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Abstract

We study the cover time of a random walk on graphs G € G, , when p = CIO%, c> 1.

[&]

We prove that whp the cover time is asymptotic to clog <c—1> nlogn.

1 Introduction

Let G = (V, E) be a connected graph, let |V| = n, and |E| = m. For v € V let C, be the
expected time taken for a simple random walk W on G starting at v, to visit every vertex of G.
The cover time Cg of G is defined as Cg = max,cy C,. The cover time of connected graphs
has been extensively studied. It is a classic result of Aleliunas, Karp, Lipton, Lovasz and
Rackoff [1] that Cg < 2m(n — 1). It is also known (see Feige [6], [7]), that for any connected
graph G
4
(1—o0(1))nlogn < Cq < (1+ 0(1))ﬁn3.

In this paper we study the cover time of the random graph, G € G, ,. It was shown by
Jonasson [10] that whp

(a) Cg = (1+o(1))nlogn if 7= — oo.

(b) If ¢ > 1is constant and np = clogn then Cg > (1+a)nlogn for some constant a = a(c).

Thus Jonasson has shown that when the expected average degree (n — 1)p grows faster than
logn, a random graph has the same cover time whp as the complete graph K,,, whose cover
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time is determined by the Coupon Collector problem. Whereas, when np = Q(logn) this is
not the case.

In this paper we sharpen Jonasson’s results for the case np = clogn where w = (¢—1) logn —
oo. This condition on w ensures that whp G, is connected, (see Erdés and Rényi [5]).

Theorem 1. Suppose that np = clogn = logn+w where w = (c—1)logn — 0o and ¢c=0(1).
If G € G,,p, then whp

Cg ~ clog (%) nlogn.
c_

In the next section we give some properties that hold whp in G, ,. In Section 3 we show
that a graph with these properties has a cover time described by Theorem 1.

2 Properties of G,

Let d§, A denote the minimum and maximum degree, and let d(u,v) denote the distance be-
tween the vertices u, v of the graph G.

Let np = clogn where ¢ > 1. Whp G € G, , has the structural properties PO-P7 given
below. We say that a graph G with these properties is typical. The proof of the following
lemma is given in the Appendix.

clogn
n

Lemma 1. Let p =
typical.

where w = (¢ — 1)logn — oo and ¢c=0(1). Then whp G € G, is

PO: G is connected.

P1: A(G) < Ag = (c+ 10)logn and

1 <14
5(G) > c < e
alogn ¢>1+e 50

where @ = a*/2 and o* > e %% satisfies c — 1 = a* log(ce/a*) .

P2: There are at most n'/3 small vertices (i.e of degree at most logn/20) and no two small

. s . 1
vertices are within distance < (logﬁfg"n)z of each other.

P3: For LCV,|L| <4,let H=G— L. For S CV — L let ex(S,S) be the number of edges
of H with one end in S and the other in S =V — (LU S).

For all H C G such that §(H) > 1, and for all SCV — L, |S| < n/2,

€H(S,§) 1
du(S) - 6



P4: Let D(k) = n(",")p"(1 — p)" '~ denote the expected size of D(k) in G, .

Let D(k) be the number of vertices of degree k in G. Define
Ky = {k€[1,Ad: D(k) < (logn) *}.

K, = {1<k<15: (logn) 2 < D(k) < loglogn}.
Ky, = {k€[16,A¢): (logn)™? < D(k) < (logn)®}.

K3 - []_,Ao]\(K()UKIUKg)

P4a: If k € K; then $D(k) < D(k) < 2D(k), and
- k € KO
D(k){ < ( oglogn)? k€ K,
< (logn)* ke K,

P4b: If w > (logn)?? then K; = () and
min{k € K,} > (logn)"/? and |K,| = O(loglogn).

1/2

P5: The number of edges m = m(G) of G satisfies |m — %cn logn‘ < n/*logn.

P6: Let k* = [(c— 1)logn|, V* ={v:d(v) = k*} and let

B* ={v e V*:dist(v,w) < (13211352)2 for some w € V*,w # v}. Then

1— 1 —
| > =D(k* B*| < —D(kK").
V|2 5D and  |B'| < D(k)

Let X = {v: 0, < alogn} where §, > 2 is the minimum degree of a neighbour of v,
excluding neighbours of degree one. Then

1 —
*NX| < —=D(k).
VX < D)

logn : logn
10loglogn is at least loglogn

logn
10loglogn *

P7 The minimum distance between two small cycles of length <

and the minimum distance between a small vertex and a small cycle is at least

3 The cover time of a typical graph

In this section G denotes a fixed graph with vertex set [n] which satisfies PO-P7 and u is
some arbitrary vertex from which a walk is started. For a subgraph H of G let W, y denote a
random walk on H which starts at vertex u and let W, y(t) denote the walk generated by the
first t steps. Let X, () be the vertex reached at step ¢ and let Péf}{(v) = Pr(X, u(t) =v).
Let 7, g (v) be the steady state probability of the random walk W, . For an unbiased random
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dp (v)

walk on a connected graph H with m(H) edges, 7y (v) = my u(v) = S ()

degree in H.

where dy(v) denotes

Our definition of typical does not rule out GG being bipartite, even though G,, , is non-bipartite
whp for these values of p. In which case there is no steady state distribution. We therefore
assume that in such a case, at each step, the random walk does nothing with probability 1/2
and only moves to an adjacent vertex with probability 1/2. We double the expected time to
cover the vertices, but the asymptotic number of non-trivial steps remains the same.

Let H(v) = G — {v} if v is not a neighbour of a vertex w of degree 1, and let H(v) =
G — {v,w} if v has a neighbour w of degree 1. (Note that P2 rules out a neighbour having
two neighbours of degree 1). For a subgraph H let Ny (v) be the neighbourhood of v in H (i.e
Ng(v) = Ng(v) N V(H)). When H = G we drop the H from the above notation and often
drop the u as well.

Lemma 2. Let G be typical, then there exists a sufficiently large constant K > 0 such that if
170 = K'logn then for allv € V, and for all u,x € H = H(v), after t > 7y steps

1P () — T, (2)] = O(n~10). (1)

Proof The conductance ® of the walk W, g is defined by

eH(S . E)

(W, ) =
W) = B = 3n(®)

It follows from P3 that the conductance ® of the walk W, y satisfies & > Now it follows
from Jerrum and Sinclair [9] that

P (2) — (@) = O (W (1- %)) . )

For sufficiently large K, the RHS above will be O(n"1°) at 7,. We remark that there is a
technical point here. The result of [9] assumes that the walk is lazy, and only makes a move
to a neighbour with probability 1/2 at any step. This halves the conductance but still (2)
remains true. For us it is sufficient simply to keep the walk lazy for 27y steps until it is mixed.
This is negligible compared to the cover time. O

1
g

For v # u € V, let A;(v) be the event that W, ¢(t) does not visit v.

Lemma 3.
(a) Ift > 21y and 4, > 2 then

i = (1-((%72) -0 (1)) 22) ercaton
Pr(A;(v)) > (1 — <(5véj 1>2 +0 (1();”)) %)t% Pr(Asr, (v))




(b) Suppose that v,v' € V*\ X (see P6) and that dist(v,v') > 28" Then

(loglogn)2 -
1 k* t—270
Pr(Asn, () N Apry (1)) < (1 _ (1 10 (1ogn)> E) |

Proof (a) Fix w # v and y € Ny (v). Let Wi(y) denote the set of walks in H(v) which
start at w, finish at y, are of length 27y and which leave a vertex in the neighbourhood Ny (v)
exactly k times. (Note that the walk can leave y € Ny (v) without necessarily leaving Ny (v)).
Let Wy = U, Wk(y) and let W = (wo, wy, . .., w2r,) € Wi(y). Let

_ Pr(X,q(s) =wss=0,1,...,27)

= i 3
pw Pr(X, u(s) =ws,s =0,1,...,27) ()
Then
1> pw > 6 — 1\
Z Pw =2 5 .
This is because
Pr(Xy,m(s) =ws | Xpu(s—1) =ws 1) _ 1 ws—1 ¢ Ng(v)
Pr(X,o(s) = w, | Xpa(s — 1) = wy_1) dggfj;;jl wy_1 € Ng(v)
If £ ={Xuwe(T) #v,0 <7 <27} then
PI‘(E) = Z Z PI‘(Wwyg(zTo) = W)
k>0 WeWy
= Z Z pW:PI'(Ww’H(QTo) = W)
k>0 WeWy,
5y — 1\ "
>
=z Zpk ( 5 )
k>0
where
pr= Y Pr(W,nu(2m)=W)=Pr(W,u(2n) € W).
Wewy
We will show later that
po+p1+p2>1—0((logn)™") (4)

which immediately implies that

Pr(€) > po + pr <1 _ (%) +p (1 _ %)2 > <1 _ %)2 — O((logn) ™).



Now fix y and write

Pr(X,c(2m) =y|€&) = Y Z Pr(W,c(210) = W)Pr(£)™!
E>0 WeW,(y
= > > pWPr W (270) = W)Pr(€)™
k>0 WeW(y
Now if
_ Pr(Wum € Wi(y))
P T Pr(Xon(2r) = y)
= Pr(W,, u(27) leaves a vertex of Ny (v) k times | X, g(27) = y)
then

Pr(X,¢(2n) =y | €)
Pr(X, um(27) =v)

5y — 1\ *
I
k>0

We will show later that

<Pr(&)7".

Poy + Py + D2y > 1— O((logn)il)

and so
2 _ 2
oy — 1\ 0 1 < Pr(X,a(2m) =y |€) < Oy L0 1 ‘
0y logn Pr(X, un(2m) =yv) 0y — 1 logn
Taking w as X, ¢(t — 279 — 1), and conditioning on A; 5., 1(v), we deduce that

(5) -0 () <[t 5= () o ().

Thertoe

Pra) [ An) = 1 ((2) vo (1h) PR
(G o) 2, G o ()
() 0 o) (425 5 )
- ((52) o)) 22



Here we use P2 to see that ZyeNH(v) ﬁ < 41(():;(2)'

Pr(A,(v) [ Aa(v)) <1 - ((&(5: 1>2 -0 <lo;n>) %

and the lemma follows immediately.

Similarly,

Proof of (4,5). Clearly, we only need to prove (5) and so fix y € Ng(v).

Let W(a,b,t) denote the set of walks in H from a to b of length ¢ and for W € W(a, b, t) let
Pr(W) = Pr(W, g(t) = W). Then for z € V(H) we have

Pr(W,)Pr(Ws,)

PI‘(W(U}, Y, 2T0))

PI'(XwVH(To) = | Xw,H(QTO) = y) = Z

WieW(w,z,m0)
Wa2eW(z,y,70)

_ ].:)I'(Vvl)ﬂ'm HPI‘(WQ)
_ 1 3
> Pr(W(w,y, 27))

WieW(w,z,m)
Wa EW(x7yaTO)

and with W3 equal to the reversal of W,
Z Pr(Wl)Pr(Wg)
PI‘(W(’U}, Y, 27—0))

-1
- ﬂ-z‘,Hﬂ-va
WieW(w,z,m0)
WseW(y,z,m0)

= o i PrOW(w,z, 7)) Pr(W(y, x, 7))

- Pr(W(w,y,QTO)) y by 10 Y, T, To
1

. T, HTy,H . —10\\2

= BrW(w,g.2r)) " O

= m.m — O(n?logn).

It follows that the variation distance between X,, y(7) and a vertex chosen from the steady
state distribution 7z is O(n ®logn). Now given z = X, y(70), Wa (7o) is a random walk
of length 7y from w to x and Wy = (x = Xy uy(70), Xwm(ro+1),...,y = Xuu(27)) is a
random walk of length 7y from z to y. For W € [J, W(&,y,70) let Q(W) be the probability
that (v, Xu,m(270 — 1),..., Xw u(10)) = W. Then we have

ﬂ.x’HPr(WTeverse)
PI'(W(.CL', Y, TO))
7y uPr(W)
PI’(W(CB, Y, TO))
Wy,Hﬂm,HPr(W)
71'1',H]-:)r()/v(xa Y, TO))
Ty 0T, g Pr(W)
ﬂ-vaPr(W(ya Z, TO))

QW) = (1+0(n"*logn))

= (1+0(n"%logn))

— (14 0(n"logn))

= (1+0(n"%logn))




Thus if W = (wy,ws, ..., ws) then
Pr(WW)
Pr(W(yaxa 7-0))

and so the distribution of W}ver*¢ is within variation distance O(n®logn) of that of a random
walk of length 79 from y to a vertex x chosen with distribution 7.

QW | Xy.u(m) = w1) = (1 + O(n ®logn))

Thus the distribution of a random walk of length 27y from w to y and that of W, Wieversed jg
O(n~8logn) where W, W; are obtained by (i) choosing = from the steady state distribution
and then (ii) choosing a random walk W; from w to z and a random walk W3 from y to x.
Furthermore, the variation distance between the distribution of W; and a random walk of
length 79 from w is O(n~?). Similarly, the variation distance between distribution of W3 and
a random walk of length 7y from y is O(n™?).

Now consider W, and let Z; be the distance of X,, y(t) from v. We observe from P2 and P7

that except for at most one value a € J = [1, w{;{%] we have
20 _
Pr(Zt+1:a+1|Zt:a)Zl— , aGI\a.
logn
and this will enable us to prove
Pr(W; or W3 make a return to Ny(v)) = O(1/logn) (6)

and this implies (5). (Note that a move from Ng(v) to Ng(v) has to be counted as a return
here.)

To prove (6), let ¢y be the first time that W, visits Ny (v). We have to estimate the probability
that W returns to Ny (v) later on and so we can assume w.l.o.g. that w € Ng(v) i.e. Zy = 1.

It follows from P2 and P7 that

Pr(Zi=i+1,i=1,...,6|Zy=1)>(1— 10 )’ (7)
i — 1 , L =1,..., 0= = logn .

To check this consider two possiblilites:

(a) There is no small vertex in the < 7 neighbourhood N7 of v. Since there is at most one
40

edge joining two vertices in N7, we see that Pr(Z;,; > Z;) =1 — Togn forte=1,...,6
and (7) follows.

(b) On the other hand, if there is a small vertex = in N; then with probability > 1 — 102g0n the

first move from w takes us further away from z and (7) follows as before.

If Z3 = 4 and there is a return to Ng(v) then there exists 7 < 7y such that Z, =4,7,,, =3
and Z,,o < 3. If there is no small vertex within distance 4 of v then P2 and P7 imply

T
PI‘(E]T S 70 - ZT == 4,ZT+1 = 3,ZT+2 S 3) =0 <m) . (8)

8



If there is a unique small vertex within distance 4 of v and Zg = 7 and there is a return to
Ny (v) then there exists 7 < 7y such that Z, = 7,7,,; = 6 and Z,,» = 5 (no small cycles

close to v now). We can then argue as in (8) that the probablity of this O <(10;—°n)2> This

completes the proof of part (a) of the lemma.

(b) We simply run through the proof as in (a), replacing v by v,v": H = H(v,v') = G—{v,v'},
Ng(v,v") = Ng(v) U Ng(v'). The proof of (5) remains valid because v, v’ are far apart. O

3.1 The upper bound on cover time
From here on, Aq, As,... are a sequence of unspecified positive constants.
Let tg = [2mlog =% ]. We now prove for typical graphs, that for any vertex u € V
Cy < to+ o(m). (9)

Let T (u) be the time taken to visit every vertex of G by the random walk W,. Let U, be the
number of vertices of G which have not been visited by W, at step t. We note the following:

Pr(Tg(u) >t) = Pr(U; >0) < min{l,E U}, (10)
C.=ETu(w) = Y Pr(To(u) >t) (11)

It follows from (10,11) that for all ¢

Co<t+> EU,=t+> Y Pr(Av)). (12)

s>t veV s>t

Now, by Lemma 3, for s > 27,

Pr(A,(v)) < <1_((5”5:1> _1:;1”> ‘;(—:D Pr(Ayr (v))

< exp _sd(v) 1— Az , if 0, > alogn
2m logn
where « is as in P1.
Then from P4,
E US S T3(S) + Tl(S) + TQ(S) + TX(S) (13)

where

n—1
—1 s
T(s) = 2Zn(n k >p’“<1 —p) ke iR (),

k=1



Ti(s) = 3 D(k)e i (1-md%) i=1,2
keK;
and
5y — 12 1\ dw))" "
v — v
=2 (1 - (( ) o (1ogn>) %)
veX
6 —1\? Ay \ sd(v)
< 2 Z exp {— (( ) — > .
= 0 logn | 2m
Now for v > 0,

oo
E e < f)/*le*'YtO.
s=tp+1

Let \ = 1o (17 Ay ) Applying (14) we get

2m logn

0o n—1
-1
Z Ty(s) < 3m %<n . )pk(l _p)rEle R

s=to+1 k=1
n—1
m n
< 62 AZ < )pk+1( _p)nfkflef(kJrl))\
p = kE+1
m c
< 7= 1— A
s ptpeT)
< mn —np+npe A
— (¢c—1)logn
me242
<
~ (c—1)logn
= o(m).

We have used the estimation,

1 1 Az /logn
npe* < (clogn) (C—> (1 + >
c

c—1

< (1+0(m™)((c—1)logn) <1 + ﬁ) :

Note that we have used (¢ — 1)logn — oo to get the second line.

Continuing we get

- loglogn)?
Zﬂ@SAmZQ%@{M
s=to+1 ke Ky

= o(m)

10
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since either (i) w > (logn)?? and K; = 0 or (ii) w < (logn)?? and e* > (1 — o(1))(logn)'/3.

- logn)?
S n(s) < Agm Y 1B
s=to+1 keKo

= o(m) (17)

since either (i) w > (logn)*? and min{k € K,} > (logn)'/? and |K;| = O(loglogn) or (ii)
w < (logn)*? and e > (1 — o(1))(logn)'/3.

Note now that J§, > 2 and if v € X (see P6) then from P2 d(v) > logn/20. Thus

- - sd(v)
> Tel) < > Sew {30
s=to+1 s=to+1veX
< 10m exp {_tod(v) }
= d(v) 10m
200m tologn
< — by P2
- Z logn exp{ 200m } Y
veX
B logn/201
logn c
veX
= o(m) (18)

since either (i) ¢ > 1+e7% and X = 0 or (ii) ¢ < 1+ e7°% in which case we use (c —1)/c <
o500

As Cg = maxyey Cy, the upper bound on Cg now follows from (9), (13), (15), (16), (17), (18)
and (12) with ¢ = t. O

3.2 The lower bound on cover time

For any vertex u, we can find a set of vertices S such that at time ¢; = to(1 —€), € — 0, the
probability the set S is covered by the walk W, tends to zero. Hence T (u) > t; whp which
implies that Cg > (1 — o(1))to.

We construct S as follows. Let k*, V*, B* be as defined in Property P6.
Let S* =V*\ (B*U X) and let

3
10 loglognzo(l) and § — (logn) .
(c—=1)logc/(c—1) logn |5
Note that
. n(e=1)In(e/(c=1)) )
D(k*) =Q e Dlogn = Q((logn)?) (19)

11



for any constant a > 0. Then P6 implies that |S*| = Q((logn)*) for any constant a > 0.

Now for v, w # u let A;(v,w) be the event that W has not visited v or w by step t.
Let @) C S* be given by

Q= {ve S :Pr(Ay,(v)) <1—146 or Pr(Ay,(v,w)) < (1 —46)?, for some w € S*}.

Now in time 27y, W can visit at most 27y + 1 vertices and so

> Pr(Ay,(v)) <2m+1land Y Pr(Ay,(v,w)) < (270 + 1).

2
eV v,weV
To + To(270 + *
< = :
Therefore, if S = 5*\ Q, .
55 D).
3

Let S(t) denote the subset of S which has not been visited by W by time ¢. Now

IO (1 - (1+ As ) i )HTO Pr( Az, (v)).

= logn / 2m

Setting ¢ = t; we have

n(c—l) logec/(c—1) k*
E |S(t1)| = exXp { — tl
(c—1)logn 2m

_ 0 ne(c—l) logc/(c—1)
(c—1)logn
= Q((logn)?). (20)
Let Y, be the indicator for the event that W,(¢) has not visited vertex v at time t. As

v,w € S are not adjacent, and have no common neighbours, when we delete v, w the total
degree of H(v,w) is 2m — 2d(v) — 2d(w), and d(v) = d(w) = k*. It follows from Lemma 3(b)

that for v,w € S
1 L* t1—279
E (Y, Y, < (1-1(1 —
s = (o o0(2)) )

< 1+4+0(1)EY,,EY,,,. (21)
It follows therefore that
(E [S(t1)])? 1
Pr(S(t1) #0) > =5 =1—o0(1)
ENENRD) _
E |S(t1)] s + (B [Su])!
from (20) and (21). O

Acknowledgement We thank Johan Jonasson for pointing out a significant error in earlier

draft.
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Appendix: Typical graph properties

A proof of P0O,P1 can be found in Bollobds [2] or Janson, Luczak and Rucinski [8].
A proof of P2 can be found in [3].

P3:

Case of 1 < s = |S| < n/(clogn).
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We first prove that whp eg(S,S) < sloglogn. Now
Pr(3S :eq(S,S) > sloglogn)

s sloglogn
< n (2) ps loglogn < (E) s & glog
— \s/ \sloglogn “\s 2loglogn

2nlogl
< exp <—3 <log logn - log <w> — log E))
cselogn S

= o(n?).

By property PO and the definition of H, both G and H contain no isolated vertices and hence
d(S) > 0. We write e(5,S5)/d(S) = 1 —2¢(S,S)/d(S). Partition S into sets S; and Sy, where
Sy are the vertices of S of degree at most (logn)/10. Let T} be the neighbour set of S; in Sy
and let T be the neighbour set of S; in S. By property P1 the set S; induces no edges, and
the neighbours of vertices of S; are distinct. Thus

2e(S,5) < 2(|Ty| + | S2| loglogn)
du(S) = 2[Th| +[Ta] +[5:/((logn) /10 — |L])
2 4 loglogn
Qogn)jio ~ °W

Now use B

Case of n/(clogn) < s <n/2.

The expected value of e (S, S) is at least = s(n — s —4)p. Thus from Chernoff bounds, for
fixed s,
— n _cs(n—s—4) logn
Pr(3S:eu(S,95) <pu/2) < ( >e 5= o log
S

c ne
< exp (—s <— logn — log —))
s

18
=o(n7?).
We note that E dg(S) = 2(3)p + s(n — s — |L|)p. Thus

Pr(3S : dy(S) > gE dg(S)) < <">e;oslogn
S

=o(n™?)
Thus (5.3) " " X
e (S, 58(n—s—4)p 1
4n(S) = IR@p+ sl - 6



P4a: First observe that

Pr(3k € Ko: D(k)>0)< Y D(k) = |K°|2:o< ! )

Then

1
Pr(dk € K, : D(k log1 = .
t(3k € K1 : D(k) > (loglogn)?) 2}; =0 (e

Similarly,

1
Pr(3k € Ky : D(k) > (logn)?*) E logn = (logn> :
€Ks

A simple calculation gives that for our range of values of p

E (D(k)(D(k) — 1)) = D(k)? (1 +0 (log”>> .

n

Thus —
VarD(k) = D(k) <1 +0 (M» .

n

Applying the Chebychef inequality we see that

[\

So, as | K3| = O(logn),

Pr(3k € K3 : D(k) <

l\DlF—‘

D(k) or D(k) > 2D(k)) = O <lo;n> |

P4b: The sequence (D(k), k > 0) is unimodal and

D(k+1) clogn
D(k) k+1

when k£ = O(logn). (22)

Moreover, for k < Ay there is a positive constant A = A(k) such that

= . [celogn 4|
D(k) ~ An* < ° >k1/2. (23)

Suppose first that there exists k € K7 U K, such that k < (logn)/?. Tt follows from (23) that
c—1< (logn)~3 forif c — 1 > (logn)~'/3 and k < (logn)*/? then D(k) = o((logn)~2).

Now suppose that k € K, implies k > (logn)/2. Observe from (23) that both
D(|(c—c*?)1logn]) and D(|(c + c¢'/3)logn|) are much greater than (logn)? Thus either k <

15



(c—c"3)logn or k > (c+ c'/?)logn. In either case, we see from iterating (22) that |Ks| =
O(loglogn).

P5: This follows immediately from Chernoff bounds.
P6: From (19) we see that [(c —1)logn] € Kj for ¢ constant. That [V*| > 1D(k*) now

follows from P3. Now |B*| < [{(v,w) € (V*)?: dist(v,w) < d = (ljgllggg:)ZH. Therefore

E |B"| < D(k")* ) n*p**" = o(D(K")),

k=1

and the second part of P6 follows from the Markov inequality. The third part is a similar
first moment calculation.

P7: A proof of similar results can be found in [3]. O
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