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Abstract. In survivable network design, each pair (¢,7) of vertices is
assigned a level of importance r;;. The vertex connectivity problem is
to design a minimum cost network such that between each pair of ver-
tices with importance level r, there are r verter disjoint paths. There
is no approximation algorithm known for this general problem. In this
paper, we give a 2-approximation for the problem when r € {0,1,2}V*V]
improving on a previous known 3-approximation. This matches the best
known approximation for the easier problem that requires that the paths
be only edge-disjoint.

Our algorithm extends an iterative rounding algorithm that gives
a 2-approximation for the edge-connectivity problem, for arbitrary con-
nectivity requirements r. (K. Jain, A factor 2 approximation for the gen-
eralized Steiner network problem.) This algorithm relies on well-known
uncrossing lemma for tight edge cutsets. Our extension uses a new type
of uncrossing lemma for tight cutsets that may include vertices as well
as edges.

For r € {1,k}V*Y, k > 3, we show that a) uncrossing tight cutsets
is not possible, and b) any analysis for iterative rounding that depends
directly on the largest fractional value in the linear programming solu-
tion cannot provide approximation guarantees better than the maximum
connectivity requirement.

1 Introduction

Let G = (V, E) be an undirected graph on vertex set V and edge set E. Given
X C V, define §(X) as the set of edges with exactly one endpoint in X and
E(X) as the set of edges with both endpoints in X. Define G — X as that graph
obtained from G by removing all vertices in X and all edges in 6(X) U E(X).
Given F C E, define G — F to be that graph obtained from G by removing all
edges in F. G is called k-vertex connected if |V| > k and for every X C V with
| X| < k, G—X is connected. G is called k-edge connectedif |V| > k and for every
F C E with |F| < k, G — F is connected. A k-vertex connected graph is k-edge
connected, but the converse does not typically hold. Given vertex connectivity
requirements r;; between any pair of vertices (4, j), G satisfies the connectivity
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requirements if for every subset X C V — {i,5} with |X| < 7y, ¢ and j are
in the same connected component of G — X. If the requirements are for edge
connectivity instead, then G satisfies the connectivity requirements if for every
subset F' C E with |F| < r;;, ¢ and j are in the same connected component of
G-F.

Let ¢ be a cost vector on the edges of G. The problem of finding the minimum
cost subgraph of @ so that @ satisfies edge connectivity requirements r € ZV>*V
is called the minimum cost edge connectivity problem (MCEC). The equivalent
problem for vertex connectivity is the minimum cost vertex connectivity prob-
lem (MCVC). Both of these problems are Max-SNP hard since the Steiner tree
problem is a special case of each.

In [10], Jain describes the first constant factor approximation for MCEC.
He obtains this approximation by iteratively solving linear programs with the
property that at least one variable in each program has solution value of at least
1/2. His main contribution is to prove this property holds for the iterative prob-
lems generated by his algorithm. The previous best approximation algorithm, by
Goemans et al., gives a O(log k) approximation [5]. This is a primal-dual based
approximation algorithm that does not rely on solving linear programs.

No nontrivial approximation algorithm is known for MCVC. For the prob-
lem where r is restricted to {0,1,2}V*V, Ravi and Williamson [16] describe a
primal-dual 3-approximation algorithm. We call this problem {0,1,2}-MCVC.
This problem arises in the design of survivable communications networks [8, 15].

In this paper we describe a 2-approximation algorithm for {0,1,2}-MCVC
that iteratively rounds appropriately defined linear programs. This approxima-
tion guarantee now matches the best approximation guarantee for the corre-
sponding edge-connectivity problem [10].

Our approximation algorithm extends the algorithm of Jain [10]. Jain consid-
ers basic solutions to a linear programming relaxation of an integer programming
formulation of the problem. A basic solution is any solution corresponding to a
vertex of the polytope defined by the inequalities describing the linear program.
Any basic solution is uniquely defined by a set of | E| inequalities that are satis-
fied at equality. Any inequality that is satisfied at equality is called tight. Jain
shows that for any basic feasible solution to the LP, there exists a set of inequal-
ities that define the solution that correspond to laminar subsets of vertices. Two
sets S and T are called laminar if at least one of SNT, S\T', T\ S, and V\(SUT)
is empty. Otherwise S and T cross. A set of sets is laminar if every pair in the
set is laminar. Using laminarity, Jain develops a charging scheme to bound from
below the value of the highest solution coordinate.

For {0,1,2} MCVC, we define an appropriate linear program whose set of
integer solutions correspond to solutions to {0,1,2} MCVC. We prove the exis-
tence of a laminar set of inequalities defining any basic feasible solution to this
LP. The proof relies on a new uncrossing lemma. We can then use a very similar
charging scheme to obtain the same lower bound on the value of the highest
coordinate in the solution vector.
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A natural question is if this can be extended to yield a constant factor ap-
proximation for {0,1,... , k}-vertex connectivity. We show the same proof tech-
nique will not work by exhibiting an infinite family of examples where the only
sets of inequalities defining a basic solution to the appropriate linear program
are highly non-laminar. In this example, the largest fraction after one round-
ing is % This indicates that an approximation argument based simply on the
size largest fraction in an iterative rounding scheme will not yield better than a
k-approximation.

For the more specialized connectivity problems of constructing a minimum
cost uniformly k-connected graph, the best known approximation guarantee is
roughly factor k [3,13].! If ¢ is a metric, then there are constant factor approx-
imations for uniform k-connectivity [12,13]. Last IPCO, Melkonian and Tar-
dos [14] extend Jain’s iterative rounding analysis to obtain a 4-approximation
for uniform k-edge connectivity on directed graphs. They also describe a differ-
ent approach that yields a 2-approximation. There are numerous approximation
results for other special cases of vertex and edge connectivity. For surveys, see [6,
11].

We discuss our linear program formulation and the recursive algorithm in
Section 2. We prove the existence of a variable with value at least 1/2 in Section 3.
In Section 4, we describe an infinite family of examples that show that these proof
techniques do not extend when r € {1,k}V*V.

2 A 2-approximation

Our 2-approximation relies on formulating the problem as an integer program,
solving the LP relaxation of the integer program, and showing that there is at
least one edge with fractional value greater than or equal to 1/2. If we include
this edge in our final solution, its contribution to the cost of our solution is no
more than twice its contribution to the linear program solution, the latter being
a lower bound on the cost of an optimal integer solution. We then show that
the remaining problem is of the same general form as our original problem, and
that we can use recursion to obtain a complete integer solution that has cost
at most twice the optimal solution to the original linear program. Thus it is a
2-approximation to our problem.

This general outline was suggested by Jain in [10]. He uses the following linear
programming relaxation of MCEC. There is a variable z(e) for every edge e € E,
and an inequality for every subset of vertices that requires that the number of
edges leaving the set be at least the maximum connectivity requirement over all
pairs of vertices that have exactly one member of the pair in the set. Let f(S)
be defined to take this value for subset S. Let 6(S) denote the set of edges with

' In [16], a primal-dual algorithm is proposed, but the analysis has recently discov-
ered to be flawed, and the algorithm does not provide the claimed O(log k)-factor
guarantee [17].
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exactly one endpoint in S. The linear program is:

min cT
8. D eess) 2(€) > f(5), VSCV (MCEC)
0<z(e) <1, Vec E

The key to the argument in [10] is establishing that any basic solution to
(MCEC) contains at least one edge with fractional value at least one half. This
is done by assuming that the ground set corresponds to the support of z. Then,
if z < 1, he shows that any basic solution is defined by a set of tight inequalities
that correspond to a set of laminar subsets of V. This is proven by demonstrating
that f is weakly supermodular and using this to employ a well-known uncrossing
lemma for tight edge cutsets. This is used in an innovative charging scheme that
shows that laminarity implies the existence of an edge with sufficiently high
value in the solution to (MCEC). The other part of the argument involves
establishing that this technique may be invoked recursively. This is done using a
general description of f as being weakly supermodular. A set function f is weakly
supermodular if f(S) + f(T) < max{f(SUT)+ f(SNT), f(S\T) + f(T\S)}.

To extend these arguments to the vertex connectivity problem we 1) intro-
duce an appropriate linear program relaxation of the MCVC 2) prove a new
uncrossing lemma for {0,1,2} MCVC 3) establish that this lemma may be in-
voked recursively, by extending the notion of weak supermodularity. The exam-
ples in Section 4 indicate that step 2) and step 3) do not hold for more general
connectivity requirements. One problem is that the cutsets corresponding to in-
equalities of the linear program for MCVC consist of edges and vertices. The
inclusion of vertices in cutsets makes uncrossing nontrivial, and when connec-
tivity requirements are higher than 2, it is no longer possible.

We use a linear program description of the problem that contains a variable
z(e) for each edge that indicates whether or not the edge is selected in the
final network. The formulation contains an exponential number of constraints.
However, as long as we can find a constraint of the LP that is violated by a given
vector z € {0,1}¥ in polynomial time, we can find an optimal, basic solution
to the linear program in polynomial time [7]. We describe such a subroutine in
Section 5.

Our results extend to the case where we are allowed to select an edge multiple
times. In our case, this would be at most twice. In fact, the problem appears to
be only harder when we are restricted to selecting an edge at most once.

We give the linear programming formulation below. The constraints are based
on a theorem of Menger. (For multiple proofs and references, see [4]):

Theorem 1 (Menger). Let G = (V,E) be a graph, and s,t € V such that
(s,t) ¢ E. Then, the minimum number of vertices separating s from t in G is
equal to the mazimum number of vertex disjoint paths from s to t in G.

For any subset S C V, and disjoint set of vertices A C V\S, we express
the connectivity required between S and V\(A U S) as (S5, A). Similarly, we
represent the z-value of edges with one endpoint in S and the other in V\(SUA)



A 2-approximation for Minimum Cost {0, 1,2} Vertex Connectivity 5

as z(S5, A). That is, £(5, A) := 3,5 jev\(sua) (2, 7)) Here, A is the subset of
vertices in the cutset separating S from the rest of the graph. Since there may
be at most one path from S to V\(S U A) through each vertex of A, the number
of edges from S to V\(AUS) must therefore be at least f(S, A) —|A|. This yields
the following formulation.

min cT
st. z(S,A) > f(S,A) —|A|, VS, ACV,SNA=0 (MCVC)
0<z(e) <1, Veec E

The following lemma is a simple consequence of Menger’s Theorem.

Lemma 1. The set of integral solutions to the above LP equals the set of solu-
tions to the corresponding vertex connectivity problem. O

The following definitions generalize the one-set function notions of submodu-
larity, supermodularity, and weak supermodularity. A two-set function f defined
on the set of pairs of disjoint subsets of V' that satisfies

f(S,A)+ f(T,B) >
max{ f(SUT,(A\T)U (B\S)) + f(SNT,(ANT)U (BN S)U (AN B)),
FS\(TUB),(A\T)U(BNS))+ f(T\(SUA),(B\S)U (ANT))}

is called two-submodular. For the case when A = B = (), this reduces to sub-
modularity for symmetric one-set functions.

If — f is two-submodular, then f is two-supermodular. This definition is equiv-
alent to replacing > with < and max with min in the above definition. A two-
set function f is very weakly two-supermodular if whenever f(S,A) > 0 and
f(T,B) >0 then

f(8,A4) + f(T,B) <
max{ f(SUT,(A\TYU (B\S)) + f(SNT,(AnT)U (BN S)uU (An B)), (1)
F(S\(TU B),(A\T) U (BN S)) + f(T\(SUA),(B\S)U (ANT)),  (2)
max{ f(SUT,(A\T)U (B\S)), f(SNT,(ANnT)U(BNS)U (AN B)),
fFS\(TUB),(A\T)U (BN S)), F(T\(SUA),(B\S)U(ANT)) },  (3)
OR. for some permutation of S and V\(SU A), T and V\(T U B),
fFSNT,(ANT)U(BNSYUANB))+ f(T\(SUA),(B\S)U(ANT)) }

While it may seem that (3) is included in (1) and (2), if f is allowed to take
on negative values, this may not be the case.

Let 6#(S, A) denote the set of edges in F' that have exactly one endpoint in
each of S and V\(S U A).

Lemma 2. Both z(S,A) and |0r (S, A)| are two-submodular. O
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Define fr by fe(S,A4) = max{r;|i € S,j € V\(S U A)}, where r;; €
{0,1,... ,k} for all i,5 € V. Define g by gr(S,4) = fr(S,A) — |A|. In Sec-
tion 3, we prove Lemmas 3 and 4 and Theorem 2.

Lemma 3. The two-set function go is very weakly two-supermodular.

Lemma 4. For any edge set F' on'V, g2(S, A) — |65 (S, A)| is very weakly two-
supermodular.

Theorem 2. For the function f(S,A) .= f2(S,A) — |67 (S, 4)|, any basic solu-
tion to (MCVC) has at least one component with value at least %

We now describe an algorithm that yields a two approximation to (MCVC).
This algorithm mirrors the algorithm in [10] for MCEC.
Let 2* be an optimal basic solution to (MCVC). Let E% 4 be the set of edges

which have z*-value > % Fix all values of edges in E%Jr to 1. Let E,ps = E—E%Jr,
and consider the resulting residual LP:

min cx
st. 2(5,A) 2 g2(5,A) — |66(S,A)NEL, |, VS, ACV,SNA= 0
0<z(e) <1, Ve € Epes
(MCVC,)
Let z;,, be the optimal value of this LP and 2* be the optimal value of

(MCVC). The following theorem follows from similar arguments presented by
Jain for edge-connectivity [10].

Theorem 3. If E,.; is an integral solution to (MCVCz) with value at most
22705, then Epes U By is an integral solution to (MCVC) with value at most
22*.

The 2-approximation algorithm: 1) Find an optimal basic solution z* to
(MCVCQC), 2) Include all edges e with z*(e) > 1/2, in the final solution. 3)
Delete all edges that were included in 2), and solve the residual problem on
Eres-

3 Uncrossing Lemmas and Proof of Theorem

In this section, we prove an uncrossing lemma (Lemma 5) that we then use
to establish laminarity of a set of spanning tight subsets (Corollary 2). The
proof of this lemma, relies on Lemmas 3 and 4. Laminarity of the tight subsets
determining a basic solution in turn implies the main theorem.

Given (S, A), there is a pair ¢ € S, j € V\(S U A) that determines f2(S, A).
Let (S, A) denote one such ¢ and 5(S, A) denote the corresponding j.

Proof of Lemma 3. For r € {0,1,2}V*V, the only values of | 4| that yield nontriv-
ial inequalities for (MCVC) are |A| = 0 or 1. Since f2(S5, A) = fo(V\(SUA), A),
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it suffices to show that weak two-supermodularity holds for S and T satisfying
SNB=TNA=0. Hence A\T = A and B\S = B, and it suffices to show that

92(S, A) + g2(T, B) < max{ g2(SUT, AU B) + g2(SNT,0), (4)
92(S\T, A) + 92(T\S, B), (5)
9:(SNT,0), (6)
OR by perhaps swapping (S, A) for (T, B),
92(SNT,0)+ g2(T\S, B) }. (7

If |A| = |B| = 0, then the weak supermodularity of the one-set function f’
defined by f'(S) := max{r;;|i € S,j € V\S} used in [5,10] implies that either
(4) or (5) hold.

If |A| = |B| =1, then fo(S, A) = fo(T, B) = 2. In this case, either
1) (S, A) € S\T and (T, B) € T\S, or
2) {i(S, A),i(T,B)} N (SNT) is nonempty.

In the first case, (5) holds. In the second case, (6) holds.

If |A] = 1, B = 0, (the case [B]| = 1, A = ) may be treated symmetri-
cally) then T' may have connectivity requirement 1 or 2. If (S, A) € S\T and
j(S, A) € T\S then f3(T,0) = 2 and (5) holds. If i(S, A) € S\T and there is no
corresponding §(S, A) in T\S then f5(7T,0) = 1. In this case, if i(T, B) € T\ S,
then (5) holds. Otherwise, (4) holds.

The remaining case has (S, 4) € SNT. If §(S,4) € V\(SUT), then
f2(T,0) = 2 as well, and (4) holds. Otherwise, (5, A) € T\S. We consider the
possible values of fo(T, 0). If fo(T,®) = 1, then (6) holds. Otherwise, fo(T, ) = 2.
If j(T,B) € S\T, then (5) holds. If j(T,B) € V\(SU AUT), then (4) holds.
Otherwise, A = {j(T, B)}. In this case only, none of (4)-(6) hold, and (7) holds.

O

The proof of Lemma 3 demonstrates why and when we require (7) in the
description of go. We summarize this in the following corollary so that we may
easily refer to it.

Corollary 1. If TN A=0=SNB and g2(S, A) + go(T, B) is strictly greater
than the mazimum of (4)-(6), then |A| + |B| = 1, and assuming |A| = 1 (the
other case is symmetric), then A = {j(T,B)}, i(S,A) € SNT, j(5,4) € T\S,
and fQ(T,B) = fg(T, 0) =2. O

The example in Section 4 shows that the corresponding gy, for r € {1,k}V*V

is in general not very weakly two-supermodular for any & > 3. For k = 3, this
example also demonstrates that the very weak two-supermodularity inequalities
do not hold in this case even for the simplification ANT = BN S = () used in
the above proof.

Proof of Lemma 4. Since the proof of the lemma is independent of choice of F,
and the context is clear, we use ¢ for dr. Suppose g2(S, A) > 0 and go (T, B) > 0.
If g2(S,A) + g2(T, B) satisfies any of (4)-(6), then by the two-submodularity
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of |8], we have (ga — |8])(S, A) + (g2 — |6|)(T, B) satisfies the same inequality.
If go(S,A) + ¢g2(T, B) does not satisfy (4)-(6), then it satisfies (7), for some
permutation of S, V\(S U A), T, and V\(T U B). If |§(S, A)| + |6(T,B)| >
[6(S N T,0)| + |6(T\S,B)|, then go — |6| also satisfies (7), and we are done.
Otherwise, there is an edge from SN T to T\S in F, since this is the only type
of edge that contributes more to the right hand side of (7) than the left. Thus
|6(S, A)| > 1. Since g2(S, A) + g2(T, B) does not satisfy (4)-6), by Corollary 1, we
must have that |A|+|B| = 1. By swapping S, A for T, B we may assume |A| = 1.
Then g2(S5, A) = 1, and thus g2(S5, A) —|6(S, 4)| < 0. Hence, none of (4)-(7) need
apply to (S, A) to establish weak two-supermodularity of g2 — [4]. O

Let x be a basic solution to (MCVC3) with the property that z(e) < 1 for
all e € E,.s, and let E, be the set of edges with nonzero z-value, and let F' be
the set of edges already included in the final solution. A pair (S, A) is tight if it
satisfies

2(5,4) 2 f2(S, A) — |A] = [6r (S, 4)| (8)

at equality. Given z, define (5, A) to be the characteristic vector of the support
of (S, A). If (S, A) = 0, we say that (S, A) is empty. If (S, A) > 0, then (S5, A)
is non-empty. If (S, A) is empty, then x, (S, 4) = 0.

Lemma 5 (Uncrossing Lemma). If (S, A) and (T, B) are tight and non-
empty, then for the appropriate permutation of S and V\(SU A) and T and
V\(T' U B) so that ANT =BnNS =0, one of the following holds.

i. (SNT,0) is tight, (SUT, AU B) is either empty or tight, and
Xw(SaA) + Xw(TaB) = Xw(sm T, 0) + Xw(SU T,AU B):
i. (S—=T,A) and (T — S, B) are tight and
Xw(saA) + Xw(TaB) = Xw(s - TaA) + Xw(T - SaB)7
iti. After perhaps swapping (S, A) for (T, B), then B = 0, and (SN T,) and
(T — S,0) are tight, and
2Xw(S7A) + Xw(Ta 0) = Xw(s nT, 0) + Xw(T -5, 0)

Proof. For simplicity of notation, let g’ = go — |6F|. Since z is a solution to
(MCVC,), ¢’ —z <0. Since ¢’ is very weakly two-supermodular by Lemma, 4,
if (S, A) and (T, B) are both nonempty, then for appropriate permutations of S
and V\(SUA), T and V\(T'U B), we have that ¢'(S, A) + ¢'(T, B) must satisfy
one of (4)-(7) with go replaced by g¢'. If it satisfies any of (4)-(6), then since z
is two-submodular, (¢’ — z)(S, A) + (¢’ — z)(T, B) satisfies the same inequality.
Thus if (S, A) and (T, B) are tight, then the left hand side of the corresponding
inequality in (4)-(6) equals 0. Since ¢’ — x < 0, this implies that each part of
the corresponding right hand side equals 0. Thus, if (4) is satisfied, then i. holds
with (SUT, AU B) tight; if (5) is satisfied then, ii. holds; and if (6) is satisfied,
then i. holds with (SUT, AU B) empty.

If g'(S, A) + ¢' (T, B) does not satisfy any of (4)-(6), then neither does g» and
by Corollary 1), by perhaps swapping (S, A) for (T, B), we have that |[4] = 1,
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B =10, g2(S,4) =1, g2(T,0) = 2, (S, 4) € SNT and j(S,A) € T\S. Thus,
92(SNT,0) = go(T\S,0) = 2. Since (S, A) and (T, 0) are tight, then in order to
satisly the inequalities in (MCVC) for (S N T,0) and (T\S, ?), we must have
that all the edges crossing (S, A) must leave S NT and enter T\ S. Then the
weights of edges leaving T' are evenly split among edges from SN T to S\T and
edges from T\ S to V\(SUT). This means that z(SNT, #) = 2 and z(T\S,0) = 2,
so that (SN T,0) and (T — S,0) are tight and 2x,(S, 4) + x(T,0) = x(SN
T,0) + xz(T — S,0). Thus iii. holds. |

Let T be the set of tight set pairs for 2. Set pairs (5, A) and (T, B) are called
pair-laminar if T and S are laminar and if T or T'U B cross S or S U A then
A = B. Otherwise, they are said to cross. A subset £ C 7 is called pair-laminar
if all the pairs of set pairs in £ are pair-laminar. Before establishing that 7 is
spanned by a collection of pair-laminar set pairs, we need the following technical
lemma.

Lemma 6. Suppose ANT = BNS =0, and (S, A) crosses (T,B). If (T', B')
crosses ot least one of (SNT, ), (SUT,AUB), (S-T,A), (T—-S,B), and it
does not cross (T, B), then it crosses (S, A).

Proof. We use the following easy to see fact:
XcrossesYNZ, YUZ, Y—-Z or Z—Y butnot Z = X crosses Y. (9)

If (T", B") crosses one of the four set pairs in the lemma, then either T” crosses
one of the first sets in each set pair; or 7" U B’ crosses one of the first sets or 1"
or T U B’ cross one of the four unions of first and second sets, and B’ does not
equal the corresponding second set. We consider each case in turn, progressively
assuming that the previous cases do not occur.

If 77 crosses SNT,S—T,T — S, or SUT, then by setting X =T",Y = S,
and Z =T, (9) implies it crosses S.

Otherwise, if 7" U B’ crosses SNT, S—T,T — S, or SUT, then by setting
X=T'UB,Y =5,and Z = T, (9) implies it crosses S. We need to now
establish that if B’ does not equal the corresponding second set, then B’ # A.
Note that if the second set contains more than one element, then the set pair
is empty, so it is not included in a collection of tight set pairs as described in
Lemma, 5. Suppose B’ = A. Then the only cases of interest are 7' U B’ crosses
T —S and B’ # B, or T"UB’ crosses SNT since in the other non-empty set pair
cases A is the second set. If 77U B’ crosses SNT or T — S, since by assumption,
BNT=ANT =0, theneither " CT —-Sor T' C SNT. But then T"U B’
crosses T' and B’ # B, which contradicts (T, B') and (T, B) pair-laminar.

Otherwise, if T crosses one of the four unions of set pairs in the lemma, then
setting X =T', Y = SUA, Z =T U B, implies that either 7" crosses SU A or
TUB. If T' crosses TU B then B' = B £, so T C T', and the only possibility
is that T" crosses (SUA) — T with B' = B # A # 0. If T" does not cross SU A,
then TV C SUA. Since B’ # B ¢ SUA and T" does not cross S, it must be that
T' C S. But then T'UB’ crosses S, and thus (T, B") crosses (5, A). A symmetric
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argument for the case of T” crossing S U A with B’ = A yields a contradiction
to (T, B') and (T, B) being pair laminar.

Finally, if none of the above cases hold, and T' U B’ crosses one of the four
unions of set pairs, then TV U B’ crosses either T'U B or S U A. If the former
holds, then B' = B £ @, and TNT' = (. Thus, the only possibility of the four
are that T’ U B’ crosses (SUA) — T and B’ = B # A # (). Since T’ does not
cross SU A, and B ¢ SU A, we have that T C S U A. But then TV U B’ crosses
S and thus (T7, B’) crosses (S, A). |

Corollary 2. For any mazimal, pair-laminar family L of tight set pairs, the
following holds: Span(L) = Span(T).

Proof. If Span(L) # Span(7T), then Span(L) C Span(7), and there exists a pair
(S,A4) € T, with (S, A4) ¢ L, such that (S, A) crosses a minimum number of set
pairs in L. Let (T, B) be one of those pairs. Then by Lemma 5, we can rewrite
Xz (S, A) as a linear combination of characteristic vectors of pair-laminar tight
set pairs. Note that the new set pairs do not cross (T, B). Since (5, A) ¢ Span(L),
at least one of these new set pairs is also not in Span(L£). By Lemma 6, any set
pair L € Span(L) crossing any of the new sets must also have crossed (9, A).
Since the new sets do not cross (T, B), they have strictly fewer crossings with
sets in £ than S does, contradicting the choice of S. O

Corollary 3. There exists a collection B of pair-laminar tight set pairs satisfy-
ing

1. |B| = |E,|,
2. the vectors x; (S, A) for (S, A) € B are linearly independent,
3. (g2 —6r)(S,A) > 1 for all (S,A) € B. O

We define containment on set pairs by (S,A4) C (T,B) if S C T and A C
T U B. It is easy to see that the containment relation is transitive, reflexive, and
anti-symmetric. Thus it defines a partially ordered set (poset).

Lemma 7. If B is a collection of pair-laminar set pairs, then the poset defined
by the containment relation on the set pairs in B is described by a unique forest.

The following theorem implies Theorem 2:

Theorem 4. There is a tight set pair (S, A) with (g2 — 0r)(S,A) > 0 and at
most 2 edges in 0g,,,(S,A). Hence, at least one of these edges has z-value at
least L.

2

res

Proof. Using the following concept of incidence, along with Lemma, 7, the proof
is very similar to the proof of the corresponding statement for MCEC in [10].
Each edge e = (4, ) in E has two endpoints, i; and j;. An endpoint ¢; of an edge
(2,7) is incident to node (S, A) if (S, A) is the lowest node in the tree among all
nodes with either ¢ € S or {i,j} € SU A. A vertex i may be the endpoint of
several edges; and each such endpoint may be incident to a different node of the
forest. An edge crosses a node (S, A) if exactly one of its endpoints is incident to
any node in the subtree rooted at (S5, A). This assignment ensures that an edge
(i,7) crosses a node (S, A) if and only if ¢ € S and j € V\(S U A). O
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4 Examples and Counterexamples

In [10], Jain gives an example to show that the analysis of this algorithm is
tight for the edge connectivity problem with connectivity requirements in {0, 1}.
Since in this case the edge and vertex connectivity problems are the same, the
same example shows that the analysis is also tight for the vertex connectivity
problem.

A natural question is: Can we extend the arguments given here to give
a constant factor approximation for vertex connectivity problems with higher
connectivity requirements? We answer this question negatively for general r €
{1,k}V*V by describing basic solutions to an infinite family of instances of
(MCVC,) for which 1) the tight set pairs spanning the basis are highly non-
laminar, and 2) the largest fraction is bounded above by

max ri; "

Specifically, we construct a family of vertex connectivity instances with r;; =
min{r;,r;}, and r; € {1, k} for all i € V. This family has the property that after
solving the initial LP and fixing all edges e with z, = 1, the residual LP has a
basic solution with largest z-value equal to %

We depict the family of instances in Figure 1: For each k construct a graph
on 2k vertices. The first k vertices V = {v1, ... ,v5} have demand &, the second
k vertices U = {uy,... ,ur} have demand 1. The edge set consists of a clique of
0-cost edges on V, and a complete bipartite graph between V and U of cost 1
edges. The optimal LP solution will choose every edge in the clique at value 1
and every edge in the bipartite graph at value 1/k. After fixing all edges with
ze = 1, the remaining optimal LP solution will still have every edge in the
bipartite graph at value 1/k. It is not hard to establish that this is an optimal
solution. For instance, consider the solution to the dual linear program that sets
ys,a = 1for § ={u;} for 1 <i <k and A =0, and 0 otherwise. This is feasible,
and has value equal to the feasible primal solution. Hence both are optimal.

We now establish that this is a vertex of the polytope described by (MCVCa)
with all cost 0 edges included in E% 4. We do this by describing a set of k2
tight inequalities (note that k? is the number of fractional edges and hence
variables in the remaining problem), constructing a matrix of the support of these
inequalities, constructing a second matrix and arguing that the two matrices are
inverses of each other, hence each are linearly independent. Since the solution is
then the intersection of k2 linearly independent halfspaces in RkQ, it is a vertex
of the polytope.

The set of k? tight inequalities is divided into k blocks of k inequalities. Block
0 includes the k inequalities with S = {u;}, 1 < i < k, and A = (). Aside from
these inequalities, the point is highly degenerate. The remaining k¥ — 1 blocks
of inequalities are described as follows. In block ¢ € {1,...,k — 1}, we have
viy1 € S, A® = {v;|j # i,i+ 1}, and v; € V\(S U A?). Thus there is exactly
one cost-0 edge crossing this cut (edge (vi,vi+1)), and the (go — dr)-value of
the inequality is 1. Denote the set S for inequality ¢ € {1,...,k} in this block
by Si. We set Si := {viy1,u1, Uz, ... ,Up_g41}. See Figure 1. Then z(Si, A?) is
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cost1

x =1/6

Fig. 1. On the left, a basic solution to (MCVCs2) after fixing the cost 0 edges to 1.
The largest fraction in the solution is %, here k = 6. On the right, an example of a
set (5;, A") for i = 3, ¢ = 3 with f2(5;, A*) = k. All the edges crossing the cut are
included in the figure. They have total value 2. Together with the 4 vertices in the
cutset, this satisfies (8) at equality. The collection of cuts {(S¥, A") }hi<i<k—1, 1<q<k are
highly crossing.

determined by the ¢ — 1 edges from U to v;+1 and the k — ¢ + 1 edges from U
to v;, for a total value of (g — 1+ k — ¢+ 1) = 1. Thus, these cuts are tight.

Let matrix C' be the support matrix of edges in each cutset above, with the
rows of C corresponding to cutsets and the columns corresponding to edges.
The rows of C' are ordered first according to block, and then within each block,
according to ¢. The first row block in C corresponds to the inequalities with
S = {w;}, i.e. it is the block 0 of the tight inequalities. The columns of C are
ordered according to incidence to U, and then to V. All the edges incident to u;
are in the i*® block. Within a block, the j** edge is the edge incident to v;. See
Figure 2.

Let matrix B be a k? x k? matrix with its columns and rows ordered into
blocks of k. The first block of columns (called column block 0) has a pattern that
is slightly different from the rest. See Figure 3. The first column is 0 everywhere
except in the last entry in the first row block, which is 1. The second thru k**
columns have the following pattern: the first row block consists of &k — 1 entries
of value ! followed by a single entry of #~1. Then the ¢** column has the ¢**
row block filled with }. All other entries are 0.

For the pattern of the i** column block, i = 1,... ,k — 1, see Figure 4. The
first column of the first row block has i — 1 entries of % followed by k — i
entries of % followed by a single entry of % This column vector is denoted
X;. The first column of the last row block is the vector Z; containing i entries

of =% followed by k — i entries of Z£. The ¢** column of the k — ¢** row block
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U1 U2 || Uk—1 | U
block0 (11---11
11---1
11...1
11...1
block1 (10---0010---0[---{10---0(10---0
10---00/10---0]---{10---0l01---0
10---00/10---0/---l01---0l01---0
10---00/01---0/---lo01---0l01---0
block2 [01---0001---0[---01---0/01---0
block k-1 : : :
00...1000...1...00...1|00...1

Fig. 2. Incidence Matrix C of k*> Tight Set Pairs

Fig. 3. Column Block 0 of Matrix B

column |1 2 3
row 0 _Tl _Tl _Tl
block 1 :
-1 -1 -1
0% % %
E—1 k-1 kE—1
V5% % %
0+ 0 - 0
block 2 | ©
0+ O 0
0 < 0
block3 | : : :
00 1 0
R :
00 0 1
block k | :
00 0 3

13
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X Y, Z

—k+i —k4i k—i

Col. Block i of B row 1 =G =H A
X;0--- 0 7 — i—i ki ki ke
0 0.2, s
00---Y0 rowi ¢ e
Do : row i+1 % % _TZ
0% ---00 : : : :
Z; Y- 00 row k-1 ¢ : £
—k+1i i —1

Trow k A % %

Fig.4. On the left, the pattern of column block ¢ of matrix B. On the right, the
composition of the vectors X;, Y; and Z; that describe block 1.

is Z; for 1 < g < k, and the ¢"* column of the k — g+ 1* row block is the vector
Y; with ¢ entries of _’3:” followed by k — i entries of £.
The following lemma follows by inspection of B and C.

Lemma 8. For any k, matrices B and C are inverses.

5 Algorithmic Details

To solve the LP in polynomial time, we need a separation algorithm for the
connectivity constraints. We interpret z-values as capacities and transform the
graph induced by the current fractional solution and the fixed edges into a di-
rected graph by replacing every edge by oppositely oriented edges with the same
capacity as the original undirected edge. We then perform a standard procedure
of splitting vertices to model the fact that at most one path can pass through
any vertex. Then, in the resulting graph, the maximum flow value between ¢ and
J is vertex connectivity between i and j. If this is less than r;;, the minimum
cut reveals a violated inequality.

Thus we have a polynomial time separation algorithm for (MCVC3). Using
ellipsoid algorithm, we can solve the LP in polynomial time. Once we have a
solution, it may not be a basic solution. However, it can be transformed to a
vertex solution in polynomial time, as described in [7,10].
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