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1 Introduction

We consider a simple model of an agent (which we call a spider) moving between the nodes of
a randomly growing web graph. It is presumed that the agent examines the page content of the
node for some speci�c topic. In our model the spider makes a random walk on the existing set of
vertices. We compare the success of the spider on web graphs of two distinct types. For a random
graph web graph model, in which new vertices join edges to existing vertices uniformly at random,
the expected proportion of unvisited vertices tends to 0.57. For the comparable copy-based web
graph model, in which new vertices join edges to existing vertices proportional to vertex degree, the
expected proportion of unvisited vertices tends to 0.59.

A web graph is a sparse connected graph designed to capture some properties of the www. Studies
of the graph structure of the www were made by [4] and [7] among others. There are many models
of web graphs designed to capture the structure of the www found in the studies given above. For
example see references [1], [2], [3], [5], [6], [8], [9], [10], [12] and [13] for various models.

In the simple models we consider, each new vertex directs m edges towards existing vertices, either
randomly (random graph model) or according to the degree of existing vertices (copy model). Once
a vertex has been added the direction of the edges is ignored.

There are several types of search which might be applied to the www. Complete searches of the web,
usually in a breadth �rst manner, are carried out by search engines. Link and page data for visited
pages is stored, and from the link data an undirected model of the www can be constructed. This
model may be replaced when a new search is made at a future time period or may be continously
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updated by a continuously ongoing search. Such processes require considerable on-line and o�-line
memory.

Another possibility, requiring less memory, is a search by an agent (spider, sni�er) which examines
the semantic content of nodes for some speci�c topic. This type of search can be made directly on the
www or on a (continously updating) model of the www stored by a search engine. Typical search
strategies might include: moving to a random neighbour (sampling pages for content), selecting
a random neighbour of large degree (locating the hub/authority vertices of the search topic) or
selecting a random neighbour of low degree (favouring the discovery of newer vertices during the
search).

We consider the following scenario. We have a sequence (G(t); t = 1; 2; :::) of connected random
graphs. The graph G(t) is constructed from G(t� 1) by adding the vertex t, and m random edges
from vertex t to G(t� 1). We refer to such graphs as web-graphs. See references [1], [2], [3], [4], [5],
[6], [7], [8], [9], [10], [12] and [13] for various models of this and related types.

There is also a spider S walking randomly from vertex to vertex on the evolving graph G(t).

The parameter �t we estimate is the expected number of vertices which have not been visited by the
spider at step t, when t is large. This process is intended to model the success of a search-engine
spider which is randomly crawling the world wide web looking for new web-pages.

To be more precise, we consider the following model for G(t). Let m � 1 be a �xed integer. Let
[t] = f1; :::; tg and let G(1) � G(2) � � � � � G(t). Initially G(1) consists of a single vertex 1 plus
m loops. For t � 2, G(t) is obtained from G(t� 1) by adding the vertex t and m randomly chosen
edges ft; vig; i = 1; 2; : : : ;m, where

Model 1: The vertices v1; v2; : : : ; vm are chosen uniformly with replacement from [t� 1].

Model 2 The vertices v1; v2; : : : ; vm are chosen proportional to their degree after step t� 1. Thus
if d(v; �) denotes the degree of vertex v in G(�) then for v 2 [t� 1],

Pr(vt = v) =
d(v; t� 1)

2m(t� 1)
:

While vertex t is being added, the spider S is sitting at some vertex Xt�1 of G(t � 1). After the
addition of vertex t, and before the beginning of step t + 1, the spider now makes a random walk
of length `, where ` is a �xed positive integer independent of t. It seems unlikely that at time t, S
will have visited every vertex. Let �`;m(t) denote the expected number of vertices not visited by S

at the end of step t.

We will prove the following theorem:

Theorem 1. In either model, if m is suÆciently large then,

�`;m(t) � E
tX

s=1

tY
�=s

�
1� d(s; �)

2m�
(1� �(s; �))

�`
(1)

where for s � � � t,

0 � �(s; �) � 1

m
:

Let

�`;m = lim
t!1

E �`;m(t)

t
:

We will show that this gives the following limiting results for the models we consider.
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Theorem 2. Let �` = limm!1 �`;m, then

(a) For Model 1,

�` = 2e9=(4`)(�=`)1=2
�
1�	

�
3p
2`

��
where 	(x) is the standardized Normal cumulate for the interval (�1; x].

In particular, �1 = 0:57 � � � and �` � 2(�=`)1=2 as `!1.

(b) For Model 2

�` = e`
Z 1

0

exp

�
� `p

x

�
dx:

In particular, �1 = 0:59 � � � .

Thus for large m; t and ` = 1 it is more diÆcult for the spider to crawl on a web-graph whose edges
are generated by a copying process (Model 2) than on a more classical random graph (Model 1).

2 Proof of Theorem 1

We �rst consider the case where ` = 1 and then generalise this case. When ` = 1 the spider makes a
random move to an adjacent vertex after vertex t has been added. The construction of G(t) is really
the construction of a digraph D(t) where the direction of the arcs (x; y) satis�es x > y. The space
G(t) of graphs G(t) induces its measure from this. Next let 
(t) denote the set of pairs (G(t);W (t))
where G(t) 2 G(t) and W (t) belongs to the set WG(t) of t-step walks taken by the spider S which
are compatible with the construction of G. This means that the �th vertex of G(t) visited by the
walk must be in [� ].

The main idea of the proof is as follows. We �x a vertex s and estimate the probability that it is
not visited by the end of step t. Thus for s � � � t we de�ne the events

As(�) = f! 2 
(t) : Vertex s is not visited by S during the time interval [s; � ]g:

Let � = (�� : s � � � t) be integers satisfying

m = �s � �� � �t � ��
t = 10(ln t)5 and ��+1 � �� + 5 for � < t: (2)

Let

D(�) = f(G(t);W (t)) 2 
 : d(s; �) = �� ; s � � � tg;

and for some event C let Pr�(C) = Pr(C j D(�)) be the corresponding conditional event. For
s � � � t let

�0 = � � 106 ln �: (3)

We then prove that for t= ln t � s < t and a � satisfying (2),

Pr�(As(t) j As(t� 1)) =
�t0
2mt0

(1�E� ((s; t))) +O(t�3)Pr�(As(t� 1))�1 + eO(t�3=2); (4)
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where if N(s; �) denotes the set of neighbours of s in G(�) then

(s; t) =
1

�t0

X
y2N(s;t0)

1

d(y; t)
2
�
0;

1

m

�
:

Furthermore,

Pr(As(s)) = 1�O(s�1): (5)

From this we deduce (1) of Theorem 1 as follows: If � satis�es (2) and t= ln t � s < t then

Pr�(As(t)) =

�
1� �t0

2mt
(1�E� ((s; t))) + eO(t�3=2)�Pr�(As(t� 1)) + eO(t�3):

We see that if �t � ��
t then

Pr�(As(t)) =
tY

�=s

�
1� ��0

2m�
(1�E� ((s; �)) + eO(t�1=2))� (6)

=
tY

�=s

�
1� ��

2m�
(1�E� ((s; �)) + eO(t�1=2))� (7)

=
tY

�=s

�
1� ��

2m�
(1�E� ((s; �)))

�
+ eO(t�1=2)

Note that we can go from (6) to (7) because �� = ����0 except for at most �0�
�
t instances.

Thus absorbing the cases where � does not satisfy (2) into the error term, summing out the condi-
tional probabilities over walks, we get

Pr(As(t)) =
X
�

Pr(D(�))
tY

�=s

�
1� ��

2m�
(1�E� ((s; �)))

�
+ eO(t�1=2)

= E

tY
�=s

�
1� d(s; �)

2m�
(1� �(s; �))

�
+ eO(t�1=2)

where �(s; �) = E� ((s; �)) and (1) follows.

We now consider the random walk made by the spider S. A random walk on an �xed undirected
graph G is a Markov chain fXtg � V associated to a particle that moves from vertex to vertex
according to the following rule: The probability of a transition from vertex v, of degree d, to vertex
w is 1=d if v is adjacent to w, and 0 otherwise. Let � denote the steady state distribution of the
random walk. The steady state probability �(v) of the walk being at a vertex v is,

�(v) =
d(v)

d(G)
; (8)

where d(v) is the degree of v and d(G) is the total degree of the graph G.

We will need a �nite time approximation of the probability distribution � for the random walk on
Hs(t) = G(t)� s for s � t. We obtain this by considering the mixing time of the walk based on a
conductance bound (9) of Jerrum and Sinclair [14].
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Let s; t be �xed. Let P denote the transition matrix of the random walk on Hs(t). Let P
i;� denote

the distribution of the �th step of a random walk on Hs(t) which starts at vertex i. For K � [t]nfsg
let K = [t] n (K [ fsg) and

�K =

P
i2K;j2K �(i)P (i; j)

�(K)
:

It follows from (8) that

�K =
e(K : K)

d(K)

where e(K : K) is the number of edges from K to K, and d(K) is the total degree of vertices in set
K.

The conductance of the walk is de�ned by

�(s; t) = min
�(K)�1=2

�K :

For the proof of Theorem 1 it is adequate to consider vertices s created after step t= ln t. Let �s(t)
be the maximum degree of vertices in the interval [s; t]. We show that

Lemma 1. Suppose s � t= ln t and let

G(s; t) =
�
G(t) : �(s; t) >

1

ln t
; and �s(t) � ��

t and d(s; � + 1)� d(s; �) � 5; s < � < t

�
:

Then, in both Model 1 and Model 2,

Pr�(G(t) =2 G(s; t)) = o(t�3):

2.1 Proof of (4) and (5)

We can now apply the main result of [14].

jP i;� (v)� �(v)j �
�
1� �2

2

��
�(v)

�min
(9)

where �min = minv �(v).

Using (9) and Lemma 1 we see that with �0 = 105 ln t, whp

jP i;�0(v)� �(v)j � t�3 8v 2 [t] n fsg: (10)

We are glossing over one technical point here. Strictly speaking, (9) only holds for Markov chains
in which P (x; x) � 1=2 for all states x. To get round this one usually makes the walk ip a fair coin
and stay put if the coin comes up heads. In our case we also omit to add a new vertex if the coin
is heads. So what we have been describing is the outcome, ignoring those times when the coin ip
is heads.

For the moment, we �x some � with �t � ��
t and assume that t= ln t � s � t.
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Now with t0 = t� 10�0 and

I = [t0 + 1; t� 1]

J1 = f� 2 I : 9� 2 I such that X� = �g
E0 = fX� 6= s; � 2 Ig
E1 = f9j 2 J : j has � 2 neighbours in fX� : � 2 Igg [

f9j; j0 2 I : j 2 J and j; j0 are neighboursg
Fk = fjJ j = kg k � 0

F�k = fjJ j � kg

and write

Pr�(Xt = s j As(t� 1)) =X
G2G(s;t0)

x2[t0]nfsg

Pr�(Xt = s j Xt0 = x;G(t0) = G; E0;As(t0))Pr�(Xt0 = x;G(t0) = G j As(t� 1)) +

Pr�(Xt = s;G(t0) =2 G(s; t0) j As(t� 1)): (11)

It follows from Lemma 1 that

Pr�(Xt = s;G(t0) =2 G(s; t0) j As(t� 1)) = o(t�3Pr�(As(t� 1))�1): (12)

To deal with the rest of (12) we write

Pr�(Xt = s j Xt0 = x;G(t0) = G; E0;As(t0)) = Pr�(Xt = s j Xt0 = x;G(t0) = G; E0)

=
1X

k=0

Pr�(Xt = s j Xt0 = x;G(t0) = G; E0;Fk)Pr�(Fk j Xt0 = x;G(t0) = G; E0)

+Pr�(Xt = s j Xt0 = x;G(t0) = G; E0;F�2)Pr�(F�2 j Xt0 = x;G(t0) = G; E0): (13)

Given x;G(t0), conditioning on F0 is equivalent to S doing a random walk on H = Hs(t0) starting
at x. Thus, we get

Pr�(Xt = s j Xt0 = x;G(t0) = G; E0;F0) =

E�

0@ X
y2N(s;t0)

��
d(y; t0)� 1

2mt0 �O((ln t)5)
+O

�
1

t3

��
� 1

d(y; t)

�
j x;G; E0;F0

1A =

�t0
2mt0

0@1�E�

0@(s; t) + 1

�t0

X
y2N(s;t0)

d(y; t0)� d(y; t)

d(y; t)

1A1A+ eO(t�2) (14)

We will next argue that

Pr�(F�k j Xt0 = x;G(t0) = G; E0) = eO(t�k) k = 1; 2: (15)

Pr�(Xt = s j Xt0 = x;G(t0) = G; E0;F1) = eO(t�1): (16)

E� (d(y; t)� d(y; t0)) = eO(t�1=2): (17)

It follows from (11){(17) that

Pr�(Xt = s j Xt0 = x;G(t0) = G; E0) =
�t
2mt

(1�E� ((s; t)) +O(t�3Pr�(As(t� 1))�1) + eO(t�3=2)
6



and removing the conditioning on Xt0 = x;G(t0) = G yields (4).

2.1.1 Proof of (15)

Let us generate Xi; i 2 I using as little information about the edges incident with I as possible.
Thus, at step i we �rst establish whether any of t0 + 1; : : : ; i are neighbours of Xi�1. If the answer
is NO, we do not determine these neighbours. Thus up to the �rst time we get the answer YES, the
conditional distribution of the neighbours of t0; t0+1; : : : ; i is that they are chosen from a set of size
t � o(t) either randomly (Model 1) or from the same set with the same probabilities as the steady
state of the walk on G(t) (Model 2). Of course for those i for which �i > �i�1, we have one neigbour
s, which we don't include in this set of neighbours. Let Yi = fYES at i and Xi 2 ft0 + 1; : : : ; igg.
If the degrees of Xj ; j 2 ft0 + 1; : : : ; ig is dj then

Pr(Yi) = O

0@ iX
j=t0+1

dj
t
� 1
dj

1A = O

� jIj
t

�
: (18)

Since F�1 �
S
i2I Yi we have (15) for k = 1.

Now assume that i1 is the �rst i for which Yi occurs and that Xi1�1 = j1 has neighbours K1 �
[t0 + 1; i1].

There are 2 cases to consider.

Case 1: jK1j � 2.

The probability of this is eO(t�2jIj2).
Case 2: jK1j = 1.
Arguing as in the �rst paragraph of this subsection, we see that the conditional probability that Yi
occurs for i2 > i1, with Xi2�1 = j2 6= j1 is also eO(t�1jIj) and this completes the proof of (15).

2.1.2 Proof of (16)

Let J = fj1g. If j1 is visited �rst at time t1 � t0 + 5 � 105(ln t) then we can view the walk from
time t1 onwards as a walk of length � 5 � 105(ln t) on the graph H 0 = H + j1. Using (10) for H 0

we can argue, as in the proof of (15) that the conditional probability Xt = s is eO(t�1) as required.
Suppose next that the �rst visit to j1 after time t0 + 5� 105(ln t). We now write

Pr�(Xt = s j Xt0 = x;G(t0) = G; E0;F1) =

Pr�(Xt = s j Xt0 = x;G(t0) = G; E0; E1;F1)Pr(E1 j Xt0 = x;G(t0) = G; E0;F1) +

Pr�(Xt = s j Xt0 = x;G(t0) = G; E0; E1;F1)Pr(E1 j Xt0 = x;G(t0) = G; E0;F1):

First observe that Pr(E1 j Xt0 = x;G(t0) = G; E0;F1) = eO(t�3=2). Use (18) plus an extra eO(t�1=2)
factor for the extra neighbour(s).

So now assume that E1 does not occur. Let k1 be the unique neighbour of j1 on our walk. If k1 is
never visited, or if each visit to k1 is the middle of the sequence of visits j1; k1; j1 then S's walk is
essentially a random walk on H and we can argue as in (14). If there is a visit to k1 at time t1 say,
and Xt1+1 = l1 6= k1 then l1 will have been chosen from a set of size t� o(t).

Model 1: If v 2 [t0] n fsg then its steady state random walk probability �(v) is at least 1=(2t0)
and the probability that l1 = v is at most twice this. It follows that in any subsequent step, the
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probability S is at v is at most 2�(v)). Thus the probability S ever returns to j1 is eO(t�1jIj). Failing
this, by considering the vertices visited after the last visit to l1 we deduce that the probability we
arrive at a neighbour of s, at time t� 1 is eO(t�1) and (16) follows.

Model 2: Now if v 2 [t0] n fsg its steady state random walk probability �(v) is asymptotically
equal to the probability it is chosen as l1. Thus in any subsequent step, the probability S is at v is
asymptotically equal to �(v) and we can re-use the analysis for Model 1..

2.1.3 Proof of (17)

This follows from the fact that in Model 2, the maximum degree in G(t) is O(t1=2) whp, see e.g.
[8]. For Model 1 the maximum degree is o(ln t) with suÆciently high probability.

2.1.4 Proof of (5)

We consider the process from time s��0 to s. At time s, the chance that the spider is at a neighbour
y of s is either O(m(s� 1)�1) (Model 1) or O(d(y; s � 1)=s) (Model 2, because of (10),) and then
in both models, the probability of moving from y to s is 1=d(s� 1; t) + 1 and we get (5).

2.2 ` � 1

We follow the above analysis and note that the degrees do not change during the spider's walk and
that error estimates do not increase (no new vertices are added).

3 Proof of Theorem 2

Theorem 3. Model 1

E �`;m = (1 +O(m�1))
Z 1

0

exp

�
(m+ 1

2 ) lnx+
2m2

`

�
1� x

`
2m

��
dx:

�` = e9=(4`)
p
�=`

�
1�	

�
3p
2`

��
;

where 	(x) is the standardized Normal cumulate for the interval (�1; x].

Model 2

�` = e`
Z 1

0

exp

�
� `p

x

�
dx:

Proof Model 1
We write d(s; t) as

d(s; t) = Xs +Xs+1 + � � �+X� + � � �+Xt;

where Xs = m and for � > s, the X� = B(m; 1
��1 ) are independent.
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Now

tX
�=s

d(s; �)

�
=

tX
�=s

1

�

�X
r=s

Xr

=
tX

r=s

Xr

 
tX

�=r

1

�

!
:

tX
�=r

1

�
= ln

t

r
+O

�
1

r

�
:

Thus

tY
�=s

�
1� d(s; �)

2m�
(s; �)

�`
= exp

 
�
�
1 +O

�
1

m

��
`

tX
�=s

d(s; �)

2m�

!
(19)

= exp

 
�
�
1 +O

�
1

m

��
`

2m

tX
r=s

Xr ln t=r

!

=

�
1 +O

�
1

m

�� tY
r=s

�r
t

� `Xr
2m

:

E

tY
r=s

�r
t

� `Xr
2m

=
tY

r=s

E
�r
t

� `Xr
2m

=
�s
t

� `
2

tY
r=s+1

�
1� 1

r � 1
+

1

r � 1

�r
t

� `
2m

�m
:

Thus

�`;m(t) =

�
1 +O

�
1

m

��
t

Z 1

0

exp

�
(m+ 1

2 ) lnx+
2m2

`

�
1� x

`
2m

��
dx:

The values of this integral are easily tabulated. For ` = 1 they quickly reach a value of about 0:57.
The approximation is accurate to the second decimal place for m � 4.

Using the transformation x = e�y we obtain

�`;m(t) =

�
1 +O

�
1

m

��
t

Z 1

0

exp

�
�3

2
y � `

4
y2
�

dy

=

�
1 +O

�
1

m

��
t 2e9=(4`)

p
�=`

�
1�	

�
3p
2`

��
:

Model 2

Lemma 2.

Pr(d(s; t) = m+ r) =

�
m+ r � 1

r

��s
t

�m=2
 
1�

�s
t

� 1
2

!r �
1 +O

�
(m+r)3

s

�
+O

�
rp
s

��
:
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Proof Let � = (�1; :::; �r) where �j is the step at which the transition from degree m + j to
degree m+ j +1 occurs. Let �0 = s and let �r+1 = t. Let p(s; t; r : � ) = Pr(d(s; t) = m+ r and � ).
Then

p(s; t; r : � ) =
rY

j=0

0@�j(�j) Y
�j<T<�j+1

�
1� m+ j

2mT

�m1A ;

where �0 = 1 and

�j =
�
1 +O

�
m+j
�j

�� m(m+ j � 1)

2m�j

�
1� m+ j � 1

2m�j

�m�1
:

Now Y
�j<T<�j+1

�
1� m+ j

2mT

�m
= exp

0@�m+ j

2

X
�j<T<�j+1

�
1

T
+O

�
m+ j

T 2

��1A
= exp

�
�m+ j

2

�
log

tj+1
�j

+O

�
m+ j

�j

���

=

�
�j
�j+1

�m+j
2 �

1 +O
�
(m+j)2

�j

��
:

Thus

Pr(d(s; t) = m+ r) =
X
�

p(s; t; r : � )

where

p(s; t; r : � ) =
�
1 +O

�
(m+r)3

s

�� m(m+ 1) � � � (m+ r � 1)

2r

�s
t

�m=2 1

tr=2
1p
�1
:::

1p
�r
: (20)

Now X
�

1p
�1
:::

1p
�r

=
1

r!

�Z t

s

1p
�
d� +O

�
1p
s

��r
=

�
1 +O

�
rp
s

�� 2r
r!

�p
t�p

s
�r

:

The result follows. 2

Next let

�(s; t; r) =
tY

�=s

exp

�
�`d(s; �)

2m�

�
:

As in the proof of Lemma 2 let d(s; t) = m+ r and let � = (�1; :::; �r) denote the transition steps of
d(s; t) from m to m+ r. As before, let �0 = s and �r+1 = t. Let �(s; t; r : � ) be the value of � given
� .

Then

�(s; t; r : � ) = exp� l

2m

rX
j=0

X
�j�T<�j+1

m+ j

T

= exp

0@� `

2m

rX
j=0

(m+ j)

�
log

�j+1
�j

+O

�
1

�j

��1A
=

�
1 +O

�
(m+r)2

s

���s
t

� 1
2
t�r`=2m�1`=2m:::�r`=2m:

10



Thus, combining �(s; t; r : � ) with p(s; t; r : � ) from (20) and summing over � we have

E �(s; t; r) =
X
�

�(s; t; r : � )p(s; t; r : � )

=
�
1 +O

�
(m+r)2

s

���s
t

�(m+`)=2
�
m+ r � 1

r

�
r!

2r
1

tr(1+`=m)=2

X
�

rY
j=1

1

�
(1�`=m)=2
j

=
�
1 +O

�
(m+r)2

s

�
+O

�
r

s(1�`=m)=2

���m+ r � 1

r

� 
1� � st �(1+`=m)=2

1 + `=m

!r

:

Thus summing over r we get

E �(s; t) =
�
1 +O

�
m

s(1�`=m)=2

�� 1 + `
m

1 + `
m

�
t
s

�(1+`=m)=2

!m

:

Thus

lim
m;t!1

E �`;m(t)

t
= lim

m;t!1
1

t

tX
s=1

 
1 + `

m

1 + `
m

�
t
s

�(1+`=m)=2

!m

= e`
Z 1

0

e�`=
p
x dx;

as required. When ` = 1, �1 = 0:59634:::.

4 Proof of Lemma 1

4.1 Calculations for Model 1

4.1.1 Degree sequence of G(t)

We begin with the degree sequence of G(t). The degree d(s; t) of vertex s in G(t) is distributed as

m+B(m; (s+ 1)�1) + � � �+B(m; t�1) (21)

where the binomials B(m; �) are independent.
For K � [t] let d(K; t) =

P
s2K d(s; t).

Lemma 3.

(a) �d(s; t) = m(1 +Ht �Hs) � m(2 + ln t=s)
where Hk = 1 + 1

2 + � � �+ 1
k .

(b) Pr(�(G(t)) � 2m ln t) = o(t�3)
where �(G(t)) is the maximum degree in G(t).

(c) Pr(9K � [t] : jKj � 3t=4 and d(K; t) � (1:1)mt) = o(e�cmt) for some absolute constant c > 0.

(d) Pr(9� : d(s; � + 1)� d(s; �) > 5) = eO(t�4).

11



Proof (a) follows from (21) and (b) follows from Theorem 1 of Hoe�ding [11]. (d) is easy, since
d(s; � + 1)� d(s; �) = B(m; ��1).

For (c) let K � [t] with jKj = k = 3t=4. Then

E (d(K; t)) � E (d([t� k + 1; t]; t)) = mk +m
tX

s=t�k+1

s� (t� k)

s

� 2mk �m(t� k) ln(t=(t� k)) =

�
3

2
� 1

4
ln 4

�
mt � (1:15)mt:

Applying Theorem 1 of Hoe�ding we see that

Pr(9K � [t] : jKj � 3t=4 and d(K; t) � (1:1)mt) �
�

t

3t=4

�
e�c

0mt

for some absolute constant c0 > 0. This completes the proof of (c) and the lemma. 2

4.1.2 Conductance for Model 1

Since d(K) � 2mjKj+ e(K : K) it suÆces to prove a high probability lower bound on e(K : K), in
both models.

Lemma 4.

Pr�

�
�(s; t) � 1

200

�
= o(t�3):

Proof For K;L � [t] n fsg; let e(K : L) denote the number of edges of G(t) which have one
end in K and the other end in L (we only use this de�nition for L = K = [t] nK and L = K. It
follows from Lemma 3(c) that with probability 1� o(t�3)

�(s; t) � min
�(K)�1=2

e(K : K)� jKj
mjKj+ e(K : K)

� min
jKj�3t=4

e(K : K)� jKj
mjKj+ e(K : K)

: (22)

(e(K : K)� jKj bounds the number of K : K edges in Hs(t) and then observe that the degree sum
of K is at most mjKj+ e(K : K).)

We prove the following high probability lower bound on e(K : K). Together with (22) this proves
the lemma.

Pr�(9K : e(K : K) � mjKj=150) = o(t�3): (23)

Suppose K � [t], k = jKj and YK = e(K : K). Let � = 1
2

p
kt and K� = K \ [�] and K+ = K nK�.

Case 1: jK�j � 3k=7.

E� (YK) �
t�4k=7�1X

�=�

3(m� 5)k=7

� + 4k=7
� 3(m� 5)k

7
ln

�
t� 1

�+ 4k=7

�
� mk

16
:

Explanation: Consider the � t���4k=7�1 vertices of [t]� [�][fsg. Each chooses at least m�5
random neighbours from lower numbered neighbours (plus themselves) and the sum minimises the
expected number of these choices in K�.

12



Applying Theorem 1 of [11] we obtain

Pr�(YK � E� (YK) =2) � exp

�
�1

8

3mk

7
ln

�
t� 1

�+ 4k=7

��
=

�
�+ 4k=7

t� 1

�3mk=56

:

So,

Pr�(9K : jK�j � 3k=7; jKj � 3t=4 and YK � E (YK) =2) �
3t=4X
k=1

�
t

k

��
�+ 4k=7

t� 1

�3mk=56

�
3t=4X
k=1

 
te

k

�
�+ 4k=7

t� 1

�3m=56
!k

�

3t=4X
k=1

0@3t

k

 r
k

t

 
1

2
+
4

7

r
3

4

!!3m=56
1Ak

= o(t�3):

This yields (23) for this case.

Case 2: jK�j � 3k=7.
Assume �rst that k � 1000. Now let ZK denote the number of edges from the set W of dk=15e
lowest numbered vertices of K+ which have their lower numbered endpoints in K. ZK is dominated
by B(mdk=15e;pk=t) since there are at most 3k=7 + dk=15e � k=2 vertices of K below any vertex
w of W and there are at least � vertices in all below such a w. We use YK = e(K : K) �M � ZK
where M = (m� 5)dk=15e. For jKj � t=1000 we write

Pr�(9K : 1000 � jKj � t=1000; ZK �M=2) �
t=1000X
k=1000

�
t

k

�
2M
�
k

t

�M=2

�

t=1000X
k=1000

 
te

k

�
4k

t

�(m�5)=30!k

= o(t�3):

For jKj > t=1000 we use Cherno� bounds and write, for some absolute positive constant c > 0

Pr�(9K : t=1000 � jKj � 3t=4; ZK � 9M=10) �
3t=4X

k=t=1000

�
t

k

�
e�cM = o(t�3):

For jKj � 1000 we can write

Pr�(9K : e(K;K) � 3mk=4) �
1000X
k=1

�
t

k

��
mk

3mk=28

��
1000

t1=2

�3mk=28

= o(t�3):

Note that if e(K;K) � 3mk=4 then at least 3mk=4 � 3mk=7 of these edges must have one end in
K+.

This completes the proof of (23). 2

4.2 Calculations for Model 2

We need to prove bounds corresponding to those given in Lemma 3 for Model 1.

13



4.2.1 Maximum Degree

Lemma 5. (a) Pr(d(s; t) � 10(ln t)5) = o(t�3):

(b) Pr(9� : d(s; � + 1)� d(s; �) � 5) = eO(t�3).
Proof (a) In order to get a crude upper bound on d(s; t), we divide the interval [s; t] into
sub-intervals using the points (nearest to) s; se1=4; :::ser=4; :::; sek=4. Here dsek=4e = t, so that
k � 4 ln ln t, as s � t= ln t.

Suppose that, at the start of Ir = (dser=4e; dse(r+1)=4e] we have an upper bound d(r) on the degree
of vertex s. We prove that if d(r) � 10 ln t then d(r + 1) � 2d(r) with probability 1� o(t�3).

Now as long as the degree of s is � 2d(r), t he number X� of edges acquired at step � 2 Ir is
dominated by B(m; d(r)=(m�)), so that the number of edges gained during this time has expected
value

� d(r) ln e1=4 =
d(r)

4
:

Thus, provided d(r) � 10 ln t,

Pr(d(r + 1) � d(r)) � Pr

 X
�2Ir

B(m; d(r)=(m�)) � d(r)

!
�
�e
4

�d(r)
= o(t�3)

and thus d(r + 1) < 2d(r) with probability 1� o(t�3). Choosing d(0) = 10 ln t, we see that

d(s; t) < d(0)2k � d(0)(ln t)4 = 10(ln t)5:

This proves (a). For (b) we use (a) and the fact that d(s; � +1)� d(s; �) can then be dominated by
B(10(ln t)5; (2m�)�1). 2

4.2.2 Conductance

Lemma 6. There is an absolute constant � > 0 such that

Pr�(9K � [t]; jKj � (1� �)t : d(K; t) � (1 + �)mt) = o(t�3):

Proof Let � be a small positive constant and divide [t] into approximately 1=� consecutive
intervals I1; I2; : : : of size d�te plus an interval of t � b1=�cd�te. We put a high probability
bound on the total degree d(I1; t). Now consider the random variables �k; k = 1; 2; : : : where
�k = d(I1; kd�te)=(md�te). Now �1 = 2 and

(�k+1 � �k)md�te is dominated by B

�
md�te; �k + 1

2k

�
It follows that we can �nd an absolute constant c > 0 such that

Pr

�
�k+1 � �k

�
1 +

3

4k

��
� e�cm�t:

So, with probability 1�O(e�cm�t) we �nd that

d(I1; t) � 2md�te
d1=�eY
k=1

�
1 +

3

4k

�
� 2md�te � 3��3=4 � 6m�1=4;
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for small enough �.

Now d([d�te]; t) dominates d(L; t) for any set L of size d�te. So, if m > 2=(c�) then the probability
there is a set of size d�te which has degree exceeding 6m�1=4 is exponentially small. In which case,
every set K of size at least t� d�te has total degree d(K; t) � 2mt� 6m�1=4 and the lemma follows
by traking � suÆciently small. 2

Lemma 7. If m is suÆciently large then

Pr�

�
�(t) <

1

ln t

�
= O(t�3):

Proof For K � [t]; jKj = k we say K is small if ln t � k � ct and K is large otherwise, where
c = e�8.

4.2.3 Case of K small

Let Q = fK \ [
p
kt]g and let R = K nQ.

Case of jQj � k=2.
Let Xt = Xt(Q) be the number of those edges directed into Q from vertices created after time

p
kt.

The number of such edges generated at step � � p
kt dominates B(m�5;mq=(2m�)), independently

of any previous step. Thus

E (Xt) �
tX

�>
p
st

(m� 5)q

2�
=

(m� 5)q

4
ln

t

k
(1 + o(1)):

Hence

Pr

�
Xt � mq

6
ln

t

k

�
� exp

�
�mq

73
ln

t

k

�
:

Thus

Pr

�
9Q : Xt(Q) � mq

6
ln

t

k

�
�

�p
kt

q

�
exp

�
�mq

73
ln

t

k

�
� exp

 
�q
 
m

73
ln

t

k
� ln

 
2e

r
t

k

!!!
� t�4

provided m is suÆciently large. Thus whp the set Q has at least mk
12

ln t=k edges directed into it,
of which at most mk=2 are incident with R. This completes the analysis of this case.

Case of jRj � k=2. We consider the evolution of the set R = fu1; u2; : : : ; urg from step T =
p
kt

onwards. Assume that at the �nal step t there are Æk edges directed into K from K. We can assume
w.l.o.g. that Æ � m=10, for otherwise there is nothing to prove.

The number Yj+1 of K : K edges generated by vertex uj+1 is a Binomial random variable with
expectation at most

�j+1 = m
2mk + Æk

2mtj+1
:

The numerator in the above fraction is a bound on the total degree of K.
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If Z = Z(R) =
Pr

j=1 Yj then

E (Z) � 2mk + Æk

2

�
1

t1
+ � � �+ 1

tr

�
� 2mk + Æk

2

rp
kt

� 1:05
mkrp
kt
:

Thus, for � > 0,

Pr (9R : Z(R) � �k) �
kX

r=k=2

�
t

r

��
e� 1:05� kmrp

kt� �k

��k

� k

 �
3mk1=2

�t1=2

��
te

k

!k

� t�4

if � = m=4, k � ct and m is suÆciently large. We have therefore proved that for small values of
k there are at least mk=2 �mk=4 out-edges generated by R not incident with K on the condition
that Æ � m=10, completing the analysis of this case.

4.2.4 Case of K large

let T = t=2 and let ct � jKj; jKj � (1 � �)t where � is as in Lemma 6. Let M = [T ] and
N = [T + 1; t]. Let Q = K \M and let R = K \ N . We calculate the expected number of edges
�(Q;R) of L = (R� (N nQ)) [ ((N nR)�Q) generated at steps �; T � � � t which are directed
into K. At step � the number of such edges falling in L is an independent random variable with
distribution dominating

1�2NnRB
�
m� 5;

mq

2m�

�
+ 1�2RB

�
m� 5;

(T � q)m

2m�

�
:

Thus

�(Q;R) � (m� 5)q

2

X
�2NnR

1

�
+
(m� 5)(T � q)

2

X
�2R

1

�

=
m� 5

2

0@(k � r)
X

�2NnR

1

�
+ (T � (k � r))

X
�2R

1

�

1A :

Let �(k) = minQ;R �(Q;R). Then 'somewhat crudely'

X
�2NnR

1

�
� ln

t

T + rX
�2R

1

�
� ln

t

t� r
:

Thus

�(k) � m� 5

2

�
(k � r) ln

2t

t+ 2r
+

�
t

2
� (k � r)

�
ln

t

t� r

�
:
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Putting k = �t and r = �t we see that

�(k) � (m� 5)t

2
g(�; �)

where

g(�; �) = (�� �) ln
2

1 + 2�
+
�
1
2 � �+ �

�
ln

1

1� �
:

We put a lower bound on g:

� � �

2
implies �� � � �

2
and so g(�; �) � �

2
ln

2

1 + �
:

So we can assume that � � �=2. Then

�� � � 1� �

2
implies g(�; �) � �

2
ln

2

2� �
:

�� � >
1� �

2
and � � 1� �

2
implies g(�; �) � 1� �

2
ln

2

2� �
:

�� � >
1� �

2
and � >

1� �

2
implies � > 1� �:

We deduce that within our range of interest,

�(k) � �mt

for some absolute constant �.

Let Æ be a very small positive constant, and let Z be the number of edges generated within L, so
that Z counts a subset of the edges between K and K. Then

Pr (9Q;R � N : Z � Æ�(k)) � 2t exp (��(k) (1� Æ ln e=Æ))

� 2te��mt=2

= e��mt=3;

provided m is suÆciently large. This completes the proof of the lemma, except for very small sets
K.

For sets K of size s � ln t we note that, as G(t) is connected, the conductivity �K is always 
(1=k).

5 Extensions and further research

There are some natural questions to be explored in the context of the above models.

� It should be possible to extend the analysis to other models of web-graphs e.g. [7], [8]. In
principal, one should only have to establish that random walks on these graphs are rapidly
mixing.

� One can consider non-uniform random walks. Suppose for example that each v 2 [t] is given
a weight �(v) and when at a vertex v the spider chooses its next vertex with probability
proportional to �(v). If �(v) =

P
N(v) �(v) (N(v) denotes the neighbours of v) then the

steady state probability �(v) of being at v in such a walk is proportional to �(v) = �(v)�(v).
Again, once one shows rapid mixing it should be possible to obtain an expression like (1) for
the number of unvisited vertices.

� We have only estimated the expectation of the number of unvisited vertices. It would be
interesting to establish a concentration result.
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