Approximating the Degree-Bounded Minimum-Diameter Spanning Tree Problem

Jochen Könemann

Department of Combinatorics & Optimization University of Waterloo

Joint work with A. Levin, Tel Aviv University A. Sinha, Carngie Mellon University

k awake robots *l* asleep robots

Given graph with one awake and many asleep robots Awake robots can travel unit distance per time unit Wake up all robots as quickly as possible

BDST: Degree-bounded min-diameter trees

Definition [BDST]

Given Undirected complete graph G on nodes V, Metric length $\{l_{uv}\}_{u,v\in V}$, and Degree-bound $B_v > 0$ for all $v \in V$.

Find minimum-diameter spanning tree T with node-degree at most B_v for all $v \in V$.

BDST: Degree-bounded min-diameter trees

Definition [BDST]

Given Undirected complete graph G on nodes V, Metric length $\{l_{uv}\}_{u,v\in V}$, and Degree-bound $B_v > 0$ for all $v \in V$.

Find minimum-diameter spanning tree T with node-degree at most B_v for all $v \in V$.

Quiz: Why does a $O(\sqrt{\log_B n})$ -approx for BDST help to improve competitive ratio for Freeze-Tag?

Wake-up trees

Define auxiliary complete graph G_R with one node for each robot. Distance between any two nodes u and v is distance in original graph.

Wake-up trees

- Define auxiliary complete graph G_R with one node for each robot. Distance between any two nodes u and v is distance in original graph.
- A solution to a Freeze-Tag instance with maximum wake-up time *t* corresponds to:
 A binary spanning tree *T* of *G_R* rooted at awake robot with longest root, leaf-path of length *t* ldea:

 r_0 wakes up r_1 and then they both wake at most two other robots r_2 and r_3

Main Result

Theorem 1

Given:

- 1. Complete graph G on node-set V,
- 2. Metric $\{l_{uv}\}_{u,v\in V}$, and
- 3. Degree-bounds $\{B_v\}_{v \in V}$.

We show: Can compute spanning tree T with

- 1. Degree at most B_v at node v for all $v \in V$
- 2. Diameter of *T* is $O(\sqrt{\log_B n}) \cdot \Delta$ (Δ : minimum diameter of any feasible solution $B = \max_v B_v$)

Main Result

Theorem 1

Given:

- 1. Complete graph G on node-set V,
- 2. Metric $\{l_{uv}\}_{u,v\in V}$, and
- 3. Degree-bounds $\{B_v\}_{v \in V}$.

We show: Can compute spanning tree T with

- 1. Degree at most B_v at node v for all $v \in V$
- 2. Diameter of *T* is $O(\sqrt{\log_B n}) \cdot \Delta$ (Δ : minimum diameter of any feasible solution $B = \max_v B_v$)

<u>Hardness</u> [Arkin et al. '02] Not approximable within $5/3 - \epsilon$ for any $\epsilon > 0$ unless P=NP.

Previous Work

[Ravi '94]

Approximation algorithm for broadcasting Given: Graph G(V, E), (non-metric) length on edges, degree-bounds $B_v > 0$ for all $v \in V$ Computes: Tree T with degree $O(\log^2 n) \cdot B_v$ at node $v \in V$ and diameter $O(\log n) \cdot \Delta$

[Arkin et al. '02] [Arkin et al. '03] Approximation algorithms for Freeze-Tag in various topologies Obtain a $O(\log \Delta)$ approximation for general graphs with maximum degree Δ and metric lengths.

Given: Input graph G and degree bound B.

1) Partition G into low-diameter components

- **1)** Partition G into low-diameter components
- 2) [Global Tree] Connect components with lowdiameter tree

- **1)** Partition G into low-diameter components
- 2) [Global Tree] Connect components with lowdiameter tree

- **1)** Partition *G* into low-diameter components
- 2) [Global Tree] Connect components with lowdiameter tree
- **3)** [Local Trees] For all components find lowdiameter trees with max-degree *B*

- **1)** Partition G into low-diameter components
- 2) [Global Tree] Connect components with lowdiameter tree
- **3)** [Local Trees] For all components find lowdiameter trees with max-degree *B*

Given: Input graph G and degree bound B.

- **1)** Partition *G* into low-diameter components
- 2) [Global Tree] Connect components with lowdiameter tree
- **3)** [Local Trees] For all components find lowdiameter trees with max-degree *B*

Ensure by construction: Final tree has max-degree B. Diameter proof bounds short and long edges independently.

Algorithm: Preliminaries

Assume for rest of talk that optimum diameter Δ is known. Reasonable assumption since

$$\Delta \in \left[\max_{e \in E} l_e, n \cdot \max_{e \in E} l_e\right]$$

Can do binary search on this interval!

Algorithm: Preliminaries

Assume for rest of talk that optimum diameter Δ is known. Reasonable assumption since

$$\Delta \in \left[\max_{e \in E} l_e, n \cdot \max_{e \in E} l_e\right]$$

Can do binary search on this interval!

Algorithm picks threshold α and computes (set,center) pairs

$$\{(V_1, v_1), \ldots, (V_l, v_l)\}$$

such that

- 1. $V = V_1 \cup \ldots \cup V_l$, and
- 2. For all $i: v_i \in V_i$ and $dist_l(v_i, u) \leq 3\alpha$ for all $u \in V_i$

Algorithm picks centers iteratively.

Algorithm picks centers iteratively.

Pick active node that has most active nodes within ball of radius α .

Algorithm picks centers iteratively.

Pick active node that has most active nodes within ball of radius α .

Mark all nodes within 3α of new center covered.

Algorithm picks centers iteratively.

Pick active node that has most active nodes within ball of radius α .

Mark all nodes within 3α of new center covered. Mark all nodes within α of new center inactive.

Algorithm picks centers iteratively.

 \rightarrow Pick active node that has most active nodes within ball of radius α .

Mark all nodes within 3α of new center covered. Mark all nodes within α of new center inactive.

Algorithm picks centers iteratively.

Pick active node that has most active nodes within ball of radius α .

 \rightarrow Mark all nodes within 3α of new center covered. Mark all nodes within α of new center inactive.

Algorithm picks centers iteratively.

Pick active node that has most active nodes within ball of radius α .

Mark all nodes within 3α of new center covered. Mark all nodes within α of new center inactive. Stop when all nodes are covered.

Algorithm picks centers iteratively.

Pick active node that has most active nodes within ball of radius α .

Mark all nodes within 3α of new center covered. Mark all nodes within α of new center inactive. Stop when all nodes are covered.

Result:

Partition: V_1, \ldots, V_l Centers: v_1, \ldots, v_l

Algorithm: Global tree

Goal: Set up global instance on center nodes.

Algorithm: Global tree

Goal: Set up global instance on center nodes. Set new degree-bounds on center nodes.

Algorithm: Global tree

Goal: Set up global instance on center nodes.Set new degree-bounds on center nodes.Consider complete graph on center nodes.
Algorithm: Global tree

Goal: Set up global instance on center nodes.Set new degree-bounds on center nodes.Consider complete graph on center nodes.

Global Tree algorithm:

- 1. Order center nodes by non-increasing degreebounds v_1, v_2, \ldots
- 2. v_1 is root of global tree
- 3. Consider centers one by one in that order
- 4. Always connect next center to earliest node in list whose degree-bound is not yet exhausted

Algorithm: Local Trees

For each set V_i in partition:

- 1. Consider complete graph on V_i
- 2. Find complete B 1-ary tree on of $G[V_i]$ rooted at v_i

Algorithm: Local Trees

For each set V_i in partition:

- 1. Consider complete graph on V_i
- 2. Find complete B 1-ary tree on of $G[V_i]$ rooted at v_i

Algorithm: Local Trees

For each set V_i in partition:

- 1. Consider complete graph on V_i
- 2. Find complete B 1-ary tree on of $G[V_i]$ rooted at v_i

Merge local and global trees.

Analysis: Short and Long Edges

Short edges connect nodes in the same set of the partition.

Their length is at most 6α .

Analysis: Short and Long Edges

Short edges connect nodes in the same set of the partition. Their length is at most 6α .

Long edges connect center nodes. Their length is at most Δ

Show that any root, leaf path in our tree has

- 1. $O(\sqrt{\log_B n})$ long edges, and
- 2. $O(\log_B n)$ short edges.

Show that any root, leaf path in our tree has

- 1. $O(\sqrt{\log_B n})$ long edges, and
- 2. $O(\log_B n)$ short edges.
- This implies: Length of any root, leaf path is at most

$$O(\sqrt{\log_B n}) \cdot \Delta + O(\log_B n) \cdot \alpha$$

Show that any root, leaf path in our tree has

- 1. $O(\sqrt{\log_B n})$ long edges, and
- 2. $O(\log_B n)$ short edges.
- This implies: Length of any root, leaf path is at most

$$O(\sqrt{\log_B n}) \cdot \Delta + O(\log_B n) \cdot \alpha$$

With $\alpha = \Delta/\sqrt{\log_B n}$: Length of root, leaf path is bouded by

 $O(\sqrt{\log_B n}) \cdot \Delta$

Analysis: Degree

Short edges:

Each node has at most B of these incident to it.

Analysis: Degree

Short edges:

Each node has at most B of these incident to it.

Long edges: Center *i* has at most B_i incident to it. Example: Total available degree in V_1 is $3 \cdot B$. Short edges consume 4. Leaves us with B_1 ...

Analysis: Degree

Short edges:

Each node has at most B of these incident to it.

Long edges: Center *i* has at most B_i incident to it. Example: Total available degree in V_1 is $3 \cdot B$. Short edges consume 4. Leaves us with B_1 ... Redistribute long edges incident to v_i over V_i !

Partition an optimum solution T^* :

Partition an optimum solution T^* :

Start with root node and cover all nodes at distance α in T^* from it.

Partition an optimum solution T^* :

Start with root node and cover all nodes at distance α in T^* from it.

Take highest uncovered node as next root and cover all nodes at distance α in T^* from it.

Partition an optimum solution T^* :

Start with root node and cover all nodes at distance α in T^* from it.

Take highest uncovered node as next root and cover all nodes at distance α in T^* from

it.

Repeat!

Partition an optimum solution T^* :

Start with root node and cover all nodes at distance α in T^* from it.

Take highest uncovered node as next root and cover all nodes at distance α in T^* from it.

Repeat!

Process leads to partition V_1^*, \ldots, V_k^* with centers v_1^*, \ldots, v_k^* .

Observation: $|V_i^*|$ induces connected piece of T^* . Hence: V_i^* can have at most

$$B_i^* = |V_i^*| \cdot B - 2(|V_i^*| - 1)$$

children in T^* .

Observation: $|V_i^*|$ induces connected piece of T^* . Hence: V_i^* can have at most

$$B_i^* = |V_i^*| \cdot B - 2(|V_i^*| - 1)$$

children in T^* .

Have: Two partitions

 $\{V_i\}_{1 \le i \le l}$ and $\{V_i^*\}_{1 \le i \le k}$ W.I.o.g.: $B_1 \ge \ldots \ge B_l$ and $B_1^* \ge \ldots \ge B_k^*$

Have: Two partitions

 $\{V_i\}_{1 \leq i \leq l} \text{ and } \{V_i^*\}_{1 \leq i \leq k}$ W.I.o.g.: $B_1 \geq \ldots \geq B_l \text{ and } B_1^* \geq \ldots \geq B_k^*$ Lemma: We must have $l \leq k$ and for all $1 \leq i \leq l$

Have: Two partitions

 $\{V_i\}_{1 \le i \le l} \text{ and } \{V_i^*\}_{1 \le i \le k}$ W.I.o.g.: $B_1 \ge \ldots \ge B_l \text{ and } B_1^* \ge \ldots \ge B_k^*$ Lemma: We must have $l \le k$ and for all $1 \le i \le l$

$$\sum_{j=1}^{i} B_i^* \le \sum_{j=1}^{i} B_i$$

Proof idea: Uses the existence of $\{V_i^*\}_{1 \le i \le k}$ and the fact that the sets in $\{V_i\}_{1 \le i \le l}$ have radius 3α .

Have: Two partitions

 $\{V_i\}_{1 \le i \le l} \text{ and } \{V_i^*\}_{1 \le i \le k}$ W.I.o.g.: $B_1 \ge \ldots \ge B_l \text{ and } B_1^* \ge \ldots \ge B_k^*$ Lemma: We must have $l \le k$ and for all $1 \le i \le l$

$$\sum_{j=1}^{i} B_i^* \le \sum_{j=1}^{i} B_i$$

Proof idea: Uses the existence of $\{V_i^*\}_{1 \le i \le k}$ and the fact that the sets in $\{V_i\}_{1 \le i \le l}$ have radius 3α .

What does this imply?

Recall partition of optimum solution T^*

Recall partition of optimum solution T^*

Consider tree T^g induced by center nodes in T^*

Recall partition of optimum solution T^*

Consider tree T^g induced by center nodes in T^*

Lemma: $\sum_{i} B_{i}^{*} \leq \sum_{i} B_{i}$ Implication: Global tree is at most as high as T^{g}

Recall partition of optimum solution T^* Consider tree T^g induced by center nodes in T^*

Lemma: $\sum_{i} B_{i}^{*} \leq \sum_{i} B_{i}$ Implication: Global tree is at most as high as T^{g}

Observation: Edges in T^g have length at least α !

Recall partition of optimum solution T^* Consider tree T^g induced by center nodes in T^*

Lemma: $\sum_{i} B_{i}^{*} \leq \sum_{i} B_{i}$ Implication: Global tree is at most as high as T^{g}

Observation: Edges in T^g have length at least α ! Hence: Height of T^g is at most Δ/α

Recall partition of optimum solution T^* Consider tree T^g induced by center nodes in T^*

Lemma: $\sum_{i} B_{i}^{*} \leq \sum_{i} B_{i}$ Implication: Global tree is at most as high as T^{g}

Observation: Edges in T^g have length at least α ! Hence: Height of T^g is at most Δ/α

Lemma: With $\alpha = \Delta/\sqrt{\log_B n}$ we must have that the our global tree has height $O(\sqrt{\log_B n})$.

Show that any root, leaf path in our tree has

- 1. $O(\sqrt{\log_B n})$ long edges, and
- 2. $O(\log_B n)$ short edges.
- This implies: Length of any root, leaf path is at most

$$O(\sqrt{\log_B n}) \cdot \Delta + O(\log_B n) \cdot \alpha$$

• With $\alpha = \Delta/\sqrt{\log_B n}$: Length of root, leaf path is bouded by

 $O(\sqrt{\log_B n}) \cdot \Delta$

Show that any root, leaf path in our tree has

1. $O(\sqrt{\log_B n})$ long edges, and

2. $O(\log_B n)$ short edges.

This implies: Length of any root, leaf path is at most

$$O(\sqrt{\log_B n}) \cdot \Delta + O(\log_B n) \cdot \alpha$$

• With $\alpha = \Delta/\sqrt{\log_B n}$: Length of root, leaf path is bouded by

 $O(\sqrt{\log_B n}) \cdot \Delta$

Look at global tree on center nodes.

Look at global tree on center nodes. Observe: Let v_i and v_j be to center nodes. Can organize global tree s.t.

1.
$$|V_i| > |V_j|$$
 if depth $(v_i) < depth(v_j)$

Look at global tree on center nodes.

Observe: Let v_i and v_j be to center nodes. Can organize global tree s.t.

- 1. $|V_i| > |V_j|$ if depth $(v_i) < depth(v_j)$
- 2. $|V_i| \ge |V_j|$ is depth $(v_i) = depth(v_j)$ and v_i is left of v_j

Look at global tree on center nodes.

Observe: Let v_i and v_j be to center nodes. Can organize global tree s.t.

- 1. $|V_i| > |V_j|$ if depth $(v_i) < \text{depth}(v_j)$
- 2. $|V_i| \ge |V_j|$ is depth $(v_i) = depth(v_j)$ and v_i is left of v_j

Consider two root, leaf-paths

$$P_1 = \langle v_1^1, \dots v_q^1 \rangle$$
$$P_2 = \langle v_1^2, \dots v_r^2 \rangle$$

Look at global tree on center nodes.

Observe: Let v_i and v_j be to center nodes. Can organize global tree s.t.

- 1. $|V_i| > |V_j|$ if depth $(v_i) < depth(v_j)$
- 2. $|V_i| \ge |V_j|$ is depth $(v_i) = depth(v_j)$ and v_i is left of v_j

Consider two root, leaf-paths

 $P_1 = \langle v_1^1, \dots v_q^1 \rangle$ $P_2 = \langle v_1^2, \dots v_r^2 \rangle$

Observations:

1. Leaves in global tree are on consecutive layers: $q \le r + 1$

Look at global tree on center nodes.

Observe: Let v_i and v_j be to center nodes. Can organize global tree s.t.

- 1. $|V_i| > |V_j|$ if depth $(v_i) < \text{depth}(v_j)$
- 2. $|V_i| \ge |V_j|$ is depth $(v_i) = depth(v_j)$ and v_i is left of v_j

Consider two root, leaf-paths

 $P_1 = \langle v_1^1, \dots v_q^1 \rangle$ $P_2 = \langle v_1^2, \dots v_r^2 \rangle$

Observations:

- 1. Leaves in global tree are on consecutive layers: $q \le r + 1$
- 2. Know that $|V_i^1| \le |V_{i-1}^2|$ for $2 \le i \le q$
Analysis: Short Edges

Consider two root, leaf-paths

$$P_1 = \langle v_1^1, \dots v_q^1 \rangle$$
$$P_2 = \langle v_1^2, \dots v_r^2 \rangle$$

Observations:

- 1. Leaves in global tree are on consecutive layers: $q \le r+1$
- 2. Know that $|V_i^1| \le |V_{i-1}^2|$ for $2 \le i \le q$

Hence:

$$|P_1|_s \leq |P_2|_s + q + O(\log_B |V_1|)$$

= $|P_2|_s + 2\log_B n$

Analysis: Short Edges

Consider two root, leaf-paths

$$P_1 = \langle v_1^1, \dots v_q^1 \rangle$$
$$P_2 = \langle v_1^2, \dots v_r^2 \rangle$$

Observations:

- 1. Leaves in global tree are on consecutive layers: $q \le r+1$
- 2. Know that $|V_i^1| \le |V_{i-1}^2|$ for $2 \le i \le q$

Hence:

$$|P_1|_s \leq |P_2|_s + q + O(\log_B |V_1|)$$

= $|P_2|_s + 2\log_B n$

Similar: $|P_2|_s \le |P_1|_s + \log_B n$

Analysis: Short Edges

Hence:

$$|P_1|_s \leq |P_2|_s + q + O(\log_B |V_1|)$$

= $|P_2|_s + 2\log_B n$

Similar: $|P_2|_s \le |P_1|_s + \log_B n$

This means:

 $|P|_s \leq \gamma + 2 \log_B n$ for all root, leaf paths P

Lemma: $|P|_s = O(\log_B n)$ for all root, leaf paths in our tree.

Proof idea: All but $O(\log_B n)$ nodes on any root, leaf-path have degree B.

Analysis: Outline

Show that any root, leaf path in our tree has

1. $O(\sqrt{\log_B n})$ long edges, and

2. $O(\log_B n)$ short edges.

This implies: Length of any root, leaf path is at most

$$O(\sqrt{\log_B n}) \cdot \Delta + O(\log_B n) \cdot \alpha$$

• With $\alpha = \Delta/\sqrt{\log_B n}$: Length of root, leaf path is bouded by

 $O(\sqrt{\log_B n}) \cdot \Delta$

Analysis: Outline

Show that any root,leaf path in our tree has $1. O(\sqrt{\log_B n})$ long edges, and $2. O(\log_B n)$ short edges.

This implies: Length of any root, leaf path is at most

$$O(\sqrt{\log_B n}) \cdot \Delta + O(\log_B n) \cdot \alpha$$

• With $\alpha = \Delta/\sqrt{\log_B n}$: Length of root, leaf path is bouded by

 $O(\sqrt{\log_B n}) \cdot \Delta$

Conclusion

This talk: We show how to compute a tree *T* with maximum degree *B* and diameter $O(\sqrt{\log_B n}) \cdot \Delta$ in complete metrics

This implies: $O(\sqrt{\log_B n})$ -competitive algorithm for Freeze-Tag in general graphs.

Conclusion

This talk: We show how to compute a tree *T* with maximum degree *B* and diameter $O(\sqrt{\log_B n}) \cdot \Delta$ in complete metrics

This implies: $O(\sqrt{\log_B n})$ -competitive algorithm for Freeze-Tag in general graphs.

Open questions:

- 1. Close gap between 5/3-hardness and $O(\sqrt{\log_B n})$ -approximation
- We strongly use fact that input graph is complete. Best known for incomplete graphs is still [Ravi et al.]: Can compute tree with
 - (a) Diameter $O(\log n)\Delta$, and
 - (b) Maximum degree $O(\log^2 n) \cdot B$