of edge deletions appears
in Figure 3. Each point is the average over 3 randomly
chosen sets of edges. We have not shown the average
diameter as it only varies from 10 to approximately 12
over the full set of edge deletions. This shows that

while we delete edges, pairs of nodes either become
disconnected or they have an alternative path that is
not significantly longer. We see that the Internet is
quite resilient under connection failures, with only a
small decrease in the number of reachable pairs and the
hop exponent for fewer than 50,000 failures. Moreover,
deleting edges does not appear to change the hop
exponent until closer to 200,000 deletions, suggesting
that while we partition the Internet, the structure is
preserved.

Node Failures

Router failures represent a more catastrophic event,
since a router affects all its adjacent edges. Therefore,
we expect that this will cause problems at least in the
vicinity of the node. To model a router failure, we select
a node (in one of three different ways) and delete all its
adjacent edges.

We introduce failures in three different ways. First,
we randomly select routers (uniform distribution).
This corresponds to an unbiased router-specific failure.
Second, we take the opposite of the previous approach.
We remove the nodes in order of highest degree. This
is the most aggressive approach that we can take to
decompose the Internet. The final method that we
use removes nodes in order of highest individual hop
exponent. We theorized in section 4.1 that the nodes
with low effective diameter and high hop exponent may
be important nodes, possibly in the backbone.

4.2.2

For each of the different node selection methods,
above, we approximate the neighbourhood function, the
effective diameter, the number of reachable pairs and
the hop exponent using the ANF algorithm. These
results are shown in Figure 4.

The Internet is robust to random node fail-
ures. Here we see that fewer than about 10,000 router
failures does not significantly affect the Internet. That
is, the number of reachable pairs is not drastically re-
duced. Moreover, the hop exponent is not decreasing
very quickly with the number of deleted nodes. This
suggests that it might be possible to use sampled Inter-
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net graphs to conduct reliable simulation experiments.

The Internet is sensitive to focused failures.
The other two approaches for router selection have
much more devastating results. By selecting routers
according to their degree, we can quickly disconnect the
Internet. Only 10,000 nodes are needed to effectively
disconnect most node pairs. Even 100 of these nodes
is sufficient to remove the connectivity in more than 5
billion pairs.

The effective eccentricity as a node classifier.
The above observation confirms that the effective eccen-
tricity is a useful graph metric. Nodes with high eccen-
tricity are “important” for the network; their failures
create problems to the connectivity of the network. At
the same time, we see that eccentricity has a different
effect than the degree regarding the connectivity. This
observation suggests that eccentricity quantifies another
aspect of the “importance” of the node and it is distinct
from the node degree.

5 Conclusions

In this paper we proposed a set of new and existing
metrics that capture interesting topological properties
of the Internet. While these metrics are expensive
to compute exactly, we have shown that a new data
mining tool can be very effective in approximating these
This has allowed us to obtain new insights
into the properties of routers and their “importance”

metrics.

for the network. Further use of these ideas allowed us
to examine the intrinsic resilience of the Internet.

Our work highlights the untapped potential that
exists for the use of data-mining tools in network
data; the size of the network makes classic techniques
prohibitively expensive in computation time. In more
detail our results can be summarized in the following
points:

e We propose a new set of new and existing metrics
capturing interesting topological properties.

e We show that a new data mining tool can be very ef-
fective in calculating the otherwise computationally
expensive metrics.

o Effective eccentricity is a good node metric, for the
“topological significance” of a node and it captures
a different aspect than that of the node degree.

e The Internet topology is resilient to random link and
node failures.

e The Internet is sensitive to focussed node failures;
it 1s sensitive to failures of high “significance”
nodes, expressed either by its degree or effective
eccentricity.

Our metrics and tool make a promising step towards
understanding and characterizing the Internet topology
and possible other real communication graphs such
as web-graphs. We are in the process of developing
more methods to decipher the structure of the Internet
topology. Our initial results are encouraging.
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