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Abstract. In an ideal point-to-point network, any node would sim-
ply choose a path of minimum latency to send packets to any other
node; however, the distributed nature and the increasing size of mod-
ern communication networks may render such a solution infeasible, as it
requires each node to store global information concerning the network.
Thus it may be desirable to endow only a small subset of the nodes
with global routing capabilites, which gives rise to the following graph-
theoretic problem.

Given an undirected graph G = (V| E), a metric [ on the edges, and an
integer k, a k-center is a set IT C V of size k and an assignment m, that
maps each node to a unique element in II. We let d,(u,v) denote the
length of the shortest path from u to v passing through =, and =, and
let d;(u,v) be the length of the shortest u,v-path in G. We then refer
to dx(u,v)/di(u,v) as the stretch of the pair (u,v). We let the stretch
of a k-center solution IT be the maximum stretch of any pair of nodes
u,v € V. The minimum edge-dilation k-center problem is that of finding
a k-center of minimum stretch.

We obtain combinatorial approximation algorithms with constant factor
performance guarantees for this problem and variants in which the cen-
ters are capacitated or nodes may be assigned to more than one center.
We also show that there can be no 5/4 — € approximation for any € > 0

unless P = N'P.

1 Introduction

In this paper we consider the following graph-theoretic problem: we are given
an undirected edge-weighted graph G = (V, E, 1), (I is the (metric) edge-weight
function), and a parameter £ > 0. We want to find a set I C V of k center
nodes and assign each node v € V' to a unique center m, € II.

Let the center distance between nodes u,v € V be defined as

dr(u,v) = dy(u, my) + &t (7, T) + di (T, v)

where d;(u,v) denotes the shortest path distance between nodes u and v. The
stretch for a pair of nodes u,v € V is then defined as the ratio d,(u,v)/d;(u,v)
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of center distance and shortest path distance. We let the stretch of a solution
(IT,{my }vev) be the maximum stretch of any pair of nodes u,v € V. The goal in
the minimum edge-dilation k-center problem (MEDKC) is to find a set I C V of
cardinality at most k and an assignment {m, },cv of nodes to centers of minimum
stretch.

A closely related problem is that of finding a k-center in a given graph G =
(V, E). Here, we want to find a set of nodes C' C V of cardinality at most k such
that the maximum distance from any node to its closest center is as small as
possible. This problem admits a 2-approximation in the undirected setting [2,5,
12] and it is well-known that there cannot exist a 2 — ¢ approximation for any
€ > 0 unless P=A"P [6,11]. We adapt techniques used for the k-center problem
to minimize the bottleneck stretch of any pair of nodes u, v € V. Our main result
is the following:

Theorem 1. There is a polynomial-time algorithm that computes a feasible so-
lution II C 'V to the MEDKC problem such that for every two vertices u,v € V we
have d;(u,v)/d;(u,v) < 4+ opt + 3, where opt is the optimal stretch. On the
negative side, no 5/4 — e approzimation can exist for any € > 0 unless P=NP.

The multi-MEDKC problem is a natural extension of the MEDKC problem. Here,
each vertex is allowed to keep a set of centers w, C II. We redefine the center
distance between nodes u and v as

al(u,v) = min  d;(u,m) + d;(71, m2) + dy(m2,v).
ML EMy,T2EMy
Again, the task is to find a set of center nodes IT C V of cardinality at most k
that minimizes the maximum stretch, now defined as d2*(u,v)/d;(u, v).

Theorem 2. Given an undirected graph G = (V, E) and a non-negative length
function | on E, there is a polynomial-time algorithm that computes a solution
IT to the multi-MEDKC problem such that for every two vertices u,v € V we have
d;n(uav)/dl(uav) <2 opt + L.

Subsequently, we extend the result in Theorem 1 to a natural capacitated ver-
sion of the MEDKC problem (denoted by C-MEDKC): each potential center location
v € V has an associated capacity U,. We now want to find a minimum-stretch
center set IT C V of size at most k and an assignment {m,},cy of nodes to
centers such that the set 7;' = {v € V : 1, = i} has size at most U; for all
i € II. We adapt facility location techniques from [13] in order to obtain the
following bicriteria result:

Theorem 3. Given an instance of the C-MEDKC problem, there is a polynomial-
time algorithm that computes a center set II = {my,..., 7} and an assignment
of nodes to centers such that |7rl-_1| <2U; for all 1 <i < 2k. The stretch of the
solution is at most 12- opt + 1 where opt is the stretch of an optimum solution
which places no more than k centers and obeys all capacity constraints.



The problem motivation comes from (distributed) routing in computer net-
works. Here, a host v keeps information about routing paths to each other host
u locally in its routing table. The entry for node v in u’s routing table consists
of the next node on the routing path from node v to node v. Clearly, we can
ensure shortest-path routing if we allow each node to store O(n) entries in its
routing table.

Considering the size of modern computer networks that often connect millions
of nodes, we can hardly ask each node to store information for every other host
in the network. For this reason, modern routing protocols like OSPF[9] allow a
subdivision of a network into areas. Now, each node keeps an entry for every
other node in the same area. Routing between nodes in different areas is done
via a backbone network of area border routers that interconnects the areas.

We can formalize the above problem as follows: We allow each node to store
up to O(B) entries in its routing table, where B is a constant representing the
memory available at each node. These are the nodes with which it can directly
communicate. In addition, we install a supporting backbone network of k center
nodes. Each node is allowed to keep an additional entry in its routing table for
the center node 7, that it is assigned to. Whenever node v needs to compute a
route to node u that is not in its routing table, it has to route via its center 7.
As before, we assume that routing among center nodes is along shortest paths.

The problem now is to place k center nodes and configure the routing tables
of each of the nodes in V' such that the maximum stretch of any path is minimum.
We refer to this problem as MEDKC with bounded routing table space (B-MEDKC).
We obtain the following theorem whose proof we defer to the full version of this
paper [8] due to space limitations.

Theorem 4. Given an instance of the B-MEDKC problem, we can find in poly-
nomial time a center set II and an assignment {m,},ev of nodes to centers
that achieves stretch O(p - opt ) where opt denotes the optimum stretch of any
B-MEDKC solution and p is the performance guarantee of any algorithm for the
MEDKC problem.

We note that the last result is closely related to work on compact routing
schemes (see [1] and the references therein). Cowen [1] shows that if we allow
O(n?/3 log4/ ®n) table space at each node, we can achieve a solution where the
routing path between any pair of nodes u,v € V is at most three times as long
as the shortest u, v-path in G. Notice that this contrasts our results since we are
comparing the stretch that we achieve with the minimum possible stretch.

Finally, our problem is related to that of designing graph spanners. In the
unweighted version, first considered in [10], we are given an undirected edge-
weighted graph G = (V, E). A subgraph H = (V,Eg) of G is called an a-
spanner if we have dy(u,v) < adg(u,v) for every pair of nodes u,v € V.
The literature on spanners is vast and includes variants such as degree-bounded
spanners, sparse spanners, additive graph spanners as well as hardness results
(see [3] and the references therein).



2 Hardness

We first show that the basic MEDKC problem is NP-hard. Hardness of the exten-
sions follow because each of the extensions is a strict generalization of the basic
problem.

Theorem 5. The minimum edge-dilation k-center problem is N'P-hard. Fur-
thermore, unless N'P = P, there can be no 5/4 — € approzimation for any e > 0.

Proof. The proof is by reduction from minimum vertez-dominating set (MVDS).
In MVDS we are given an undirected graph G = (V, E') and we want to find a set
S C V of minimum cardinality such that for all v € V| either v € S or there is
au € S such that vu € E. This problem is known to be N'P-hard [4].

Suppose we are given an instance of the MVDS problem: Gy = (Vi, Ey). We
construct an edge-weighted auxiliary graph G = (V, E,[) from G . For each node
v € Vi, let V' contain two copies v; and vs, along with an edge vyvy of length 1.
For each edge uv € Ey, we let ujv; of length 1 be in E. Finally, we include edge
uyvy of length 2 in E if the shortest path between u and v in G; has at least 3
edges.

It is not difficult to see that if there exists a vertex dominating set in G of
cardinality at most & then the optimum stretch of the MEDKC instance given by G
is at most 4 (locate the centers exactly at the positions of the vertex dominating
set). Also, if there exists no vertex dominating set in Gy with size less than or
equal to k, then for any center set II C V of cardinality £ we can always find a
vertex v* € V3 such that its copies v} and v} satisfy d, (v}, v3)/d; (v, v3) > 5.

O

3 The basic MEDKC problem

In this section, we prove Theorem 1. We first develop a combinatorial lower-
bound and use it to compute an approximate solution to the MEDKC problem. We
then give an algorithm that computes an approximate solution to the proposed
lower bound.

3.1 A lower-bound: covering edges with vertices

For each pair u,v € V, consider the set
Sy ={w eV : q(u,w) + d;(v,w) < a-d(u,v)}. (1)

It is clear that any optimum solution II to MEDKC needs to have at least one

node from St?vpt for all pairs u,v € V.

The minimum-stretch vertex cover problem (MSVC-«) for a given graph G =
(V,E,l) and a parameter « > 0 is to find a set C' C V of minimum cardinality
such that S, N C # () for all pairs u,v € V. Let k, denote the cardinality of an
optimal solution to MSVC-a. The following lemma is immediate.

Lemma 1. Suppose there is a solution with stretch « for a given instance of the
MEDKC problem. Then ko < k.



3.2 Computing an approximate MEDKC solution

Given an instance of MEDKC, we first compute the smallest « such that the asso-
ciated MSVC-« instance has a solution of cardinality at most k.

Lemma 2. Given an instance of MEDKC, let opt be the minimum possible stretch
of any solution. We can then efficiently compute a < 2 opt +1 such that k,, < k.

Our algorithm to locate a set of center nodes II C V is now straightforward:
Let a be as in Lemma 2 and let II be a solution to the respective instance
of MSVC-a. For each vertex v € V', we assign v to the closest center in I7, i.e.
Ty = argmin, ¢ ;7 di (v, u).

Proof of Theorem 1. Let u and v be an arbitrary pair of vertices in V. We want
to bound d(u,v). Let ¢,, be the node that covers the pair u,v in the MSVC-«
solution.

It follows from our choice of 7, and m, that d;(u,m,) < d;(u,cy,) and
dl(vvﬂ-v) <dq (Uacuv)' Hence,

dr(u,v) < 2(q(u, my) + d(v, 7)) + di(u,v) < (2a + 1)d;(u, v)
Using Lemma 2 we can bound (2« + 1)d;(u,v) by 4opt + 3. |

3.3 Solving MSVC-«

We now proceed by giving a proof of Lemma 2. We first show how to compute
a solution APX to MSVC-(2a + 1) of cardinality at most k.

For a vertex v and a subset of the edges E C E define I,(E) = min, gl
to be the minimum length of any edge e € E that is incident to v. Also, let
S7YE,v) ={e € E : v e S} be the subset of edges in E that are covered by
vertex v € V.

In the following we let ' = 2a+ 1 and we say that a set C C V' covers edge
e € Eif S NC # 0. Our algorithm starts with C = () and repeatedly adds
vertices to C' until all edges in the graph are covered. More formally, in iteration
i, let the remaining uncovered set of edges be E and let V C V be the set of
vertices that have positive degree in E. Let ¢; € E be the shortest edge in E. We
then choose v; as one of the endpoints of e;. Subsequently we remove S(;,l (E,v;)
from E and continue.

Lemma 3. If the above algorithm terminates with a feasible solution C' CV for
a given instance of MSVC-(2a + 1) then we must have ko > |C|.

Proof. Assume for the sake of contradiction that there exists a set C* C V such
that |C*| < |C| and for all e € E, there exists v, € S& N C*.

Recall the definition of v; and e;. There must exist 1 < i < j < |C| and a
node v € C* such that v € 5 N SZ,. In the following, refer to Figure 1. By
definition, we must have a +b < a-l; and e + f < a-l.,. Using this along with
triangle inequality yields c+d < a-le; +a-le; + ;.

The right hand side of the last inequality is bounded by (2a 4 1)I; by our
choice of v;. This contradicts the fact that e; remains uncovered in iteration
i. O



Fig. 1. Center v € C* covers both e; and e;.

Proof of Lemma 2. The optimum stretch a* of any instance has to be in the
interval [1,diam(G)]. We can use binary search to find the largest o in this
interval such that the above algorithm returns a solution of cardinality at most
k. Our algorithm produces a solution with stretch 2a + 1 and it follows from
Lemma 3 that o™ < a. ad

4 Choosing among many centers — multi-MEDKC

In the multi-MEDKC setting, we allow each node v to keep a set of center nodes
my, C II. For each pair of nodes u,v € V, we allow u and v to use the center
nodes 7, € m, and m; € m, that minimize

di(u,m)) + di(mo, o) + d(md, v).

Notice that in an optimum solution, triangle inequality will always enforce 7|, =
my'. Hence this problem has a solution with stretch « iff MSVC-a has a solution of
cardinality at most k. This, together with Lemma 2, immediately yields Theorem
2.

A more interesting version of multi-MEDKC occurs when we restrict m, for
each node v € V. For example, we might require that there is a global constant
p such that every client node can only communicate with centers within distance
p. We call this the p-restricted multi-MEDKC problem. We assume we are always
given a “large enough” p, otherwise the problem is not meaningful.

We omit the proof of the following lemma since it is similar to that of Lemma
2.

Lemma 4. Given an instance of p-restricted multi-MEDKC, let opt be its opti-
mal stretch. We can then efficiently compute o < 2o0pt + 1 such that k, < k.

This shows that we can still use MSVC-a as a basis to construct a low-stretch
center set. The following is again an immediate corollary of Theorem 1.

Corollary 1. There is a polynomial time algorithm to solve the p-restricted
multi-MEDKC problem that achieves a stretch of at most 4 - opt + 3.



5 Capacitated center location

We now come to the capacitated version of the basic MEDKC problem. Here, we
want to find a minimum-stretch center set (and assignment of nodes to centers)
of cardinality at most k such that the number of nodes that are assigned to
center ¢ is no more than Uj;, specified in the input.

5.1 A modified lower bound

For each node v, we define [, = min,,cp l4,. For a given stretch a > 1 let S¢
be the set of nodes whose distance from v is at most a - [,, i.e. S§ ={u eV :
d;(v,u) < a-ly}. The optimum solution must have a center node in S9 in order
to cover the shortest edge incident to v.

We now need to find a set of vertices C' C V' of minimum cardinality such that
CNSY # 0 for all v € V. Additionally, we require that each node v is assigned
to exactly one center node 7, and that the sets 7r;1 ={ueV : m =i} have
size at most U; for all i € V. Let this problem be denoted by MSVC2 — a.

Lemma 5. Suppose there is a solution with stretch a for a given instance of the
C-MEDKC problem. Then there must be a solution C' to the associated MSVC2 — «
instance with |C| < k.

We model the lower-bound by using an integer programming formulation.
We then solve the LP relaxation of the model and round it to an integer solution
using ideas from [13]. Finally, we prove that this solution yields a solution for
the original instance of C-MEDKC with low stretch.

5.2 A facility location type LP

In the IP, we have a binary indicator variable y; for each ¢ € V that has value
1 iff we place a center node at i. Additionally, we have variables x;, that have
value 1 iff w, = i. The following IP formulation models MSVC2 — a.

min Z Yi (IP)

i€V

s.t Z Tiy > 1 YoeV (2)
icsa
Y wi <Uiyi VieV (3)
Tiv < Yi Vi,v €V (4)
Ziv,yi € {0,1} Vi,veV (5)

We refer to the LP relaxation of the above IP as (LP).
It follows from Lemma 5 that if there is a feasible solution for C-MEDKC with
stretch opt, then (LP) with @ = opt has a solution with value at most k.



We next show how to round a solution (z°,4°) of (LP) to a solution (Z,%) of
cost at most twice the cost of the original solution and such that g is binary. All
capacity constraints are violated by at most a factor of two. Moreover, if node
v is assigned to facility 4, i.e. Z;, > 0, then the distance between i and v is not
too large, i.e. i € S2%. Finally, we show how to assign each node v to a unique
center m,, and prove that this solution to C-MEDKC has low stretch.

5.3 Algorithm details

Starting with a fractional solution (z°,y%) of (LP), we iteratively modify it in
order to finish with (Z,7) which satisfies the conditions above. We refer to the
solution at the beginning of iteration j as (z/,y7).

We call a center i fractionally opened if y? > 0. In the course of the algorithm
we open a subset of the set of fractionally opened centers. The indicator variables
for open center nodes are rounded to one. We let O/ be the set of open centers
at the beginning of iteration j. Initially, let O° be the empty set.

The procedure maintains the following invariants for all iterations 1 < j < t:

I1) Y,y <2397
(I12) 3=z}, > 1/2 for all nodes v € V
(I3) >, zl, <Uyl forallieV

w —

We say that a node is satisfied if in iteration j we have ), ; ;L'Zv > 1/2.
Let S7 denote the set of satisfied nodes in iteration j. Our algorithm stops in
iteration ¢t when no unsatisfied nodes remain. We then increase the assignment of
nodes j to open centers i € Of such that the final solution satisfies the demand
constraints (2).

A detailed description of an iteration follows. An iteration j starts by selecting
an unsatisfied node v; of minimum [, value. We let I(v;) be the set of centers
that fractionally serve v; and have not yet been opened, i.e.

I(v)) ={i € V\O : &l >0} ={i1,...,ip}.

W.lo.g., assume that Uy, > U;, > --- > U;,. We now open the first v =
’VZiEI(v]-) yi-| centers from I(v;) and close all fractional centers in {i41,...,ip},

ie. O/t = 07U{iy, ..., i, }. Hence y) ™" = 1 foralli € {iy,...,i,} andy!™" =0
otherwise. We let y/™" = ¢/ for all i & I(v;).

Notice that a variable y? for a fractionally opened center node i is modi-
fied exactly once by the procedure outlined above. This modification happens

whenever 7 is either opened or closed. It follows from this observation that
Yo=Y yl>1/2
ieI(vj) iGI(vJ’)

where the last inequality is a consequence of the fact that v; is unsatisfied with
respect to y’. Therefore,



Lemma 6. Let v; be the unsatisfied node chosen in iteration j of our algorithm
and let y° and yT' be defined as before. We then must have Zie[(v]-) yg“ <

23 icr(o;) VS -

This shows that invariant (I1) is preserved throughout the algorithm.

It remains to modify z7 and obtain z7*! so that invariants (I2) and (I3) are
maintained. Specifically, we have to modify z7 such that no node is assigned to
closed centers and all capacity constraints are satisfied with respect to Yyl

For an arbitrary node v, let w, = Zie[(v]-) z], be the assignment of v to

centers from I(v;). Let 27 be the set of unsatisfied nodes that are attached to
I(vj), Le. ' 4
2 ={veV\Ss :w, >0}

We now (fractionally) assign the nodes from 29 to centers iy, ...,i, such that
for all 1 <1 < v at most U;, nodes are assigned to y;, and no node is assigned
to any node in {iy41,...,ip}. The existence of such an assignment (and hence
the validity of (I3)) follows from the following lemma (implicit in [13]):

Lemma 7. Let vj, v and I(v;) be defined as above. Then, >
27:1 Uil :

We do not reassign nodes v that were satisfied with respect to (z7,y?). Hence,
a satisfied node v might lose at most 1/2 of its demand that was assigned to
now closed centers. This entails invariant (12).

At termination time ¢, all nodes are satisfied. We now obtain a solution T
that satisfies the demand constraints (2) of (LP) by scaling z! appropriately. For
alli € O, veV,let Ty, =al,/ > co0 ol Invariant (I2) implies the following
lemma.

ier(oy) Ui¥i <

Lemma 8. Leti be a center opened by the above algorithm. Then, ), Ty < 2U;.

It remains to show that whenever we have T;, > 0 it must be that v € S3.
The proof of this lemma is similar to that of Lemma 3. It crucially uses the
ordering in which the algorithm considers vertices and triangle inequality. We
omit the details from this extended abstract.

Lemma 9. Let Z,y be the solution computed by the preceding algorithm. We
must have i € S3* whenever Ty, > 0.

An observation from [14] enables us to assign each node v to a unique center m,
without increasing the violation of any of the capacity constraints.

Lemma 10. Let (z,7) be feasible for (2), (4) and (5) such that for alli € V we
have ) oy Tiw < 2U; and 3 is binary. Then, there exists an integral feasible
solution (z,y) such that ), v xiy < 2Usy; for alli € V and Y,y < 32,7,

We let 7, =i iff z;, = 1 and prove Theorem 3.

Proof of Theorem 3. We only need to show that for any u,v € V, we have
dr(u,v) < (12a + 1) - d;(u, v). Theorem 3 then follows from Lemma 5 and the
fact that we can perform a binary search to find the right estimate for «.



Let us estimate d, (u,v): From triangle inequality, we obtain that
dr(u,v) < 2(di(u, my) + & (v, 7)) + d;(u, v). (6)

It follows from Lemma 9 that we must have d;(u,m,) < 3a -1, < 3a-d(u,v)
and (v, my) < 3a- 1, < 3a-d(u,v). Hence we obtain together with (6) that
di(u,v) < (12a + 1)d;(u,v). |

6 Open problems

An apparent open question is to develop a unicriteria approximation algorithm
for the capacitated case (maybe based on the ideas in [7]). Furthermore, an
interesting remaining problem is to extend Theorem 4 to the case where we do
not have a backbone network. In other words, how close to the best possible
stretch can we get given limited routing table space B? A possible direction
would be to explore stronger combinatorial lower-bounds and explore the merit
of LP techniques.
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