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A real world swarm robotics example

k k awake robots

l l asleep robots







  

Given graph with one awake and

many asleep robots

Awake robots can travel unit dis-

tance per time unit

Wake up all robots as quickly as

possible
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A real world swarm robotics example

k k awake robots

l l asleep robots



  

[Arkin et al. ’02] call this the Freeze-Tag problem.

Achieve O(log n)-competitive online algorithm for

dense n-node graphs.

This paper: Improve competitive ratio to O(
√

log n).
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BDST: Degree-bounded min-diameter trees

Definition [BDST]

Given Undirected complete graph G on nodes V ,
Metric length {luv}u,v∈V , and
Degree-bound Bv > 0 for all v ∈ V .

Find minimum-diameter spanning tree T with node-degree at most
Bv for all v ∈ V .
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BDST: Degree-bounded min-diameter trees

Definition [BDST]

Given Undirected complete graph G on nodes V ,
Metric length {luv}u,v∈V , and
Degree-bound Bv > 0 for all v ∈ V .

Find minimum-diameter spanning tree T with node-degree at most
Bv for all v ∈ V .

Quiz: Why does a O(
√

logB n)-approx for BDST help to improve
competitive ratio for Freeze-Tag?
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Wake-up trees

Define auxiliary complete graph GR with one node for each
robot.
Distance between any two nodes u and v is distance in original
graph.
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Wake-up trees

Define auxiliary complete graph GR with one node for each
robot.
Distance between any two nodes u and v is distance in original
graph.

A solution to a Freeze-Tag instance with maximum wake-up
time t corresponds to:
A binary spanning tree T of GR rooted at awake robot with
longest root,leaf-path of length t
Idea:

r0

r1

r2 r3

r0 wakes up r1 and then they both wake at

most two other robots r2 and r3
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Main Result

Theorem 1
Given:

1. Complete graph G on node-set V ,

2. Metric {luv}u,v∈V , and

3. Degree-bounds {Bv}v∈V .

We show: Can compute spanning tree T with

1. Degree at most Bv at node v for all v ∈ V

2. Diameter of T is O(
√

logB n) · ∆

(∆: minimum diameter of any feasible solution
B = maxv Bv)
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Main Result

Theorem 1
Given:

1. Complete graph G on node-set V ,

2. Metric {luv}u,v∈V , and

3. Degree-bounds {Bv}v∈V .

We show: Can compute spanning tree T with

1. Degree at most Bv at node v for all v ∈ V

2. Diameter of T is O(
√

logB n) · ∆

(∆: minimum diameter of any feasible solution
B = maxv Bv)

Hardness [Arkin et al. ’02]
Not approximable within 5/3 − ε for any ε > 0 unless P=NP.

– p.5/21



Previous Work

[Ravi ’94] Approximation algorithm for broadcasting
Given: Graph G(V, E), (non-metric) length

on edges, degree-bounds Bv > 0
for all v ∈ V

Computes: Tree T with degree O(log2 n) · Bv

at node v ∈ V and diameter O(log n) · ∆

[Arkin et al. ’02]
[Arkin et al. ’03]

Approximation algorithms for
Freeze-Tag in various topologies
Obtain a O(log ∆) approximation
for general graphs with maximum
degree ∆ and metric lengths.

– p.6/21



Algorithm: Intuition

Given: Input graph G and degree bound B.
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Algorithm: Intuition

Given: Input graph G and degree bound B.

1) Partition G into low-diameter components

2) [Global Tree] Connect components with low-

diameter tree

3) [Local Trees] For all components find low-

diameter trees with max-degree B

Ensure by construction: Final tree has max-degree B.
Diameter proof bounds short and long edges independently.
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Algorithm: Preliminaries

Assume for rest of talk that optimum diameter ∆ is known.
Reasonable assumption since

∆ ∈ [max
e∈E

le, n · max
e∈E

le]

Can do binary search on this interval!
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Algorithm: Preliminaries

Assume for rest of talk that optimum diameter ∆ is known.
Reasonable assumption since

∆ ∈ [max
e∈E

le, n · max
e∈E

le]

Can do binary search on this interval!

Algorithm picks threshold α and computes (set,center) pairs

{(V1, v1), . . . , (Vl, vl)}

such that
1. V = V1 ∪ . . . ∪ Vl, and
2. For all i: vi ∈ Vi and distl(vi, u) ≤ 3α for all u ∈ Vi
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Algorithm: Partitioning

Algorithm picks centers iteratively.

covered inactive center
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Pick active node that has most active nodes within

ball of radius α.
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Algorithm: Partitioning

Algorithm picks centers iteratively.

Pick active node that has most active nodes within

ball of radius α.

Mark all nodes within 3α of new center covered.

Mark all nodes within α of new center inactive.

Stop when all nodes are covered.

Result:

Partition: V1, . . . , Vl

Centers: v1, . . . , vl

covered inactive center
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Algorithm: Global tree

Goal: Set up global instance on center nodes.
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Algorithm: Global tree

Goal: Set up global instance on center nodes.

Set new degree-bounds on center nodes.

Consider complete graph on center nodes.

Global Tree algorithm:

1. Order center nodes by non-increasing degree-

bounds v1, v2, . . .

2. v1 is root of global tree

3. Consider centers one by one in that order

4. Always connect next center to earliest node in

list whose degree-bound is not yet exhausted

B1 = 3 · B − 4

B2 = 7 · B − 12
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Algorithm: Local Trees

For each set Vi in partition:

1. Consider complete graph on Vi

2. Find complete B − 1-ary tree on of G[Vi]

rooted at vi
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Algorithm: Local Trees

For each set Vi in partition:

1. Consider complete graph on Vi

2. Find complete B − 1-ary tree on of G[Vi]

rooted at vi

Merge local and global trees.
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Analysis: Short and Long Edges

Short edges connect nodes in the same set of the

partition.

Their length is at most 6α.
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Analysis: Short and Long Edges

Short edges connect nodes in the same set of the

partition.

Their length is at most 6α.

Long edges connect center nodes.

Their length is at most ∆
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Analysis: Outline

Show that any root,leaf path in our tree has

1. O(
√

logB n) long edges, and

2. O(logB n) short edges.
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Analysis: Outline

Show that any root,leaf path in our tree has

1. O(
√

logB n) long edges, and

2. O(logB n) short edges.

This implies: Length of any root,leaf path is at most

O(
√

logB n) · ∆ + O(logB n) · α
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Analysis: Outline

Show that any root,leaf path in our tree has

1. O(
√

logB n) long edges, and

2. O(logB n) short edges.

This implies: Length of any root,leaf path is at most

O(
√

logB n) · ∆ + O(logB n) · α

With α = ∆/
√

logB n: Length of root,leaf path is bouded by

O(
√

logB n) · ∆
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Analysis: Degree

Short edges:

Each node has at most B of these incident to it.
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Analysis: Degree

Short edges:

Each node has at most B of these incident to it.

Long edges:

Center i has at most Bi incident to it.

Example: Total available degree in V1 is 3 · B.

Short edges consume 4. Leaves us with B1...

B1 = 3 · B − 4

– p.14/21



Analysis: Degree

Short edges:

Each node has at most B of these incident to it.

Long edges:

Center i has at most Bi incident to it.

Example: Total available degree in V1 is 3 · B.

Short edges consume 4. Leaves us with B1...

Redistribute long edges incident to vi over Vi!

B1 = 3 · B − 4
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Analysis: Long Edges

Partition an optimum solution T ∗:
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Analysis: Long Edges

Partition an optimum solution T ∗:

Start with root node and cover all nodes at

distance α in T ∗ from it.
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and cover all nodes at distance α in T ∗ from

it.
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Analysis: Long Edges

Partition an optimum solution T ∗:

Start with root node and cover all nodes at

distance α in T ∗ from it.

Take highest uncovered node as next root

and cover all nodes at distance α in T ∗ from

it.

Repeat!

Process leads to partition V ∗
1 , . . . , V ∗

k with centers v∗1, . . . , v
∗
k.
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Analysis: Long Edges

Observation: |V ∗
i | induces connected piece of T ∗.

Hence: V ∗
i can have at most

B∗
i = |V ∗

i | · B − 2(|V ∗
i | − 1)

children in T ∗.
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Analysis: Long Edges

Observation: |V ∗
i | induces connected piece of T ∗.

Hence: V ∗
i can have at most

B∗
i = |V ∗

i | · B − 2(|V ∗
i | − 1)

children in T ∗.

Have: Two partitions

{Vi}1≤i≤l and {V ∗
i }1≤i≤k

W.l.o.g.: B1 ≥ . . . ≥ Bl and B∗
1 ≥ . . . ≥ B∗

k
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Analysis: Long Edges

Have: Two partitions

{Vi}1≤i≤l and {V ∗
i }1≤i≤k

W.l.o.g.: B1 ≥ . . . ≥ Bl and B∗
1 ≥ . . . ≥ B∗

k

Lemma: We must have l ≤ k and for all 1 ≤ i ≤ l

i
∑

j=1

B∗
i ≤

i
∑

j=1

Bi
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Have: Two partitions

{Vi}1≤i≤l and {V ∗
i }1≤i≤k

W.l.o.g.: B1 ≥ . . . ≥ Bl and B∗
1 ≥ . . . ≥ B∗

k

Lemma: We must have l ≤ k and for all 1 ≤ i ≤ l

i
∑

j=1

B∗
i ≤

i
∑

j=1

Bi

Proof idea: Uses the existence of {V ∗
i }1≤i≤k and the fact

that the sets in {Vi}1≤i≤l have radius 3α.
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Analysis: Long Edges

Have: Two partitions

{Vi}1≤i≤l and {V ∗
i }1≤i≤k

W.l.o.g.: B1 ≥ . . . ≥ Bl and B∗
1 ≥ . . . ≥ B∗

k

Lemma: We must have l ≤ k and for all 1 ≤ i ≤ l

i
∑

j=1

B∗
i ≤

i
∑

j=1

Bi

Proof idea: Uses the existence of {V ∗
i }1≤i≤k and the fact

that the sets in {Vi}1≤i≤l have radius 3α.

What does this imply?
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Analysis: Long Edges

Recall partition of optimum solution T ∗
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Analysis: Long Edges

Recall partition of optimum solution T ∗

Consider tree T g induced by center nodes in T ∗

Lemma:
∑

i B∗

i ≤
∑

i Bi

Implication: Global tree is at most as high as T g
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Lemma:
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Analysis: Long Edges

Recall partition of optimum solution T ∗

Consider tree T g induced by center nodes in T ∗

Lemma:
∑

i B∗

i ≤
∑

i Bi

Implication: Global tree is at most as high as T g

Observation: Edges in T g have length at least α!

Hence: Height of T g is at most ∆/α
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Analysis: Long Edges

Recall partition of optimum solution T ∗

Consider tree T g induced by center nodes in T ∗

Lemma:
∑

i B∗

i ≤
∑

i Bi

Implication: Global tree is at most as high as T g

Observation: Edges in T g have length at least α!

Hence: Height of T g is at most ∆/α

Lemma: With α = ∆/
√

logB n we must have that the our

global tree has height O(
√

logB n).
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Analysis: Outline

Show that any root,leaf path in our tree has

1. O(
√

logB n) long edges, and

2. O(logB n) short edges.

This implies: Length of any root,leaf path is at most

O(
√

logB n) · ∆ + O(logB n) · α

With α = ∆/
√

logB n: Length of root,leaf path is bouded by

O(
√

logB n) · ∆
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√

logB n: Length of root,leaf path is bouded by

O(
√

logB n) · ∆

– p.18/21



Analysis: Short Edges

Look at global tree on center nodes.
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Analysis: Short Edges

Look at global tree on center nodes.

Observe: Let vi and vj be to center nodes. Can

organize global tree s.t.

1. |Vi| > |Vj | if depth(vi) < depth(vj)
vi

vj
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Observe: Let vi and vj be to center nodes. Can

organize global tree s.t.

1. |Vi| > |Vj | if depth(vi) < depth(vj)

2. |Vi| ≥ |Vj | is depth(vi) = depth(vj)

and vi is left of vj

vi vj
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Analysis: Short Edges

Look at global tree on center nodes.

Observe: Let vi and vj be to center nodes. Can

organize global tree s.t.

1. |Vi| > |Vj | if depth(vi) < depth(vj)

2. |Vi| ≥ |Vj | is depth(vi) = depth(vj)

and vi is left of vj

Consider two root,leaf-paths

P1 = 〈v1

1 , . . . v1

q 〉
P2 = 〈v2

1 , . . . v2

r〉
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P1 = 〈v1
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q 〉
P2 = 〈v2

1 , . . . v2

r〉

Observations:

1. Leaves in global tree are on consecutive

layers: q ≤ r + 1
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Look at global tree on center nodes.

Observe: Let vi and vj be to center nodes. Can

organize global tree s.t.

1. |Vi| > |Vj | if depth(vi) < depth(vj)

2. |Vi| ≥ |Vj | is depth(vi) = depth(vj)
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q 〉
P2 = 〈v2

1 , . . . v2
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Analysis: Short Edges

Consider two root,leaf-paths

P1 = 〈v1

1 , . . . v1

q 〉
P2 = 〈v2

1 , . . . v2

r〉

Observations:

1. Leaves in global tree are on consecutive

layers: q ≤ r + 1

2. Know that |V 1

i | ≤ |V 2

i−1
| for 2 ≤ i ≤ q

Hence:

|P1|s ≤ |P2|s + q + O(logB |V1|)
= |P2|s + 2 logB n
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Analysis: Short Edges

Consider two root,leaf-paths

P1 = 〈v1

1 , . . . v1

q 〉
P2 = 〈v2

1 , . . . v2

r〉

Observations:

1. Leaves in global tree are on consecutive

layers: q ≤ r + 1

2. Know that |V 1

i | ≤ |V 2

i−1
| for 2 ≤ i ≤ q

Hence:

|P1|s ≤ |P2|s + q + O(logB |V1|)
= |P2|s + 2 logB n

Similar: |P2|s ≤ |P1|s + logB n
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Analysis: Short Edges

Hence:

|P1|s ≤ |P2|s + q + O(logB |V1|)
= |P2|s + 2 logB n

Similar: |P2|s ≤ |P1|s + logB n

This means:

|P |s ≤ γ + 2 logB n for all root,leaf paths P

Lemma: |P |s = O(logB n) for all root,leaf paths in our tree.

Proof idea: All but O(logB n) nodes on any root,leaf-path
have degree B.
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Analysis: Outline

Show that any root,leaf path in our tree has

1. O(
√

logB n) long edges, and

2. O(logB n) short edges.

This implies: Length of any root,leaf path is at most

O(
√

logB n) · ∆ + O(logB n) · α

With α = ∆/
√

logB n: Length of root,leaf path is bouded by

O(
√

logB n) · ∆
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Conclusion

This talk: We show how to compute a tree T with maxi-
mum degree B and diameter O(

√

logB n) ·∆ in
complete metrics

This implies: O(
√

logB n)-competitive algo-
rithm for Freeze-Tag in general graphs.
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Conclusion

This talk: We show how to compute a tree T with maxi-
mum degree B and diameter O(

√

logB n) ·∆ in
complete metrics

This implies: O(
√

logB n)-competitive algo-
rithm for Freeze-Tag in general graphs.

Open questions:

1. Close gap between 5/3-hardness and O(
√

logB n)-
approximation

2. We strongly use fact that input graph is complete.
Best known for incomplete graphs is still [Ravi et al.]:
Can compute tree with
(a) Diameter O(log n)∆, and

(b) Maximum degree O(log2 n) · B
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