Approximating the Degree-Bounded Minimum-Diameter Spanning Tree Problem

Jochen Könemann

Department of Combinatorics & Optimization University of Waterloo

> Joint work withA. Levin, Tel Aviv University A. Sinha, Carngie Mellon University

l asleep robots

Given graph with one awake and many asleep robots Awake robots can travel unit distance per time unit Wake up all robots as quickly as possible

k k awake robots l asleep robots

k k awake robots l asleep robots

k k awake robots ll asleep robots

k k awake robots l asleep robots

k k awake robots l asleep robots

k k awake robots l asleep robots

BDST: Degree-bounded min-diameter trees

Definition [BDST]

Given Undirected complete graph G on nodes $V,$ Metric length $\{l_{uv}\}_{u,v\in V}$, and Degree-bound $B_v > 0$ for all $v \in V$.

Find minimum-diameter spanning tree T with node-degree at most B_v for all $v\in V$.

BDST: Degree-bounded min-diameter trees

Definition [BDST]

Given Undirected complete graph G on nodes $V,$ Metric length $\{l_{uv}\}_{u,v\in V}$, and Degree-bound $B_v > 0$ for all $v \in V$.

Find minimum-diameter spanning tree T with node-degree at most B_v for all $v\in V$.

Quiz: Why does a $O(\sqrt{\log_B n})$ -approx for BDST help to improve competitive ratio for Freeze-Tag?

Wake-up trees

Define auxiliary complete graph G_R with one node for each \bullet robot. Distance between any two nodes u and v is distance in original graph.

Wake-up trees

- Define auxiliary complete graph G_R with one node for each robot. Distance between any two nodes u and v is distance in original graph.
- A solution to a Freeze-Tag instance with maximum wake-up time t corresponds to: A binary spanning tree T of G_R rooted at awake robot with longest root, leaf-path of length t Idea:

 r_0 wakes up r_1 and then they both wake at most two other robots r_2 and r_3

Main Result

Theorem 1

Given:

- 1. Complete graph G on node-set $V,$
- 2. Metric $\{l_{uv}\}_{u,v\in V}$, and
- 3. Degree-bounds ${B_v}_{v \in V}$.

We show: Can compute spanning tree T with

- 1. Degree at most B_v at node v for all $v \in V$
- 2. Diameter of T is $O(\sqrt{\log_B n}) \cdot \Delta$ $(\Delta:$ minimum diameter of any feasible solution $B = \max_v B_v$

Main Result

Theorem 1

Given:

- 1. Complete graph G on node-set $V,$
- 2. Metric $\{l_{uv}\}_{u,v\in V}$, and
- 3. Degree-bounds ${B_v}_{v \in V}$.

We show: Can compute spanning tree T with

- 1. Degree at most B_v at node v for all $v \in V$
- 2. Diameter of T is $O(\sqrt{\log_B n}) \cdot \Delta$ $(\Delta:$ minimum diameter of any feasible solution $B = \max_v B_v$

Hardness [Arkin et al. '02] Not approximable within $5/3 - \epsilon$ for any $\epsilon > 0$ unless P=NP.

Previous Work

[Ravi '94] Approximation algorithm for broadcasting Given: Graph $G(V, E)$, (non-metric) length on edges, degree-bounds $B_v \, > \, 0$ for all $v\in V$ Computes: Tree T with degree $O(\log^2 n) \cdot B_v$ at node $v \in V$ and diameter $O(\log n) \cdot \Delta$

[Arkin et al. '02] [Arkin et al. '03]

Approximation algorithms for Freeze-Tag in various topologies Obtain a $O(\log \Delta)$ approximation for general graphs with maximum degree Δ and metric lengths.

Given: Input graph G and degree bound B .

1) Partition G into low-diameter components

- **1)** Partition G into low-diameter components
- **2)** [Global Tree] Connect components with lowdiameter tree

- **1)** Partition G into low-diameter components
- **2)** [Global Tree] Connect components with lowdiameter tree

- **1)** Partition G into low-diameter components
- **2)** [Global Tree] Connect components with lowdiameter tree
- **3)** [Local Trees] For all components find lowdiameter trees with max-degree B

- **1)** Partition G into low-diameter components
- **2)** [Global Tree] Connect components with lowdiameter tree
- **3)** [Local Trees] For all components find lowdiameter trees with max-degree B

Given: Input graph G and degree bound B .

- **1)** Partition ^G into low-diameter components
- **2)** [Global Tree] Connect components with lowdiameter tree
- **3)** [Local Trees] For all components find lowdiameter trees with max-degree B

Ensure by construction: Final tree has max-degree $B.$ Diameter proof bounds short and long edges independently.

Algorithm: Preliminaries

Assume for rest of talk that optimum diameter Δ is known. Reasonable assumption since

$$
\Delta \in [\max_{e \in E} l_e, n \cdot \max_{e \in E} l_e]
$$

Can do binary search on this interval!

Algorithm: Preliminaries

Assume for rest of talk that optimum diameter Δ is known. Reasonable assumption since

$$
\Delta \in [\max_{e \in E} l_e, n \cdot \max_{e \in E} l_e]
$$

Can do binary search on this interval!

Algorithm picks threshold α and computes (set, center) pairs

$$
\{(V_1, v_1), \ldots, (V_l, v_l)\}
$$

such that

- 1. $\,V = V_1 \cup \ldots \cup V_l,$ and
- 2. For all $i\!:\, v_i\in V_i$ and $\mathtt{dist}_l(v_i,u)\leq 3\alpha$ for all $u\in V_i$

Algorithm picks centers iteratively.

Algorithm picks centers iteratively.

Pick active node that has most active nodes within ball of radius $\alpha.$

Algorithm picks centers iteratively.

Pick active node that has most active nodes within ball of radius $\alpha.$

Mark all nodes within 3α of new center covered.

Algorithm picks centers iteratively.

Pick active node that has most active nodes within ball of radius $\alpha.$

Mark all nodes within 3α of new center covered. Mark all nodes within α of new center inactive.

Algorithm picks centers iteratively.

Pick active node that has most active nodes within ball of radius $\alpha.$

Mark all nodes within 3α of new center covered. Mark all nodes within α of new center inactive.

Algorithm picks centers iteratively.

Pick active node that has most active nodes within ball of radius $\alpha.$

Mark all nodes within 3α of new center covered. Mark all nodes within α of new center inactive.

Algorithm picks centers iteratively.

Pick active node that has most active nodes within ball of radius $\alpha.$

Mark all nodes within 3α of new center covered. Mark all nodes within α of new center inactive. Stop when all nodes are covered.

Algorithm picks centers iteratively.

Pick active node that has most active nodes within ball of radius $\alpha.$

Mark all nodes within 3α of new center covered. Mark all nodes within α of new center inactive. Stop when all nodes are covered.

Result:

Partition: V_1, \ldots, V_l Centers: v_1, \ldots, v_l

Algorithm: Global tree

Goal: Set up global instance on center nodes.

Algorithm: Global tree

Goal: Set up global instance on center nodes. Set new degree-bounds on center nodes.

Algorithm: Global tree

Goal: Set up global instance on center nodes. Set new degree-bounds on center nodes. Consider complete graph on center nodes.
Algorithm: Global tree

Goal: Set up global instance on center nodes. Set new degree-bounds on center nodes. Consider complete graph on center nodes.

Global Tree algorithm:

- 1. Order center nodes by non-increasing degreebounds v_1, v_2, \ldots
- 2. v_1 is root of global tree
- 3. Consider centers one by one in that order
- 4. Always connect next center to earliest node in list whose degree-bound is not ye^t exhausted

Algorithm: Local Trees

For each set V_i in partition:

- 1. Consider complete graph on V_i
- 2. Find complete $B 1$ -ary tree on of $G[V_i]$ rooted at v_i

Algorithm: Local Trees

For each set V_i in partition:

- 1. Consider complete graph on V_i
- 2. Find complete $B 1$ -ary tree on of $G[V_i]$ rooted at v_i

Algorithm: Local Trees

For each set V_i in partition:

- 1. Consider complete graph on V_i
- 2. Find complete $B 1$ -ary tree on of $G[V_i]$ rooted at v_i

Merge local and global trees.

Analysis: Short and Long Edges

Short edges connect nodes in the same set of the partition. Their length is at most 6α .

Analysis: Short and Long Edges

Short edges connect nodes in the same set of the partition. Their length is at most 6α .

Long edges connect center nodes. Their length is at most Δ

Show that any root,leaf path in our tree has

- 1. $O(\sqrt{\log_B n})$ long edges, and
- 2. $\, O(\log_B n)$ short edges.

Show that any root,leaf path in our tree has

- 1. $O(\sqrt{\log_B n})$ long edges, and
- 2. $\, O(\log_B n)$ short edges.
- This implies: Length of any root,leaf path is at most

$$
O(\sqrt{\log_B n}) \cdot \Delta + O(\log_B n) \cdot \alpha
$$

Show that any root,leaf path in our tree has \bullet

- 1. $O(\sqrt{\log_B n})$ long edges, and
- 2. $\, O(\log_B n)$ short edges.
- This implies: Length of any root,leaf path is at most

$$
O(\sqrt{\log_B n}) \cdot \Delta + O(\log_B n) \cdot \alpha
$$

With $\alpha = \Delta/\sqrt{\log_B n}$: Length of root,leaf path is bouded by

 $O(\sqrt{\log_B n}) \cdot \Delta$

Analysis: Degree

Short edges:

Each node has at most B of these incident to it.

Analysis: Degree

Short edges:

Each node has at most B of these incident to it.

Long edges: Center *i* has at most B_i incident to it. Example: Total available degree in V_1 is $3 \cdot B$. Short edges consume 4. Leaves us with $B_1...$

Analysis: Degree

Short edges:

Each node has at most B of these incident to it.

Long edges: Center *i* has at most B_i incident to it. Example: Total available degree in V_1 is $3 \cdot B$. Short edges consume 4. Leaves us with $B_1...$ Redistribute long edges incident to v_i over $V_i!$

Partition an optimum solution T^* :

Partition an optimum solution T^* :

Start with root node and cover all nodes at distance α in T^* from it.

Partition an optimum solution T^* :

Start with root node and cover all nodes at distance α in T^* from it.

Take highest uncovered node as next root and cover all nodes at distance α in T^* from it.

Partition an optimum solution T^* :

Start with root node and cover all nodes at distance α in T^* from it.

Take highest uncovered node as next root and cover all nodes at distance α in T^* from

it.

Repeat!

Partition an optimum solution T^* :

Start with root node and cover all nodes at distance α in T^* from it.

Take highest uncovered node as next root and cover all nodes at distance α in T^* from

it. Repeat!

Process leads to partition V_1^*,\ldots,V_k^* with centers $v_1^*,\ldots,v_k^*.$

Observation: $\vert V_{i}^{\ast }\vert$ induces connected piece of $T^{\ast }.$ Hence: V_i^\ast can have at most

$$
B_i^* = |V_i^*| \cdot B - 2(|V_i^*| - 1)
$$

children in $T^{\ast}.$

Observation: $\vert V_{i}^{\ast }\vert$ induces connected piece of $T^{\ast }.$ Hence: V_i^\ast can have at most

$$
B_i^* = |V_i^*| \cdot B - 2(|V_i^*| - 1)
$$

children in $T^{\ast}.$

Have: Two partitions

 ${V_i}_{1 \leq i \leq l}$ and ${V_i^*}_{1 \leq i \leq k}$ W.l.o.g.: $B_1 \geq \ldots \geq B_l$ and $B_1^* \geq \ldots \geq B_k^*$

Have: Two partitions

 ${V_i}_{1 \leq i \leq l}$ and ${V_i^*}_{1 \leq i \leq k}$ W.l.o.g.: $B_1 \geq \ldots \geq B_l$ and $B_1^* \geq \ldots \geq B_k^*$ Lemma: We must have $l\leq k$ and for all $1\leq i\leq l$

Have: Two partitions

 ${V_i}_{1 \leq i \leq l}$ and ${V_i^*}_{1 \leq i \leq k}$ W.l.o.g.: $B_1 \geq \ldots \geq B_l$ and $B_1^* \geq \ldots \geq B_k^*$ Lemma: We must have $l\leq k$ and for all $1\leq i\leq l$

$$
\sum_{j=1}^{i} B_i^* \le \sum_{j=1}^{i} B_i
$$

Proof idea: Uses the existence of $\{V_i^*\}_{1\leq i\leq k}$ and the fact that the sets in $\{V_i\}_{1\leq i\leq l}$ have radius $3\alpha.$

Have: Two partitions

 ${V_i}_{1 \leq i \leq l}$ and ${V_i^*}_{1 \leq i \leq k}$ W.l.o.g.: $B_1 \geq \ldots \geq B_l$ and $B_1^* \geq \ldots \geq B_k^*$ Lemma: We must have $l\leq k$ and for all $1\leq i\leq l$

$$
\sum_{j=1}^{i} B_i^* \le \sum_{j=1}^{i} B_i
$$

Proof idea: Uses the existence of $\{V_i^*\}_{1\leq i\leq k}$ and the fact that the sets in $\{V_i\}_{1\leq i\leq l}$ have radius $3\alpha.$

What does this imply?

Recall partition of optimum solution T^*

Recall partition of optimum solution T^*

Consider tree T^g induced by center nodes in T^*

Recall partition of optimum solution T^*

Consider tree T^g induced by center nodes in T^*

Lemma: $\sum_i B^*_i \leq \sum_i B_i$ Implication: Global tree is at most as high as T^g

Recall partition of optimum solution T^* Consider tree T^g induced by center nodes in T^*

Lemma: $\sum_i B^*_i \leq \sum_i B_i$ Implication: Global tree is at most as high as T^g

Observation: Edges in T^g have length at least $\alpha!$

Recall partition of optimum solution T^* Consider tree T^g induced by center nodes in T^*

Lemma: $\sum_i B^*_i \leq \sum_i B_i$ Implication: Global tree is at most as high as T^g

Observation: Edges in T^g have length at least $\alpha!$ Hence: Height of T^g is at most Δ/α

Recall partition of optimum solution T^* Consider tree T^g induced by center nodes in T^*

Lemma: $\sum_i B^*_i \leq \sum_i B_i$ Implication: Global tree is at most as high as T^g

Observation: Edges in T^g have length at least $\alpha!$ Hence: Height of T^g is at most Δ/α

Lemma: With $\alpha = \Delta/\sqrt{\log_B n}$ we must have that the our global tree has height $O(\sqrt{\log_B n})$.

Show that any root,leaf path in our tree has

- 1. $O(\sqrt{\log_B n})$ long edges, and
- 2. $\, O(\log_B n)$ short edges.
- This implies: Length of any root,leaf path is at most

$$
O(\sqrt{\log_B n}) \cdot \Delta + O(\log_B n) \cdot \alpha
$$

With $\alpha = \Delta/\sqrt{\log_B n}$: Length of root,leaf path is bouded by

 $O(\sqrt{\log_B n}) \cdot \Delta$

Show that any root,leaf path in our tree has

- 1. $O(\sqrt{\log_B n})$ long edges, and
- 2. $\, O(\log_B n)$ short edges.
- This implies: Length of any root,leaf path is at most

$$
O(\sqrt{\log_B n}) \cdot \Delta + O(\log_B n) \cdot \alpha
$$

With $\alpha = \Delta/\sqrt{\log_B n}$: Length of root,leaf path is bouded by

 $O(\sqrt{\log_B n}) \cdot \Delta$

Look at global tree on center nodes.

Look at global tree on center nodes. Observe: Let v_i and v_j be to center nodes. Can organize global tree s.t.

$$
v_i \bigotimes \qquad \qquad 1. \ |V_i| > |V_j| \text{ if }\text{depth}(v_i) < \text{depth}(v_j)
$$

Look at global tree on center nodes.

Observe: Let v_i and v_j be to center nodes. Can organize global tree s.t.

- $1. \hspace{.2cm} |V_i| > |V_j|$ if $\texttt{depth}(v_i) < \texttt{depth}(v_j)$
- 2. $|V_i| \ge |V_j|$ is depth $(v_i) = \text{depth}(v_j)$ and v_i is left of v_j

Look at global tree on center nodes.

Observe: Let v_i and v_j be to center nodes. Can organize global tree s.t.

- $1. \hspace{.2cm} |V_i| > |V_j|$ if $\texttt{depth}(v_i) < \texttt{depth}(v_j)$
- 2. $|V_i| \ge |V_j|$ is depth $(v_i) = \text{depth}(v_j)$ and v_i is left of v_j

Consider two root,leaf-paths

 P_1 = $\langle v_1^1, \ldots v_q^1 \rangle$ P_2 = $\langle v_1^2, \ldots v_r^2 \rangle$

Look at global tree on center nodes.

Observe: Let v_i and v_j be to center nodes. Can organize global tree s.t.

- $1. \hspace{.2cm} |V_i| > |V_j|$ if $\texttt{depth}(v_i) < \texttt{depth}(v_j)$
- 2. $|V_i| \ge |V_j|$ is depth $(v_i) = \text{depth}(v_j)$ and v_i is left of v_j

Consider two root,leaf-paths

 P_1 = $\langle v_1^1, \ldots v_q^1 \rangle$ P_2 = $\langle v_1^2, \ldots v_r^2 \rangle$

Observations:

1. Leaves in global tree are on consecutive layers: $q \leq r+1$

Look at global tree on center nodes.

Observe: Let v_i and v_j be to center nodes. Can organize global tree s.t.

- $1. \hspace{.2cm} |V_i| > |V_j|$ if $\texttt{depth}(v_i) < \texttt{depth}(v_j)$
- 2. $|V_i| \ge |V_j|$ is depth $(v_i) = \text{depth}(v_j)$ and v_i is left of v_j

Consider two root,leaf-paths

 P_1 = $\langle v_1^1, \ldots v_q^1 \rangle$ P_2 = $\langle v_1^2, \ldots v_r^2 \rangle$

Observations:

- 1. Leaves in global tree are on consecutive layers: $q \leq r+1$
- 2. Know that $|V_i^1| \leq |V_{i-1}^2|$ for $2 \leq i \leq q$
Analysis: Short Edges

Consider two root,leaf-paths

$$
P_1 = \langle v_1^1, \dots v_q^1 \rangle
$$

\n
$$
P_2 = \langle v_1^2, \dots v_r^2 \rangle
$$

Observations:

- 1. Leaves in global tree are on consecutive layers: $q \leq r + 1$
- 2. Know that $|V_i^1| \leq |V_{i-1}^2|$ for $2 \leq i \leq q$

Hence:

$$
|P_1|_s \le |P_2|_s + q + O(\log_B |V_1|)
$$

=
$$
|P_2|_s + 2 \log_B n
$$

Analysis: Short Edges

Consider two root,leaf-paths

$$
P_1 = \langle v_1^1, \dots v_q^1 \rangle
$$

\n
$$
P_2 = \langle v_1^2, \dots v_r^2 \rangle
$$

Observations:

- 1. Leaves in global tree are on consecutive layers: $q \leq r + 1$
- 2. Know that $|V_i^1| \leq |V_{i-1}^2|$ for $2 \leq i \leq q$

Hence:

$$
|P_1|_s \le |P_2|_s + q + O(\log_B |V_1|)
$$

=
$$
|P_2|_s + 2 \log_B n
$$

Similar: $|P_2|_s\leq |P_1|_s+\log_B n$

Analysis: Short Edges

Hence:

$$
|P_1|_s \leq |P_2|_s + q + O(\log_B |V_1|)
$$

=
$$
|P_2|_s + 2 \log_B n
$$

Similar: $|P_2|_s\leq |P_1|_s+\log_B n$

This means:

 $|P|_{s}\leq \gamma+2\log_B n$ for all root,leaf paths P

Lemma: $|P|_{s} = O(\log_B n)$ for all root,leaf paths in our tree.

Proof idea: All but $O(\log_B n)$ nodes on any root,leaf-path have degree $B.$

Analysis: Outline

Show that any root,leaf path in our tree has

- 1. $O(\sqrt{\log_B n})$ long edges, and
- 2. $\, O(\log_B n)$ short edges.
- This implies: Length of any root,leaf path is at most

$$
O(\sqrt{\log_B n}) \cdot \Delta + O(\log_B n) \cdot \alpha
$$

With $\alpha = \Delta/\sqrt{\log_B n}$: Length of root,leaf path is bouded by

 $O(\sqrt{\log_R n}) \cdot \Delta$

Analysis: Outline

Show that any root,leaf path in our tree has 1. $O(\sqrt{\log_B n})$ long edges, and 2. $O(\log_B n)$ short edges.

This implies: Length of any root,leaf path is at most

$$
O(\sqrt{\log_B n}) \cdot \Delta + O(\log_B n) \cdot \alpha
$$

With $\alpha = \Delta/\sqrt{\log_B n}$: Length of root,leaf path is bouded by

 $O(\sqrt{\log_B n}) \cdot \Delta$

Conclusion

This talk: We show how to compute a tree T with maximum degree B and diameter $O(\sqrt{\log_B n})\cdot \Delta$ in complete metrics

> This implies: $O(\sqrt{\log_B n})$ -competitive algorithm for Freeze-Tag in general graphs.

Conclusion

This talk: We show how to compute a tree T with maximum degree B and diameter $O(\sqrt{\log_B n})\cdot \Delta$ in complete metrics

> This implies: $O(\sqrt{\log_B n})$ -competitive algorithm for Freeze-Tag in general graphs.

Open questions:

- 1. Close gap between $5/3$ -hardness and $O(\sqrt{\log_B n})$ approximation
- 2. We strongly use fact that input graph is complete. Best known for incomplete graphs is still [Ravi et al.]: Can compute tree with
	- (a) Diameter $O(\log n)\Delta$, and
	- (b) Maximum degree $O(\log^2 n) \cdot B$