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Finite metric spaces

(V, d) is a finite metric space if
o V is a finite set of points.
o The distance functiond : V x V — R™ that

satisfies:
dlx,z) = 0
d(z,y) = d(y, ) symmetry
dlzx,y) < d(x,z)+d(y,2) /\ inequality

forall x,y,z € V.

® Synonymous with

s Graph G = (V, F) with edge lengths. Distance
given by shortest paths.



Low Distortion Embeddings

(V,d) and (V', d'): Finite metric spaces.
A non-contracting embeddingisamap f : V — V.

o Foranyx,y eV,

d(z,y) < d(f(x), f(y)) <c-d(z,y)

Parameter c is called distortion.



Average Distortion

(V,d) and (V', d'): finite metric spaces.
» Average Distance:

1
av(d) = — »  d(z.y)

x,ycV

av(d) = 5 37 d(f(x), f(y)

x,ycV

» Average Distortion [Rab03]:
av(d')/av(d)



Average Distortion into line

» Introduced by Rabinovich [Rab03].
» Related to sparsest cut.

# For a contracting embedding into line

s O(1) bound on average distortion of planar
graphs.

s O(logr) distortion for treewidth-r graphs.



Our model

» Given finite metric (V, d).
» Host metric is the line (I7,d’).

Differences:

» Non-contracting d'(x,y) > d(x,y) (for all
x,y V).

» Find an embedding with minimum average
distortion.



Simple lower bound on distortion

Consider a star on n nodes

To embed into a line, in a non-contracting way

» Distortion = ((n), Average distortion = Q(n)
» Any embedding has distortion O(n)



Simple lower bound on distortion

Consider a star on n nodes

To embed into a line, in a non-contracting way

» Distortion = ((n), Average distortion = Q(n)
» Any embedding has distortion O(n)

Note:
» Average distortion can be as high as 2(n).

» Yet O(1)-approximation for average distorion.



Absolute vs Relative Bounds

Absolute Bounds
» Best guarantee about “worst case” distortion.

o QGuarantee on distortion is independent of input
metric.



Absolute vs Relative Bounds

Absolute Bounds
» Best guarantee about “worst case” distortion.

o QGuarantee on distortion is independent of input
metric.

Relative Bound

» Given, as input, a finite metric, embed it into the
host metric to (approximately) minimize distortion.
[cf. Ravi’'s TalK]

o Comparing against the best possible distortion for
the given input metric.

Note: Absolute bound p = Relative bound p.



Relative Bounds: Existing Work

» [LLR95] minimizing maximum distortion of
embedding arbitrary finite metrics into [, via
Semi-Definite Programming.
= l-approximation for maximum distortion
problem.

o [WLB™98] PTAS for minimum routing cost
spanning tree.
= (1 4 ¢)-approximation for average distortion of
embedding arbitrary (graph) metrics into spanning
tree metrics.

Open: Can one give an algorithm with o(log n) relative
(average) distortion for embeddings into [;?



Our results

Given a finite metric, embed it into a line in
non-contracting fashion.

» O(1)-approximation for average distortion of
embedding a general metric into line.

» Better bounds for when the input is a tree metric.

logn>

s (1 -+ €)-approximation in time n%

s Polynomial-time exact algorithm for tree-edge
average distortion.



Warm-up: Embedding into trees

Lower bound
» Letstar(z) =) ., d(z,y)

n’-av(d) = Z star(x)

i

» Let m be the point which has minimum star(-)
value.

av(d) > % - star(m)



Warm-up: Embedding into trees

Recall: m = argmin_{star(x)}

1
L,y

% Z d(x,m) + d(m,y)

L,Y

av(d)

AN

2
_ — t
S ar(m)

Theorem The shortest path tree rooted at m is a
2-approximation.



Getting a path

Remember: we wanted a line (path) metric, not any

shortest path tree.

Tree could look like:



Getting a path

Remember: we wanted a line (path) metric, not any

shortest path tree.

k-spiders: A tree with degree atmost two for all vertices
except one, for which it could be upto k.

Tree could look like:



Embedding into £-spider

» k-repairman tour: Given k repairmen starting at a
depot s. The k repairmen are to visit n customers
iIn a metric space. The latency of a customer is her
waiting time.

» k-repairman(z): the sum of latencies of all
customers in a minimum k-repairman tour rooted

at x.



Lower bound for £-spider

o From a k-spider embedding, we can construct a

k-repairman tour.

X

.

» k-repairman(z) <) di(z,y)




Lower bound for £-spider
Adding up ...

1
av(dy) > — Z k-repairman(z)

Let m be the point with minimum k-repairman(-) value.

av(dy) > (%) - k-repairman(m)



k-spiders
Upper bound (same as before)
av(d) <

2
— - k-repairman(mux)
n

Theorem The best k-repairman tour rooted at m gives
a 2-approximation for the average distortion of
embeddings into k-spiders.

Theorem A p-approximation for k-repairman gives
2p-approximation for average distortion.

Currently p = 6 due to [CGRT 03].



Average distortion for line

Fact: A line is a 2-spider.
Theorem There is an O(1)-approximation algorithm for
average distortion of embedding a finite metric into line.



Our results

Given a finite metric, embed it into a line in
non-contracting fashion.

o O(1) approximation for average distortion of
embedding a general metric into line.

» Better bounds for when the input is a tree metric.

logn)

s (1 + €)-approximation in time n%

s Polynomial-time exact algorithm for tree-edge
average distortion.



QPTAS for trees

» |dea based on QPTAS for minimum latency
[AK99].

» Fact [AK99]: There exists a (1 + ¢)-approximate
minimum-latency tour that is a concatenation of

O (&) TSP tours.

€

» We extend this idea for average distortion.




QPTAS for trees

» Divide OPT embedding into k (=~ logn/e¢)
segments.

» (14 €)" " vertices assigned to segment i.

» Replace the embedding of each segment by an
induced “TSP-like” path without increasing the
distortion too much.

© © 00 00 0000000 O

(1+¢)" (14¢)*!



Proof Idea

» Divide the objective av(d) among the segments.
# Share of segment ¢ can be written as

a; - Latency(i) + 3; - TSP(i)

where

Latency(:) = Total Latency of segment ¢
TSP(:7) = Length of the embedding of segment ¢



Proof Idea

» Cost share of segment : can be written as
a; - Latency(z) + 3; - TSP(2)

o (Variant of [AK99]): Each segment itself can be
modified to be a concatenation of O (%) TSP
tours. This increases the distortion only by 1 + €.

Theorem There is a near-optimal embedding that is a

concatenation of O(2;") TSP tours.
Final Result:

» Can reduce the O(lofj”) to O(*52) TSP tours.
» Solution computed by Dynamic Programming.




Our results

Given a finite metric, embed it into a line in
non-contracting fashion.

o O(1) approximation for average distortion of
embedding a general metric into line.

» Better bounds for when the input is a tree metric.

logn)

s (1 + €)-approximation in time nO(~e

s Polynomial-time exact algorithm for tree-edge
average distortion.



Polynomial Time Algorithm

Tree-edge Distortion: avy(d) = ) ., d(e)
Theorem There is a polynomial time algorithm that

minimizes average tree-edge distortion.
Main ldea:

» The best embedding is an Eulerian tour truncated
at an appropriately defined centroid.

» This Eulerian tour can be found efficiently.

Similar to Minimum Linear Arrangement of trees ([Shi79,
Chu84)).



Main Idea

Local interchanges reduce average tree-edge
distortion.

* U *
U v
T Ty T 15
C
d a b
1 | | a/ b

v* 1S the centroid of the tree.



Open Questions

o PTAS for average distortion for embedding arbitray
metrics into line? Tree metriics into line?

» Approximating the maximum distortion of
embedding a (simple) metric space (e.g. trees)
into line or [;?
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