Meldable Heaps and Boolean Union-Find

(extended abstract)

Haim Kaplan
School of computer science
Tel Aviv University
Tel Aviv, Israel

haimk@cs.tau.ac.il

ABSTRACT

In the classical meldable heap data type we maintain an
item-disjoint collection of heaps under the operations find-
min, insert, delete, decrease-key, and meld. In the usual
definition decrease-key and delete get the item and the heap
containing it as parameters. We consider the modified prob-
lem where decrease-key and delete get only the item but not
the heap containing it. We show that for this problem one
of the operations find-min, decrease-key, or meld must take
non-constant time. This is in contrast with the original data
type in which data structures supporting all these three op-
erations in constant time are known (both in an amortized
and a worst-case setting).

To establish our results for meldable heaps we consider
a weaker version of the union-find problem that is of inde-
pendent interest, which we call Boolean union-find. In the
Boolean union-find problem the find operation is a binary
predicate that gets an item z and a set A and answers posi-
tively if and only if x € A. We prove that the lower bounds
which hold for union-find in the cell probe model hold for
Boolean union-find as well.

We also suggest new heap data structures implementing
the modified meldable heap data type that are based on re-
dundant binary counters. Our data structures have good
worst-case bounds. The best of our data structures matches
the worst-case lower bounds which we establish for the prob-
lem. The simplest of our data structures is an interesting
generalization of binomial queues.

Categories and Subject Descriptors
E.1 [Data]: Data Structures

General Terms
Theory

Permission to make digital or hard copies of al or part of this work for
persona or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercia advantage and that copies
bear this notice and the full citation on thefirst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

STOC' 02, May 19-21, 2002, Montreal, Quebec, Canada.

Copyright 2002 ACM 1-58113-495-9/02/0005 ...$5.00.

Nira Shafrir
School of computer science
Tel Aviv University
Tel Aviv, Israel

shafrirn@cs.tau.ac.il

Robert E. Tarjan
Dept. of Computer Science
Princeton University
Princeton, NJ, and Compagq
Computer Corp. Palo Alto, CA

ret@cs.princeton.edu

1. INTRODUCTION

The classical meldable heap data type maintains an item-
disjoint! set of heaps subject to the following operations.

make-heap: Return a new, empty heap.

insert(i, h): Insert a new item 7 with predefined key into
heap h.

find-min(h): Return an item of minimum key in heap h.
This operation does not change h.

delete-min(h): Delete an item of minimum key from heap
h and return it.

meld(hi, hz): Return the heap formed by taking the union
of the item-disjoint heaps h; and hs. This operation destroys
hl and hg.

decrease-key(A,i, h): Decrease the key of item 7 in heap
h by subtracting the nonnegative real number A.

delete(i, h): Delete item ¢ from heap h.

In the amortized setting Fibonacci heaps [10] support
delete in O(log n) time and all other operations in O(1) time.

Achieving these time bounds in the worst-case turned
out to be harder. Shortly after Fredman and Tarjan intro-
duced Fibonacci heaps Driscoll et al. [8] described a meld-
able heap data structure they call run-relazed heaps. Run-
relaxed heaps support all operations within the same time
bounds as Fibonacci heaps but in the worst-case except
meld, which takes O(logn) worst-case time. More recently,
Brodal [4] described a different data structure that sup-
ports meld in O(1) worst-case time but the time bound
for decrease-key is O(logn) in the worst-case. The time
bound for all other operations are as of Fibonacci heaps
but worst-case. Ultimately, Brodal [5] gave a data structure
matching the time bounds of Fibonacci heaps for all oper-
ations. This data structure, is very complicated however,
much more complicated than Fibonacci heaps and the other
meldable heap data structures that we mentioned.

Notice that in the data type for meldable heaps the op-
erations decrease-key and delete get the target item and the
heap containing it as parameters. Therefore in order to use a
data structure implementing this data type one has to keep
track of which heap contains an item while heaps undergo
melds. This means, in any reasonable application, that we
have to maintain some external union-find data structure
whose sets correspond to the heaps.

It follows that the definition of the classical meldable heap
data type leaves the union-find aspect external to the prob-

Ttems may have the same key.

lem. The focus of this paper is on a modified data type
in which the union-find aspect is integrated into the prob-
lem. Specifically, we modify the definition of decrease-key
and delete so that they do not get the heap containing the
target item as a parameter. The new definitions of decrease-
key, and delete are as follows. The definitions of the other
operations remain as in the original data type.

decrease-key(A,i): Decrease the key of item 4 in the heap
that contains it by subtracting the nonnegative real number
A

delete(i): Delete item ¢ from the heap that contains it.

Of course one way to obtain a data structure implement-
ing this new data type is to combine a data structure for the
original data type with an external union-find data struc-
ture. We maintain a one-to-one correspondence between sets
of the union-find data structure and heaps in the meldable
heap data structure. When we meld two heaps we unite the
corresponding sets, and when we need to figure out which
heap contains an item (in order to decrease its key or delete
it) we perform a find operation on the item. Since the meld-
able heap data type allows deletions we also need to be able
to delete an item from a set in the union-find data structure.
(Otherwise the space utilization and the time bounds of the
union-find data structure may become very large and are not
proportional to the number of items in the data structure).
Classical union-find data structures [13, 14] do not support
a delete operation, but the data structure [12] does.

A union-find with deletions data structure allows the fol-
lowing operations on a collection of disjoint sets.

make-set(x): Create a set containing the single element .
union(A, B, C): Join the sets A and B into a new set C,
destroying sets A and B.

find(x): Find the set that contains z.

delete(x): Delete z from the set that contains it.

For the amortized case we describe in [12] a union-find
with deletions data structure that supports delete(z) and
find(z) in O(a(m + n,n,logl)) time where n is the total
number of elements, [is the size of the set containing z,
and m is the total number of find operations. We define
a(m,n,1) = min{k|Ax([2]) > I} where A () is the k" row
of Ackermann’s function. If we combine this data structure
with Fibonacci heaps, we obtain a data structure implement-
ing our new data type for meldable heaps with the following
performance. Decreasing the key of an element residing in
a heap of size [takes O(a(m + n,n,logl)) time, meld and
insert take O(1) time, and delete of an element from a set
of size [takes O(log! + a(m + n,n,logl)) = O(log!) time.

In the worst-case setting we describe in [12] a union-find
with deletions data structure that supports find and delete
in O(log, n) time, union in O(k) time, and insert in O(1)
time (k is fixed and known to the algorithm). If we combine
this data structure with the data structure of Brodal [5], we
get a data structure implementing our new meldable heap
data type that supports meld in O(k) time, decrease-key
in O(log,, n) time, delete in O(logn) time and insert and
find-min in O(1) time.

Our results: The first problem which we address in this
paper is whether the time bounds achieved by the data struc-
tures described above for the modified meldable heaps are
optimal. In particular we are interested in the tradeoff be-
tween decrease-key, meld, and find-min. Can one implement
decrease-key, meld and find-min all in O(1) time ? Notice

that there is no obvious reduction from the union-find prob-
lem to our modified meldable heap problem. So although
the data structure described above uses a union-find data
structure explicitly one may wonder whether this is really
necessary.

We show in Section 2 that indeed non-trivial lower bounds
exist. In fact we prove that the same tradeoff between union
and find proved as a lower bound for the union-find problem
[1] holds between meld and decrease-key (or find-min) for
meldable heaps. We establish this result both in the worst-
case and in the amortized case in the cell probe model of
computation. Specifically, for the worst-case we show that
if meld takes O(k) time then either decrease-key or find-min
must take Q(log, n) time. For the amortized case we prove
that a sequence of at most n — 1 melds and O(m) decrease-
key and find-min operations may take Q(ma(m,n,logn))
time.

To prove these lower bounds we define a restricted version
of the union-find problem that is of independent interest.
We call this problem the Boolean union-find problem. In the
Boolean union-find problem the goal is to maintain disjoint
sets under the following two operations.

union(A, B, C): Join the sets A,B into a new set C, de-
stroying sets A and B.

find(x, A): Returns TRUE if z is in the set A and FALSE
otherwise.

The Boolean union-find problem is weaker than the clas-
sical union-find problem in the sense that we can answer a
Boolean query using a single regular query, but the converse
is not true. Our main result in the first part of the paper
is a proof that the lower bounds established for the classi-
cal union-find hold for Boolean union-find as well. In our
proof we use and extend some of the techniques developed
to establish a lower bound for the marked ancestor problem
[2].

Once we have the lower bound for Boolean union-find we
prove the lower bound for meldable heaps by a straightfor-
ward reduction from Boolean union-find to meldable heaps.
We believe that the Boolean union-find problem may be use-
ful to establish lower bounds for other problems as well.

In the second part of the paper we address the question of
whether we can find a simple data structure (simpler, say,
than the one of Brodal [5] together with an external union-
find data structure) that matches the lower bounds for the
worst-case. Since with the modified data type we must allow
either meld, decrease-key, or find-min to take non-constant
time there is hope for a simple and intuitive data structure.
(Recall that with the original data type we were after a data
structure in which all these operations take O(1) time.)

Our main result in this part of the paper is a data struc-
ture simpler than Brodal’s that achieves these bounds. Specif-
ically, for any fixed k, insert and find-min take O(1) worst
case time, meld takes O(k) worst-case time, decrease-key
takes O(log,, n) time and delete and delete-min take O(logn)
time. The building blocks of this data structure are simpler
implementations of heaps with inferior time bounds which
are of independent interest. All these data structures are
built upon redundant binary counters, which proved useful
in developing several recent data structures [7, 5, 11]. Re-
dundant binary counters are described in Section 3.

The most simplest data structure which we present is the
fat heap. A fat heap is an interesting and simple generaliza-

tion of the classical binomial queue [6] that uses redundant
binary counters rather than a regular one. Fat-heaps sup-
port insert, find-min, and decrease-key in O(1) worst-case
time, and delete in O(logn) time. Although our use of fat
heaps does not require them to support meld one can make
them support meld in O(logn) time. Thereby they match
the time bounds of the run-relaxed-heaps of Driscoll et al.
and provide an alternative to run-relaxed-heaps in all their
applications [8]. Fat heaps are described in Section 4.

Using fat heaps we then build a data structure that al-
most matches the worst case lower bounds. The only gap is
in the worst-case time bound for meld, which is O(log,, n+k)
worst-case time rather than the desired O(k). At a high level
this data structure is a redundant counter of fat heaps. It
is described in Section 5. Finally to remove the O(log, n)
additive factor in the running time of meld we use an ad-
ditional level of recursion together with a union-find with
deletions data structure. This data structure is described in
Section 6.

2. LOWER BOUNDS

In this Section we prove the lower bounds stated in the
following theorem for the Boolean union-find problem.

THEOREM 2.1. Let 0 < e <1. Let t, and ty be the worst
case costs of union and find, respectively, in the cell probe
model with word length of b bits.

If t, > rnax{(1104%_02)67 140°}, then tq is Q(%—lf)i:;—tu)

Remark: We can prove a weaker lower bound of Q(—-1252

on the worst case time for (Boolean) find via a reduction
from a special case of the decremental existential marked
ancestor problem described in [2].

For the amortized case we prove the following.

THEOREM 2.2. Any algorithm that solves the Boolean union-

find problem in the cell probe model with word length logn
requires Q(ma(m, n,logn)) time to erecute n—1 unions and
m finds.

THEOREM 2.3. Any algorithm that solves the Boolean union-

find problem on n elements, with amortized query cost tg <
k,k > 2, and word length logn bits requires amortized up-
date time t, = Q(a192k+1(n)) to ezecute n-1 unions and m
finds where ag(n) = min{j|Ax(j) > n}.

From these results we derive the lower bounds for meld-
able heaps stated in Section 1 using the following reduction.
Assume we have a data structure for maintaining disjoint
sets that supports the operations meld(hi,hs2), decrease-
key(z,A) , and find-min(h) defined according to our new
meldable heap data type. Then we can construct a data
structure for Boolean union-find as follows. We maintain
each set as a heap in the meldable heap data structure.
When we perform make-set(z) we create a new heap contain-

ing = with an arbitrary initial key. We perform Union(A, B, C)

by performing C = Meld(A, B). We implement find(z, A)
as follows.

e Let v = find-min(A)

e If v = x then return TRUE

o If (key(v) > key(z)) return FALSE

e decrease-key(z, key(xz) — key(v) + 1) and let
u = find-min(A)

_ogn
log(twblogn)

e If w = z then return TRUE and otherwise return
FALSE.

To prove Theorems 2.1, 2.2, and 2.3 we use the same up-
date scheme used to prove the lower bounds for the classical
union-find problem in [9] and [3].” In the rest of this sec-
tion we describe the proof of Theorem 2.1. The ideas in the
proofs of Theorem 2.2 and 2.3 are similar and are omitted
from this extended abstract.

For the worst-case lower bound (Theorem 2.1) the update
scheme, 3, is the set of all operation sequences containing
unions according to the following pattern. They start with
n singleton sets, and consist of r = % log n update rounds.®
Update round k (1 < k < r) consists of n/2" union oper-
ations which combine pairs of sets of size 27! into sets of
size 2¥. We use the notation n[k] = snet- Note that n[k]
is the number of sets at the beginning of round k. We also
need the following definitions.

Let 7 be a prefix of an operation sequence which includes
j — 1 update rounds. After performing the operations in 7
we get n[j] sets, each of size 2/ 7', We refer to these sets
as old sets. Let G;,(7) be all possible distinct groupings of
the old sets into sets of size 2" each containing n[j]/n[r + 1]
old sets. It is easy to see that the cardinality of G; () is
independent of 7. Therefore we denote the cardinality of
Gj.(t) by Gj,. Using the fact that (N/4)¥ < N! < NV
for every N > 0 one can easily prove that

_ n[j] (nlr +)" ogmirt11-2)nij)
Gm,(nljl ... _nl]) T 2 !
n[r+1] n[r+1]

(1)

We define M; ,(7) to be the set of operation sequences
whose prefix is 7 that result in a certain distinct grouping of
the old sets. Again the cardinality of M; ,(7) is independent
of 7 and we denote it by M; .. Let Cj,(7) be the set of
operation sequences whose prefix is 7. Le. Cj, (1) = {7w |
Tw € B}. Clearly for every 7, |Cj.»(7)| = Mj,,» * Gjr.

Note that if we substitute r = % logn into Equation (1)
we obtain

Gy > 203 To8n 2l (2)
and therefore

|Cj.r (7)] > Mj,, % 2 losn=2nlil (3)

DEFINITION 2.1. Let Ly(z;) be the set containing z; fol-
lowing operation sequence u, and let A(u) = (Ly(x1),---,
L. (xn)). For operation sequences u and w we define
dist(A(u), A(w)) to be the Hamming distance between A(u)
and A(w).

We denote by find,(z,Y’) the query find(z,Y") performed
after the execution of operation sequence u € ¥. We divide

i i —1__ logn
each operation sequence into g = ; (1+5E)1)T{Ogt epochs each
u

consisting of 8 = (1+¢ *)logt,* rounds (except for the last
round which may be shorter). Epoch e extends from round
je = (e —1)B+1 up to round ef (epoch ¢ contains the last
rounds of updates). To prove Theorem 2.1 we will show that

*We will also adopt most of the notation of [3].
®For simplicity we assume that 1 logn is integral.
“To simplify the notation we also assume that 3 is integral.

for a random update sequence u and a random item z the
expected time of the query find,(z,L.(z)) is proportional
to the number of epochs.

We also need the following definition.

DEFINITION 2.2. Let X be a subset of Cj, (7). We call
X large if | X| > Mje,r2(% logn=2)nlie]=1 " Otherwise we call
X small.

The high-level structure of the proof is as follows. For an
operation sequence u, we associate a disjoint set of registers,
Se(u), with each epoch 1 < e < q. We show that on average
the query find,(x,L,(z)) has to look at registers from a
constant fraction of these sets. To that end we show that
for every epoch e with probability no smaller than 1/16,
find,(z, L.(x)) has to look at a register of Sc(u). We do
this as follows. Let 7 be the prefix of u consisting of the first
e — 1 epochs.

1. Our register partition per update sequence induces a
partition of Cj, () into equivalence classes. We de-
note the equivalence class of u € Cj, (1) by [u]e. For
each large equivalence class we pick a representative
w € [ule. We show that if [u]. is large and the query
findy(z,Y) does not read registers associated with
epoch e then find,(z,Y) = findw(z,Y).

2. We show that for a random operation sequence u €
Cj.»(7), [u]e is large with probability at least 1/2.

3. We show that if [u]. is large then for random x, L, (z) #
L., (z) with probability at least 1/8.

Given an update sequence u we now define the sets of
registers Se(u), 1 < e < g. Let rege(u) denote the registers
written during u’s updates in epoch e. Let D"(i) be the
contents of register ¢ following operation sequence wu.

The sets Se(u) are defined backwards from S, (u) to Sy (u)
concurrently for all operation sequences u € ¥. Assume we
have already defined Se41(u),- - ,Sy(u) for each u € X. Let
S>e(u) be the set containing the registers that were assigned

to epochs e + 1, - - , ¢ for update sequence wu.
Sse(u) = U S (u).
e+1<j<q

Let R>.(u) be the set whose items are pairs of registers from
Ss>e(u) and their contents after u i.e.

Rse(u) = {(5, D"(9)) | 1 € S>c(u)}.

Let findg (z,Y’) be the query find,(z,Y") performed on the
data structure when the contents of the registers in rege (u)\
S>e(u) are restored to the time before epoch e was about to
begin. Let

Tse(u) = {(i,D"(i)) € R>e(u) |
i was read by one of the queries findy(.,.)}.

Let 7 be the prefix of w consisting of the e — 1 first epochs
we define

[ule ={Tv €| T5c(Tv) = Tse(u)}.

If [u]e is small then we define < u >.= {u}. Otherwise
([u]e is large), we pick a representative sequence v from [u]c,
(say the lexicographically first in [u].), and let < u >.=

{u} U{v}. We define

Se(w)=(|J rege(w))\ (| Sk(w)).

weELuU>e k>e

The next lemma implies that if < u >.= {u,w}, and
find,(z,Y) doesn’t read registers from S.(u), then
findy(z,Y) = findy(z,Y).

LEMMA 2.1. Suppose a certain query find,(x,Y’) doesn’t
read registers from the set Se(u) and < u >.= {u,w},
then D“(i) = D™ (i) for all registers i read by the query
findy (z,Y).

PRrOOF. First we make the following observations.

1. If w € [u]e then for all elements x and sets Y,

find (z,Y), and find, (x,Y) read the same registers.
Furthermore each of these registers has ezactly the same
content when read by findg(z,Y) and when read by
find;, (z,Y).

Proof: Suppose i is read by the query findg(z,Y). If
(7, D"(i)) € T>e(u) then since Tse(u) = Tse(w) we
obtain that D*(i) = DY (:). If (i,D"(i)) ¢ T>c(u),
then (i, D" (i)) ¢ T>e(w), and by the definition of
T>¢(u) the contents of ¢ both in find(r,Y) and in
findg, (z,Y) is a result of the updates performed in
the first e — 1 epochs which are identical in w and w
(given by 7).

2. Ifi is read by the query find,(z,Y’) then i is also read
by find; (z,Y) and the content of i is the same for both
queries. (therefore also findy(xz,Y) = find;(z,Y).)
Proof: The only thing that may differentiate
findy (z,Y) and find; (x,Y) is the content of registers
from the set rege(u) \ S>e(u). Since Se(u) 2 (rege(u)\
Sse(u)), these registers are not read by find,(z,Y),
and thus are also not read by find; (z,Y).

Now let i be a register read by the query find,(z,Y).
From our assumption on find,(z,Y) it follows that i ¢
Se(u). If i € Sip(u) for some k > e then by Observation
(2), (i, D*(7)) € T>e(u). Since Tse(u) = T>e(w) we obtain
that D*(i) = D" (i). Last assume that ¢ € Si(u) for some
k <e,ori ¢ Sk(u) for any k. This implies that the last time
¢ was written during u’s updates was prior to the updates
in epoch e. Therefore D*(i) is a function of the updates in
the first e — 1 epochs. Now consider the partition induced
by w. Suppose ¢ € S;(w). We claim that [< e. This claim
implies that D" (i) = D™ (i) since the updates done in the
first e — 1 epochs are the same for both v and w.

To prove the claim assume for a contradiction that i €
Si(w) for some [> e. We split into two cases.

1. I = e. By our definitions < w >.= {w}, thus reg. (w) 2
Se(w), and therefore i € rege(w). It follows from the
definition of the register partition that either i € S.(u),
or i € Sse(u). This is in contradiction with the as-
sumption that ¢ € Sk (u) for some k < e, or i & Sk(u)
for any k.

2. [> e. By observations (1) and (2), findg, (z,Y") reads
the same registers as findy(z,Y) so it reads register
i. It follows that register i € Ss(w) was read by the

query findj,(z,Y) and therefore by the definition of
Tse(w), (4, DY(t)) € Tse(w). Since Tse(w) = Tse(u)
we obtain that (7, D¥(i)) € T>.(u) and therefore @
must be in Ss.(u). This is in contradiction with the
assumption that ¢ € Si(u) for some k < e, or i & Si(u)
for any k.

O

Let v be an update sequence and let 7 be the prefix of u
consisting the first e —1 epochs. The next two lemmas imply
that if [ule C Cj.,,»(7) is large then the number of vectors

v € [u]. that are close to an arbitrary vector, V, is relatively
small.

LEMMA 2.2. For any vector V. € R™ the following holds

| {u € Crur(r) | dist(V, Aw)) < 7} I<

(Mje,r)2nUe](l+% logn[r+1]) _ (Mje,’l‘)zn[jE](lJ’_% log n)

PROOF. In [9], see also [3]. [

Based on this lemma we next show that if X C Cj, (1) is
large, then for at least half of the operation sequences u € X
the Hamming distance between A(u) and V is at least 1/4.

Lemma 2.3. If X C Cj, »(7) islarge and n is large enough,
then for any vector V. € R", | {u € X | dist(V, A(u)) >
iHz1/21Xx).

PROOF. By lemma 2.2 for a certain V, there are at least
| X| — (M]-E,T)T‘Ue](l*'% logn) pperation sequences u € X, for
which dist(V, A(u)) > n/4.

Since nfje](1 4+ flogn) < n[j|(4 logn — 2) — 2, for large
enough n, |X|—(Mje,r)2"[j€](l+% logn) > (1/2)|X| for n large
enough. [

For a fixed 7, the next lemma show that there aren’t too
many equivalence classes [Tw]. where Tw € X.

LEMMA 2.4. Let 7 be an update sequence for the first e —
1 epochs. If t, > max{(2%2)¢ 140°} then the number of

logn
equivalence classes [Tw]e where Tw € ¥ is no greater than
gnliel(gy logn)

PrOOF. First we give an upper bound on |R>.(u)|. From
the definition of Ss.¢(u) and Ry (u) it follows that |Rye(u)| <
237 ., (number of memory writes in epoch i). Recall that
epoch e+ 1 starts at round e3+1, where 8 = (14+¢ 1) log t.,.

In round 7 we perform % = 7r update operations each of

which writes to at most ¢, registers. Therefore by combining
these observations together we obtain that

Llogn
2 .
n no, _nje]
|R>e(u)|§2 E ?tu<22eﬂtu_2 26 tu
i=ef+1

nljel , _ o nljel
— (tu)1+571tu_2(tu)1/e

We denote this upper bound on |Rs.(u)| by z., i.e. z. =
Nije
240

upper bound on the output variability in [1].

Let M be the memory image after the execution of 7. For
u € Cj, (1) let M™ be the memory image obtained from
M by assigning to each of the registers in the set S (u) its
value following the execution of u. Note that M* and M
differ in at most x. registers. Note also that findg(z,Y) is
the query find(z,Y’) performed on the memory image M".

Let Q be the query program and let n’ be the number of
all possible queries. We assume without loss of generality
that each query takes exactly ¢, probes and it does not look
at the same register twice. Let a(i,k, M*) be the address
accessed by the i'th query in the k’th step when the memory
contents is M. Let Ay (u) be the set of registers accessed by
all queries in the k’th step if the memory contents is M" i.e.
Ag(u) = {a(i,k,M™) | 1 < i < n'}. Clearly |Ax(u)| < n'.
Let By(u) = {(¢,D"(3)) € R>c(u) | i € Ax(u)}. We model
a parallel execution of all possible queries on all memory
images M*, for every u € Cj, »(7) as a single decision tree
of depth ¢, as follows.

The root corresponds to the set Ai(u) of up to n’ cells
read in the first step. Note that since it is the first step,
Ai(u) = Ai(w) for all w,w € Cj, (7). The root has a
child for each set Bi(u) where u € Cj, (7). We associate
each update sequence u € Cj, ,(7) with the level one node
corresponding to By (u).

If Bi(u) = Bi(w) for u,w € Cj, () then the registers
read by u and w in the first step had the same content and
therefore Az(u) = Aa(w). So all update sequences associ-
ated with a particular node v at level one read exactly the
same registers in the second step of the queries. A level one
node v has a child for each set B»>(u) where u is an update
sequence associated with v.

In general, each node v at level k of the decision tree
corresponds to a set of update sequences U(v) C Cj, (7).
Each pair of sequences u,w € U(v) read exactly the same
registers in the first k steps of the queries and all these reg-
isters have the same contents in M* and M™ respectively.
Therefore for each such u and w, it must be the case that
Ag+1(u) = Apt1(w). A level k node v has a child for each
set Byi1(u) where u € U(v).

Notice that if v and w are associated with the same leaf
at level ¢ then Ts.(u) = T>c(w) so w € [u]e. Therefore the
number of leaves in the tree bounds the cardinality of the
set {[tw]e | Tw € L}.

By the assumption that) does not read a register twice
the sets B;i(u),1 < i < tq are disjoint. Thus quzl |Bi(u)] <
Ze. So a bound on the number of leaves is

Z (Tl'>2w‘1 (n,>2f)jtq <
Jitetitg <ze J Jta

wae Z (n;:q> < 2(l7+logn'+logtq)ar,-E

k<we

The rest of this proof is similar to the proof of the

In our case n' = nn[r+1] = n*?. Note also that t;, < n.?
So the cardinality of the set {[rw].|Tw € X} is bounded by

. nljel
(b+2.5logn)2 Ca)ile <

2(b+logn’+logtq)a:e < 2(b+2.510gn)1:e <2

5Simple algorithms achieve t; < n and t, = O(1).

nljel i 7 max{b,logn}
27 max{b,logn} o ;1/5 < 2"[] 1 (max{(illozlgoz ye,140€})1/€)
: 75 7logn
nlje]max{(((%)5)1/€),((1405)1/6)} < 2n[je](% log n)

O

Using Lemma 2.4 we prove the next lemma that shows
that with probability at least half if we pick u at random
then [u]e is large and | < u > | = 2.

LEMMA 2.5. Pick uniformly at random an update sequence
u. Let e be a fized epoch. Then, Prycs[| < u > | = 2] >
1/2.

PrOOF. The classes [u]. form a partition of Cj, (7). By

Lemma 2.4 there are at most 2"0<JC%5™) classes [ule. Re-
call that a set is considered small if it contains less than
(M]-E,T)Z(%105”_2)”U‘3]_1 update sequences and large oth-
erwise. Let s be the total number of elements in small
classes, it follows that s < M;, ,2(z108n=2nliel=1 " Gince
by Equation (3) |Cj. »(7)| > Mje,jz(% togn=2nljel we obtain
that s < 1|Cj, »(7)| and the lemma follows. [

Based upon these Lemmas we complete the proof of the-
orem 2.1 as outlined before. Pick an element x uniformly
at random, and pick an operation sequence u € ¥ uniformly
at random independently of x. Perform the unions specified
by u. Suppose that after the updates of u are performed,
x € Y. We show that on average the query find,(z,Y)
has to read registers from a constant fraction of the sets
Se(u),1 <e<gq.

By Lemma 2.5, with probability > 1, | < u >c= {u,w}| =
2. If| < u >¢ | = 2, then [u]c is large and thus by Lemma 2.3
for at least half of the operation sequences v € [u]c the
Hamming distance between A(w) to A(v) is at least 1/4.
Thus if [u]e is large then with probability &, findw(z,Y) #

findu(z,Y). So Pryes[| <u >c | =2, findyeccus>\{u}(2,Y)

find, (z,Y)] > .

Let X. € {0,1} be the indicator random variable for the
event | < u >. | =2 and findw(z,Y) # findy(z,Y). By
the argument of the previous paragraph X. = 1 with prob-
ability at least = so E(X.) > . It follows by linearity
of expectation that E[3°_, X;] = Q(q). By lemma 2.1 if
X =1 then find,(z,Y) has to read registers from S (u) in
order to give a correct answer. Therefore E[} 7_, X;] upper
bounds the expected number of registers read by the query

findy(z,Y).

3. REDUNDANT COUNTERS

Two redundant counters form the heart of our heap struc-
ture. These counters are based on the redundant binary
representation of Knuth and Clancy [7], extended to sup-
port increments and decrements of arbitrary digits. Similar
counters are used by Brodal [5] and Kaplan and Tarjan [11].
In this section we describe simple pointer-based implementa-
tion of a redundant b-ary counter (for b > 2) that supports
incrementing and decrementing an arbitrary digit in O(1)
time.

A b-ary redundant representation (b-ary RR) of a non-
negative integer x is a sequence of digits dy,... ,dp, with
di € {-1,0,1,...,b}, such that = = 31 d;b’. We call

d regular if, between any two digits equal to b, there is a
digit other than b — 1, and between any two digits equal to
—1, there is a digit other than 0. A fiz operation on a digit
d; = bin a regular b-ary RR d increments d;4+1 by 1 and sets
d; to 0, producing a new regular b-ary RR. d’ representing
the same number as d. A fiz operation on a digit d; = —1
in a regular b-ary RR d decrements d;+1 by 1 and sets d; to
b — 1, producing a new regular b-ary RR d'.

To add 1 to digit d; of a regular b-ary RR d, we proceed
as follows: If d; = b, fix d;. If, following this, d; =b—1 or
d; = b — 2 and the least significant digit d; with j > i and
dj # b — 1 satisfies d; = b, fix d;. Add one to d;. If d; = b,
fix d;. It is straightforward to verify that this computation
preserves regularity and adds b’ to the number represented
by d.

We subtract 1 from digit d; using a similar algorithm (de-
tails are omitted). To implement this scheme, we use a
singly-linked list of digits, from least-significant to most-
significant. In addition, each digit d; equal to b— 1,0, has a
forward pointer. The forward pointer of digit d; = b—1 indi-
cates the least-significant digit d; with j > ¢ and d; #b—1,
if this digit is a b. The forward pointer of digit d; = 0 indi-
cates the least-significant digit d; with j > ¢ and d; # 0, if
this digit is —1. In all other cases the forward pointer points
to an arbitrary digit. The details of how these pointers are
maintained are omitted.

4. FAT HEAPS

As a basic building block for our faster data structures we
need a heap data structure that supports all operations but
meld. In particular this structure has to support decrease-
key in O(1) time, make-heap, insert, and find-min in O(1)
time and delete in O(logn) time®. The implementation of
decrease-key and delete should be according to their new
definition. We also need to be able to delete an arbitrary
element from a non-empty heap in constant time.

In this section we describe fat heaps which achieve these
time bounds. Fat heaps are an interesting generalization
of binomial queues [6]. A Binomial queue is essentially a
binary counter of binomial trees. In contrast a fat heap is
a redundant counter of fat binomial trees. In addition fat
heaps maintain another counter to allow fast decrease-key.

In analogy with binomial trees, we define a fat tree F} of
rank k recursively, as follows. A fat tree Fy consists of a
single node. A fat tree Fy for k > 0 consists of three Fj_1
trees linked by making the roots of two of them leftmost
children of the root of the third.

A fat heap consists of a forest of almost heap-ordered fat
trees, at most four per rank, with at most two violations of
the heap order per rank. (A violation of rank & is a node of
rank k whose key is less than that of its parent). We also
impose regularity constraints on the trees of various ranks
and the violations of various ranks, as described below. We
maintain a pointer to a node containing a minimum key in
the forest, called the minimum node. We maintain the prop-
erty that the minimum node is a tree root; whenever this
is not the case, we can restore this property by swapping
the item in the minimum node with the item in an arbi-
trary root; this may eliminate a violation. For each node we
maintain pointers to its leftmost child, to its left and right
siblings, to its parent and to the heap that contains it. We

5All time bounds in the rest of the paper are worst-case.

also store its rank.

We organize the roots of the fat trees into a redundant
ternary counter called the root counter. If there are ¢ trees
of rank k, the digit dj of the counter has an implicit value
of t — 1. Instead of storing the value of dj, we store a list of
the trees of rank k. Incrementing dj, corresponds to adding
a new tree of rank k to the forest. We maintain the invariant
that the digit sequence of the counter is regular as defined
in Section 3. The root counter supports both increment and
decrement in constant time.

We organize the violations into a similar redundant bi-
nary counter called the violation counter, the k** position
of which is a list of nodes of rank k at which violations occur.
Again we maintain the invariant that the digit sequence of
the violation counter is regular. Incrementing the i** digit
of the violation counter corresponds to creating a new rank-i
violation. The violation counter supports increment in con-
stant time.

We maintain an array indexed by rank, whose k" position
points to the k" digit of the root counter. We maintain a
similar array for accessing the violations counter. Since the
lengths of the counters are functions of the current size of
the heap, these arrays must be extensible. (It is well-known
that extensible arrays can be obtained from ordinary arrays
by array doubling and incremental copying.)”

4.1 Operations

We describe how to perform make-heap, find-min, insert,
decrease-key delete and delete-min, and how to delete an
arbitrary element from a non empty heap in constant time.

To perform make-heap, we return pointers to an empty
root counter and an empty violation counter. To perform
find-min(h), we return the item in the minimum node of h.
To perform insert(i, h), we put the new item ¢ in the single
node of a new Fj tree, and insert this tree into the forest by
incrementing the least-significant digit of the root counter.
To increment a digit of the root counter, we may need to
fix one or more digits of the root counter. To fix a digit
d; = 3, we link three of the four rank-i trees in the tree list
to form one rank-(i + 1) tree, by making the two roots with
higher keys leftmost children of the root with the smallest
key, breaking a tie arbitrarily.

We perform decrease-key(A, i) as follows. Let h be the
heap pointed by i. Let « be the node containing i. Subtract
A from the key of i. If the new key of i is smaller than the
minimum key of h, swap ¢ with the minimum key. Let r be
the rank of . If z is a violating node, add x as a new rank-
r violation by incrementing the 7" digit d, of the violation
counter.

The increment of d, may require fixing one or more digits
of the violation counter. Such a fix, say of d; = 2, corre-
sponds to converting two rank-i violations into a rank-(i+1)
violation, which we do as follows. Arrange the two violations
to have the same parent, by swapping the subtree rooted at
the violating node whose parent has smaller key with the
subtree rooted at the rank-i sibling of the violating node
whose parent has larger key. It is easy to verify that no new
violations are created by this swap. Let y be the common
parent of the two violating nodes after the swap. If the rank
of yisi+1, let F' be an F; tree obtained from y by deleting

" Alternatively we can maintain in each node v of the heap
pointers to the nodes of the counters that correspond to the
rank of v.

the two violating nodes from its list of children, and let F’
and F" be the F; trees rooted at the two violating nodes.
Link F, F', and F" to form an F;;1 tree whose root z is a
node with smallest key among the roots of F', F' and F". If
y was not a tree root, replace it by z in the list of children
of the old parent of y; and, if z turns out to be violating,
increment d;y1. Otherwise, replace the tree rooted at y by
the new tree rooted at z. If, on the other hand, the rank of y
is bigger than ¢+ 1, then, by the regularity condition on the
violation counter, y must have a child w of rank ¢ + 1 that
is not violating, and the two rank-i children of w must also
be non-violating. Replace the two violating rank-i children
of y by the two good rank-i children of w. Then link the
two F; trees rooted at the two violating nodes and the one
rooted at w after cutting off its two rank-7 children to form
a new Fjy; tree. The root z of the newly formed Fj4; tree
replaces w as a child of y. If z turns out to be violating,
increment d;41.

We perform delete-min(h) as follows. Delete the subtree
rooted at the minimum node from the forest. Decrement
the digit in which the subtree was stored by one. To decre-
ment a digit of the root counter, we may need to fix one or
more digits of the root counter. To fix a digit d; = —1, we
remove one of the rank-i¢+1 trees from digit ¢+ 1 of the root
counter, and cut off its two rank-i children. If its children
were violating we decrease the value of the ith digit in the
violation counter. We store the three F; trees in digit i. We
discard the minimum node, and insert the trees rooted at
its children one-by-one into the forest by incrementing the
appropriate digits of the root counter. The new minimum
key is either at the root of a tree in the forest or in a vio-
lating node. Search the roots of the trees in the forest and
the violating nodes for the new minimum m'. If m' is in a
violating node, swap it with the element stored in a root of
a tree in the forest. The node that previously stored m’ may
no longer be a violating node, and if this happens decrease
the corresponding digit in the violation counter. After the
swap, the new minimum is at a root of a tree in the forest.
Let this root be the new minimum node.

We perform delete(i) by performing decrease-key(oco, i) and
then delete-min(h).

delete of an arbitrary element: By regularity condition the
value of the least significant digit, (digit 0), of the counter
is not -1. If digit 0 contains an element which is not the
minimum element of h we remove it and decrement digit 0
of the counter. If digit 0 contains just the minimum element
of h x, and the heap contains more than one element, we
decrement digit 0 of the counter. As a result digit 0 contains
three items beside . We remove one of these three items.

Based on the implementation described above, it is straight-
forward to obtain the following result.

THEOREM 4.1. Fat heaps support find-min, insert, decrease-
key and delete of an arbitrary element: in O(1) worst-case
time, and delete, and delete-min in O(log n) worst-case time.

Remark: We can add a meld operation that runs in
O(log n) time to fat heaps. However when we do that the
cost of decrease-key increases to O(logn). The main differ-
ence between meldable fat heaps and nonmeldable fat heaps
is that in the former we do not maintain a pointer from
each item to the heap containing it. Therefore when we
perform decrease-key we first have to locate the heap con-
taining the target item (to find its violation counter). This

makes decrease-key cost O(log n). The details of this modi-
fication are omitted from this extended abstract.

5. SIMPLE MELDABLE STRUCTURE

For a fixed integer k > 1 we describe a heap data structure
H that supports insert and find-min in O(1) time, decrease-
key in O(logn/logk) time, meld in O(i‘;—g—z + k) time, and
delete in O(logn) time. For n < k¥, this heap is optimal
up to a constant factor. In section 6 we will augment the
Simple Meldable Structure, in order to get a heap which is
optimal for all values of n.

We define a heap of type To to be a fat heap containing
at most k elementary items. For every ¢ > 1 we define an
heap of type T; to be a fat heap storing at most k items each
of which is a pair p = (h1, h2) where h1 and ho are heaps
of type T;—1. The first heap of each pair contains exactly k
items, and the second heap of each pair contains at most k
items. The key of a pair p = (h1, h2) in a heap of type T;
for i > 1 is the smaller among the minimum key of an item
in h1, and the minimum key of an item in hs. As each Tj is
a fat heap, each of its items, (which may be a pair), points
to T;. Each heap which is a component of a pair points to
the pair of which it is a component. We call a fat heap with
exactly k elements full.

Our heap data structure is based on a redundant binary
counter that supports increment and decrement of any digit.
We implement this counter as described in Section 3 using
the digits -1,0,1,2. With digit ¢ of the counter we store 3
heaps of type T;, at least one of which is not empty. We
denote by hi, hi, hi the three heaps of type T; associated
with digit ¢. Items are stored in hY, hi, h} such that hi
is not empty only if h{ is full and h} is not empty only if
both hi and hj are full. If 5 is not the most significant digit
of the counter then the total number of elements in A} kS,
and h} is at least k and at most 3k. Hence h! is always
full if 7 is not the most significant digit. We have a pointer
from each digit of the counter to the heap. In addition to
the redundant binary counter we also keep a pointer to the
minimum element in the heap. The minimum element in
the heap is contained in a heap of type Ty which is either
attached to digit 0 of the counter or is a component of a
pair inside some heap 71 for ¢ > 0 (which in turn can be a
component of a pair inside a heap of type T> etc.).

The value of the i’th digit of the counter, d;, corresponds
to the number of elements stored in A%, h}, and h}. Digit
d; is —1 if there are at most k elements stored at hil, and
the heaps hb and h} are both empty. (Note that if ¢ is not
the most significant digit than there cannot be less than k
elements in hi.) Digit d; is 0 if A} is full, and there is only
one element in h. Digit d; is 1 if bl and hY are full, and
there are k — 1 elements in h$. Digit d; is 2 if A}, hY, and h}
are all full. In the remaining case where there are between
k+2 and 3k — 2 elements in k¢, h}, and hi, d; can be either
0or 1.

We now show how to perform a fix operation on the re-
dundant counter while maintaining the relation between the
value of d; and the number of items in k%, k%, and hi.

We show how to perform a fix operation on the redundant
counter while maintaining the relation between the value of
d; and the number of items in k¢, h}, and hj. To fix a digit
d; = 2, we take the full heap hj and insert it as a pair whose
second component is empty into the first among hiﬁl, h;“,

and hg“ which is not full. By the regularity condition that
the counter satisfies we know that d;1 # 2. Therefore at
least one of hi™t, hiT, LT is not full and we can insert an
element into it. If the total number of elements in i, BRI
and hit! after the insertion is 3k, or k41 we increment d;41
to two, or zero, respectively. If the total number of elements
in AT BT and ALT! after the insertion is 3k — 1, and
di+1 = 0 then we increment d;+1 to one. We also set d; to
be 0. We fix a digit d; = —1 by deleting a pair p = (hi1, h2)
from either hit!, or k4. We omit the details from this
extended abstract.

5.1 Heap operations

We now describe how to perform the heap operations on
the simple meldable heap data structure. We denote by h(v)
the fat heap that contains the element v, and by v.key the
key of the element v.

Find-min(h): We follow the pointer to the minimum item
of the heap and return this item.

insert(z, h): By the regularity condition satisfied by the
counter one of kY, h3, and hJ is not full. We insert & into
the first among h?, h3, and h3 which is not full. If the total
number of elements in hY, kS, and kY has increased from k to
k+1, or from 3k —1 to 3k we increment the counter. Also if
the total number of elements in h?, A3, and h3 has increased
from 3k — 2 to 3k — 1 and the value of dp is 0 we increment
the corresponding digit of the counter. We also update the
pointer to the minimum element of the heap if the key of
new element is smaller than the previous minimum of the
heap.

meld(H1, H>): Suppose the last digit of the counter of H;
is j1, and the last digit of the counter of H> is j>. Suppose
without loss of generality that j1 < j2. If j1 > 0 We traverse
the counters of H; and H» from the least significant digit
to digit j1 — 1. When traversing digit d; we pair the heaps

¢ hY, and hi of H, into one or two pairs such that in each
pair at least one of the heaps is full. We insert the first pair
into a non full heap of type T;4+1 stored with d;y1 of Ho.
Then we insert the second pair of A%, hi, and RS if there
is one into a non full heap of type T;4+1 of Hs. Finally, we
insert the heaps (of which there are at most 3k), of type Tj,
stored in digit ji of Hi, one by one to digit dj, of Ho. When
inserting an element to digit i of H», we increment digit i of
the counter of H> in the following cases: the value of digit i
was 2, the number of elements in digit i has increased from
3k—1to 3k or from k to k+1, the number of elements stored
in d; has increased from 3k — 2 to 3k — 1 and the value of
digit d; was 0. We also update the minimum of the heap if
the minimum element in H; is smaller than the minimum
element in Hs.
decrease-Key(A, z):

Decrease-key uses a recursive procedure, DecKey. DecKey
gets as parameters an element and a non-negative value.
DecKey(w, A') is defined as follows:

1. Perform decrease-key(w,A’), on the fat heap h(w).

2. If as aresult, the minimum value of h(w) has decreased
to w.key, and h(w) is contained in a pair p such that
p.key > w.key, call DecKey(p,p.key — w.key)

To implement decrease-key(z,A), we call the procedure
DecKey(z,A). We also update the pointer to the minimum
element of the heap, if the minimum element has changed.

delete(z): We follow the pointer from z to the heap of
type To, h(z), that contains it. If that heap is part of a pair
inside a heap of type T, we follow the pointer from the pair
to that heap. We continue this way till we get to the top
level counter. We delete an element y from the last among
the heaps h?, h3, and A3 stored in digit 0, which is not
empty. If the total number of elements in h?, kY, and h3 has
decreased from k+1 to k, or from 3k to 3k —1 we decrement
the counter. Also if the total number of elements in h?, h3,
and A3 has decreased from k+2 to k+ 1 and the value of dy
is 1 we decrement digit 0 of the counter. We delete x from
the fat heap h, and insert y to h. We distinguish two cases:

y.key < z.key: If as a result, the minimum value of h(y)
has decreased, and h(y) is part of a pair p whose mini-
mum value is bigger than y.key, we call DecKey(p,p.key —
y.key). DecKey is the recursive procedure used to define
the decrease-key operation.

y.key > x.key: We continue recursively as follows: Let h’
be the fat heap that contains the element whose value has
changed. (at first A’ = h(y)). If as a result the minimum
value of h' has increased and h' is part of a pair p whose
minimum value should also increase, delete p from the heap
that contains it, update its key and re-insert it to that heap.
Continue in the same manner, applying the same logic to
R = h(p).

In both cases, if + was the minimum element then we
should traverse the counter digits to find the new minimum
element.

delete-min(H): We perform Delete(Find-min(H)).
5.2 Analysis

The next lemma shows that the length of the counter of a
heap which contains n elements is O(log n/log k). The proof
is straightforward and omitted from this extended abstract.

LEMMA 5.1. A non empty heap whose counter consists of
j digits contains Q(k' 1) elementary items.

The following Theorem summarizes the performance of
the simple meldable heaps.

THEOREM b5.1. Simple meldable heaps support insert and
find-min in O(1), decrease —key(x,A) in O(i—‘;g—:), delete()
in O(log n) and meld in O(length of the shorter structure+k)
= O(i—fé% + k), where n is the number of items in the heap
or heaps on which the operation takes place.

ProoOF. It is straightforward to see that insert and find-
min take O(1) time. To analyze the performance of decrease-
key and delete, we first notice that it takes O(i) steps to
reach the top level counter from an elementary item stored in
a heap of type T; attached to digit ¢ of the top level counter.
Furthermore, by Lemma 5.1, 7 < i—f)i%. Therefore decrease-

key requires at most O(%g%) decrease-key operations on fat-
heaps of size at most k, each such operation costs O(1). So

decrease-key takes O(%—Z) time. Delete requires at most
ry

O(i—zé—;‘) delete and insert operations (when y > z) on fat
heaps of size k. So delete takes O(log n) time.

Meld consists of two stages. In the first stage we tra-
verse all but the most significant digit of H;. Per each such
digit we perform a constant number of insert operations into

heaps hanging off the counter of H> as well as no more than

a constant number of increment operations on the corre-
sponding digit of Hz. Thus the time it takes to perform this
stage is proportional to the length of the smaller counter.
In the second stage we insert at most 3k heaps stored in the
most significant digit of the counter of H; to the appropriate
heap hanging off the counter of H>. We also perform the ap-
propriate increment operations on the counter of H». Thus
this stage takes O(k) time and the theorem follows. []

6. RECURSIVE MELDABLE HEAPS

We describe a heap data structure H that supports insert
and find-min in O(1) time, decrease-key in O(logn/ logk)
time, meld in O(k) time, and delete in O(logn) time. The
heap builds upon the simple meldable structure, described
in section 5. It also uses a union-find with deletions data
structure which supports for a given k, union in O(k), find
and delete in O(log n/logk), and insert in O(1).

A heap H is a pair (z,C:1) where z is the minimum item
in H, and C is a simple meldable heap, (which we will refer
to as the "counter” structure). The counter part of the pair
in H may be empty. The elementary items in the counter
(items stored in Tp), are themselves pairs of an element and
a counter structure. Along with H we keep a doubly linked
list of pairs whose counter structure isn’t empty. The list
doesn’t include the top level pair. Each pair whose counter
is not empty, has a pointer to its position in that list.

To each heap we also maintain a corresponding set in the
union-find with deletions data structure. Each heap points
to its corresponding set and vice versa. Also each item has
a pointer to its node in the union-find with deletions data
structure.

6.1 Heap operations

In this section we describe how to perform the heap oper-
ations on the recursive meldable heap data structure.
find-min(H): Return the value in the element part of the
pair H.
insert(x,H): We insert x to the set (of the union-find with
deletions structure), attached to H. If H is empty, we create
a pair containing z and an empty counter and let H point
to this pair. Otherwise, Let y be the minimum item stored
in H. If x < y, then we let the element part of H point to x
instead of y. We create a pair p containing = (if z > y), or
y (if z < y), in its element part and an empty counter, and
insert p to the counter of H.
decrease-key(z,A): Let p = (z,C) be the pair which con-
tains . We decrease the key of x by A. If p is not contained
in any counter, then x is the minimum element and we finish.
If p is contained in a counter C; we perform decrease-key of
pin C1. Let p1 = (y,C1) be the pair that contains C;.

If the new value of z is now smaller than the value of y (in
which case after the decrease-key of p, (z,C') must be the
minimum element of C1), and p: is the top level pair, then
we replace £ and y in their pairs and update the values in
C, appropriately. (The minimum values of the pairs and the
heaps in C) that contained (z,C) and now contain (y,C),
are updated to the key of y. The element (y,C) becomes
the new minimum of C; after this update).

If the value of x is smaller than the value of y and p; is
not the top level counter we continue as follow. We remove
C; from p; and remove p; from the list of pairs with a non-
empty counter. We perform find on the element correspond-
ing to « in the union-find with deletions data structure to

get the heap H = (z,C?) that contains x. We merge the top
level counter C> of H with Ci by performing meld(C1, C2)
on the counter structures. If the minimum element of H is
now in the counter then it must be (z,C). In this case we
switch the old minimum z with the new minimum z in their
pairs, updating the counter data structure as described in
the previous case.

meld(Hl,Hg): Let H, = (xl,C’l) and let Ho = (122,02).
Assume w.l.o.g that z; < xs. If the length of Ci or the
length of Cs is at most k + 1, we merge the two counters by
performing meld on the counter structures. Let C' be the
merged counter, (C = Meld(C1,C>)). We create a pair p
containing x» in its element part, and an empty counter and
insert p to the counter structure C. The resulting heap H is
the pair (z1,C).

If the length of both C; and C> exceeds k + 1, then we
perform insert((z2,C2),C1) (inserting the pair (z2,C2) to
the counter structure C1). We add the pair (z2,C>) to the
list of pairs whose counter is not empty in H;.

In both cases we also concatenate the lists of pairs whose
counters are not empty, and perform union of the corre-
sponding sets.
delete-min(H): Let H = (z1,C1). We delete z; from the
union-find data structure, and remove x; from the pair rep-
resenting H. If C is not empty then let p = (x2, C>) be the
minimum element in the counter structure Ci. We perform
delete-min(C4), deleting p from the counter structure. If the
counter part of p, Cs is not empty, we merge C> with the top
level counter by performing C' = meld(C1, C>) on the coun-
ters structures, and extract p from the list of pairs whose
counter is not empty. If C is empty, we remove a pair p’ =
(z3,C3) from the list of pairs whose counter is not empty (if
the list is not empty). We perform C = meld(C3,C1). The
resulting heap is the pair H = (z2,C).
delete(x): is carried out by executing dcrease-key(x, o)
and then delete-min(H). (Using the union-find structure to
find H).

6.2 Analyss

Notice that both decrease-key and delete may perform
meld on the counter structures of some pairs. The next
lemma shows that if a heap of n elements contains pairs
whose counter is not empty then n > k¥, which means that
logn/logk > k. Therefore the meld of the counter struc-
tures, performed by delete and decrease-key costs
O(log n/log k) which is O(k + logn/logk) for these values
of n.

LEMMA 6.1. Let n be the number of items in a heap H.
Let C be the counter component of H. If n < k* then the
counter component of all the pairs stored in C is empty.

PROOF. (sketch) We show by induction on the operation
sequence that if a certain heap H contains j > 0 pairs, (be-
side the top level pair), whose counter component is not
empty, then the number of elements in H is at least (j+1)k*.

The nontrivial cases are the meld and delete-min oper-
ations. Consider a delete-min on a heap H that contains
j > 0 pairs whose counter is not empty. By the induc-
tion hypothesis |[H| = n > (j + 1)k*. During the operation
the counter structure of a certain pair is merged into the top
level counter. Thus the number of such pairs is decremented
by one. So following the delete-min operation, H contains

at most j — 1 pairs whose counter part is not empty, and
[H|=n—-1>(j+1)k* —1> (j)k*. Thus the claim holds
for this case. We omit the details of the other cases. [

The following theorem which follows from Lemma 6.1
summarizes the performance of recursive meldable heaps.

THEOREM 6.1. For a given k, the heap structure supports
find-min and insert in O(1), meld in O(k) decrease-key in
O(logn/logk), and delete and delete-min in O(logn).

7. REFERENCES

[1] S. Alstrup, A. Ben-Amram, and T. Rauhe. Worst-case
and amortised optimality in union-find. In Proceedings
of the thirty-first annual ACM Symposium on Theory
of Computing (STOC), pages 499-506, 1999.

[2] Stephen Alstrup, Thore Husfeldt, and Theis Rauhe.
Marked ancestor problems. In IEEE Symposium on
Foundations of Computer Science, pages 534-544,
1998.

[3] A. M. Ben-Amram and Z. Galil. A generalization of a
lower bound technique due to Fredman and Saks.
Algorithmica, 30:34-66, 2001.

[4] Gerth Stolting Brodal. Fast meldable priority queues.
In Workshop on Algorithms and Data Structures,
pages 282-290, 1995.

[6] G.S. Brodal. Worst-case priority queues. In Proc. 7th
annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 96), pages 52-58. ACM Press,
1996.

[6] M. R. Brown. Implementation and analysis of
binomial queue algorithms. STAM J. Computing,
7(3):298-319, 1978.

[7] M. J. Clancy and D. E. Knuth. A programming and
problem-solving seminar. Technical Report
STAN-CS-77-606, Department of Computer Science,
Stanford University, Palo Alto, 1977.

[8] James R. Driscoll, Harold N. Gabow, Ruth
Shrairman, and Robert E. Tarjan. Relaxed heaps: An
alternative to Fibonacci heaps with applications to
parallel computation. Communications of the ACM,
31(11):1343-1354, 1988.

[9] M. L. Fredman and M. E. Saks. The cell probe
complexity of dynamic data structures. In Proc. 21st
ACM Symposium on Theory of Computing, pages
345-354, 1989.

[10] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and
their uses in improved network optimization
algorithms. Journal of the ACM, 34(3):596-615, 1987.

[11] H. Kaplan and R. E. Tarjan. Purely functional
representations of catenable sorted lists. In Proceedings
of the 28th Annual ACM Symposium on Theory of
Computing, pages 202-211. ACM Press, 1996.

[12] Haim Kaplan, Nira Shafrir, and Robert E. Tarjan.
Union-find with deletions. In Proc. 13th Annual
ACM-SIAM Symposium on Discrete Algorithms, 2002.

[13] R. E. Tarjan. Efficiency of a good but not linear set
union algorithm. Journal of the ACM, 22:215-225,
1975.

[14] R. E. Tarjan and J. Van Leeuwen. Worst case analysis
of set union algorithms. Journal of the ACM,
31:245-281, 1984.

