How many random edges make a dense graph Hamiltonian?
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Abstract

This paper investigates the number of random edges required to add to an arbitrary dense
graph in order to make the resulting graph Hamiltonian with high probability. Adding ©(n)
random edges is both necessary and sufficient to ensure this for all such dense graphs. If,
however, the original graph contains no large independent set, then many fewer random
edges are required.

1 Introduction

In the classical model of a random graph (Erdés and Rényi [3]) we add random
edges to an empty graph, all at once or one at a time and then ask for the probabil-
ity that certain structures occur. At the present time, this model and its variants,
have generated a vast number of research papers and at least two excellent books,
Bollobas [1] and Janson, Luczak and Rucinski [5]. It is also of interest to consider
random graphs generated in other ways. For example there is a well established
theory of considering random subgraphs of special graphs, such as the n-cube. In
this paper we take a slightly different line. We start with a graph H chosen arbi-
trarily from some class of graphs and then consider adding a random set of edges
R. We then ask if the random graph G = H + R has a certain property. This for
example would model graphs which were basically deterministically produced, but
for which there is some uncertainty about the complete structure. In any case, we
feel that there is the opportunity here for asking interesting and natural questions.

As an example we consider the following scenario: Let 0 < d < 1 be a fixed positive
constant. We let G(n,d) denote the set of graphs with vertex set [n] which have
minimum degree § > dn. We choose H arbitrarily from G(n,d) and add a random
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set of m edges R to create the random graph G. We prove two theorems about
the number of edges needed to have G Hamiltonian whp. Since d > 1/2 implies
that H itself is Hamiltonian (Dirac’s Theorem), this could be considered to be
a probabilistic generalisation of this theorem to the case where d < 1/2. It also
means that we will assume d < 1/2 from here on.

Theorem 1. Suppose0 < d < 1/2 is constant, H € G(n,d) and let § = logd™"' >
69. Let G = H + R where |R| = m is chosen randomly from E = n® \ E(H).

(a) If m > 1000n then G is Hamiltonian whp.

(b) For d < 1/10 there exist graphs H € G(n, d) such that if m < 6n/3 then whp!
G 1s not Hamiltonian.

So it seems that we have to add ©(n) random edges in order to make G Hamilto-
nian whp. Since a random member of G(n, d) is already likely to be Hamiltonian,
this is a little disappointing. Why should we need so many edges in the worst-
case? It turns out that this is due to the existence of a large independent set. Let
a = a(H) be the independence number of H.

Theorem 2. Suppose H € G(n,d) and 1 < o < d*n/2 and so d > n~Y% (d
need not be constant in this theorem). Let G = H + R where |R| = m is chosen
randomly from E. If
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then G is Hamiltonian whp.

Note that if d is constant then Theorem 2 implies that m — oo is sufficient.
Theorem 1 is proven in the next sections and Theorem 2 is proven in Section 3.

2 The worst-case

We will follow a well-trodden route, using Posd’s lemma [6] and the colouring
argument of Fenner and Frieze [4].

Observe first that if we randomly delete edges with probability 3/4 then whp we
will have a graph H' with

, dn , n
d(H'") > = and A(H') < 3 (2)

Since our property is monotone, let us assume that H itself satisfies (2). We will
advise the reader later on when we make use of this technical assumption.

1A sequence of events &, is said to occur “with high probability” (whp) if limp_co Pr(€n) =1



We will assume from now on that m is exactly [1006n].
We first show that
Lemma 1. G is connected whp.

Proof Let N = (3). If u,v € [n] then either they are at distance one or two
in H or

d?n?/25
Pr(distg(u,v) > 3) < (1 _ %) < o—40d*n

Hence, ,
Pr(diam(G) > 3) < n?e %™ = o(1).
O

Given a longest path P in a graph I' with end-vertices z(, y and an edge yv where
v is an internal vertex of P, we obtain a new longest path P’ = zy..vy..w where w
is the neighbour of v on P between v and y. We say that P’ is obtained from P
by a rotation with zq fized.

Let ENDr(zg, P) be the set of end-vertices of longest paths of I" which can be
obtained from P by a sequence of rotations keeping xy as a fixed end-vertex.
For each y € EN Dr(zg, P) let ENDr(y, P) be the set of end-vertices of longest
paths of I' which can be obtained from P by a sequence of rotations keeping y
as a fixed end-vertex. Let ENDr(P) = {zo} U ENDr(xg, P). Note that if I is
connected and non-Hamiltonian then there is no edge (z,y) where z € EN Dr(P)
and y € ENDr(z, P).

It follows from Pos4 [6] that

|[Nr(ENDr(P))| < 2[ENDr(P)], (3)
where for a graph I" and a set S C V(I')

Nr(S) ={w ¢ S : Fv € S such that vw € E(T)}.
Lemma 2. Whp
[Na(5)[ = 3[S| (4)

for all S C [n], |S| < n/5.
Proof  Clearly, [Ny (S)| > 3|S| for all S C [n], |S| < dn/20. So,

Pr(3|S| <n/5: |[Ng(9)| < 3|S]) < gio (Z) <£€> <1 B %>k(n4k)
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= o(1).
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Let Gg be the graph induced by the edges R. Let dg(v) be the number of edges
in R which are incident with v and let Ag = max, dg(v). We show next that

Agr <Inn  whp. (5)

() )
< n <60§\69>

= o(1).

Let A = Inn. Then, using (2),
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Let
R={RC [n]?\ E(H): |R| =m,G is connected and satisfies (4), (5)}.
Now let w =logn. We say X C R is deletable if
D1 |X| = w.
D2 X is a matching.

D3 X avoids some longest path P of G.

D4 There does not exist (z,y) € X such that x € END,, ¢c_x(P) and y €
ENDg_x(y, P), where zg is an endpoint of P.

Finally let

1 G is non-Hamiltonian, R € R and X is deletable.
0 Otherwise.

a(R,X) = {

We will prove the following two inequalities: Let Ny = |E|.

R € R and G is non-Hamiltonian implies

R, C E, |Ri| = m — w implies

Y a(RUX,X) < <N1 _:“’) (%)w (7)

XNR1=0



Before verifying (6), (7) we see how Theorem 1 follows. Let Bg be the number of
choices of R € R for which G is not Hamiltonian. Then (6) implies

Bg < <1 - ﬁ) - <’Z> B S Y ar x).

ReER XCR

But (7) implies

Y Y aRrX) < (mf\ilw) (Nl _SHW) <%>w-

RER XCR

s (5:0-5) ) ()T
(5 0a) ) ()

Pr(G is Hamiltonian) = o(1) +

So,

Thus,

Proof of (6)

Fix R € R, G non-Hamiltonian and let P be some longest path of G. If we choose
X to satisfy D1,D2,D3 then D4 is automatically satisfied since G is connected.
Thus the number of choices for X satisfying a(R, X) =1 is at least

(m—n)(m—n—2Inn)--- (m—n— 2(w—1)Inn)/u! > (1_$)w (Z’:)

O

Proof of (7)

Fix Ry C E, |R;| = m — w. If there exists X such that a(R; UX, X) =1 then (4)
and X being a matching implies that I' = H + R, satisfies |[Np(S)| > 2|5] for all
S C [n],|S| < n/5. It follows from (3) that to choose X such that D4 holds, we
have to avoid choosing any of a set of at least ("45) edges. This implies (7) and
completes the proof of (a).

Remark 1. The calculations above go through quite happily for 6(H) > n3/*, say.
For this degree bound the number of additional edges required in the worst-case is
Q(nlogn). But now we realise that it only requires %nlogn edges starting with the
empty graph and there is no point in considering smaller values of d, unless we
can improve the constant factor 100.

(b) Let m = cn for some constant ¢ and let H be the complete bipartite graph
K 4 p where |A| = dn and |B| = (1—d)n. Let I be the set of vertices of B which are
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not incident with an edge in R. If |[I| > |A| then G is not Hamiltonian. Instead of
choosing m random edges for R, we choose each possible edge independently with
probability p = M%. (We can use monotonicity, see for example Bollobas
II.1 to justify this simplification). Then

B(I) = (1 - d)olt -0~ (1= desp {20

We can use the Chebychef inequality to show that |I| is concentrated around its
mean and so G will be non-Hamiltonian whp if ¢ satisfies

c< ﬁ(d2 +(1-d)?)In(d ! -1).

This verifies (b). O

3 Small independence number

Proof of Theorem 2
We will first show that we can decompose H into a few large cycles.

Lemma 3. Suppose that G has minimum degree dn where d < 1/2 and that
a(G) < d®n/2. Let kg = |2]. Then the vertices of G can be partitioned into
< ko vertez disjoint cycles.

Proof Let C; be the largest cycle in H. |C;| > dn+1 and we now show that
the graph H \ C7 has minimum degree > dn — a.

To see this, let C; = vy,... ,0., V41 = v1. Let w € V(H \ C;). Because C is
maximum sized, no such w is adjacent to both v; and v; 1. Also, if w ~ v; and
w ~ v; with 7 < j and v;_; ~ v;_q, then

W, Vjy... ,Vey,V1yev- ,Vi—1,V5-1,..-,0;, W

is a larger cycle. So the predecessors of N(w) in C; must form an independent set
and |N(w) N C1] < a. Similar arguments are to be found in [2].

We can repeat the above argument to create disjoint cycles Cfi,... ,C, where
|Ci| > |Cs| > +++ > |C,| and C; is a maximum sized cycle in the graph H; ; =
H\ (C;U---UCj_4) for j = 1,2,...,r. Now Hj has minimum degree at least

dn — ko and at most n —dn—1—(dn—a+1)—---—(dn—(k—1a+1) =
n—k(dn+1— (k—1)a/2) vertices. Since d?n > 2«a, Hy,, if it existed, would have
minimum degree at least 2 and a negative number of vertices. O

It will simplify the analysis if the edges of R are chosen from E by including each
e € FE independently with probability % Because Hamiltonicity is a monotone

property, showing that G is Hamiltonian whp in this model implies the theorem.



It further simplifies things if we consider R = R; URyU---UR, where each
edge set R; is independently chosen by including e € E with probability p, where
1-(1—p) = % Each R; will be used to either extend a path or close a cycle

and will only be used for one such attempt. In this way each such attempt is
independent of the previous. To this end let G; = H U Ui:l R; fort =0,1,...,r.
Thus Gy = H and G, =G.

Let e = {z,y} be an edge of C, and let @ be the path C, —e. In the procedure
below we will have a current path P with endpoints z, y together with a collection
of vertex disjoint cycles Ay, As, ..., As which cover V. Initially P=Q, s=7r—1
and A; = C;, 1 = 1,2,... ,7r — 1. Also, we will have constructed G;_;, so that
initially £ = 1.

Now consider the set Z = EN Dg,_,(x, P) created from rotations with z as a fixed
endpoint, as in Section 2. We identify the following possibilities:

Case 1: There exists z; € Z, z2 ¢ P such that f = (21, 2z2) is an edge of H.

Let @ be the corresponding path with endpoints z, z; which goes through V' (P).
Now suppose that 2z € C; and let f' = (23, z3) be an edge of C; incident with z,.
Now replace P by the path @, f, Q" where Q' = C; — f. This construction reduces
the number of cycles by one.

Case 2: |V(P)| <n/2 and z € Z implies that Ng, ,(z) C V(P).

It follows from (3) that |Z| > dn/3. Now add the next set R; of random edges.
Since |V(P)| < n/2, the probability that no edge in R; joins z; € Z to 2y €
V \ V(P) is at most (1 — p)@/3)("/2)_If there is no such edge, we fail, otherwise
we can use (21, z2) to proceed as in Case 1. We also replace ¢ by ¢t + 1.

Case 3: |V(P)| > n/2 and z € Z implies that Ng, ,(z) C V(P).

Now we close P to a cycle. For each z € Z let A, = ENDg,_,(2,Q.) where Q. is
as defined in Case 1. Each A, is of size at least dn/3. Add in the next set R; of
random edges. The probability that R; contains no edge of the form (z, 2') where
z € Z and 72/ € A, is at most (1 — p)d2”2/10. If there is no such edge, we fail.
Otherwise, we have constructed a cycle C through the set V(P) in the graph G;.
If C is Hamiltonian we stop. Otherwise, we choose a remaining cycle C’, distinct
from C and replace P by C’ — e where e is any edge of C'. Now |V (P)| < n/2 and
we can proceed to Case 1 or Case 2.

After at most r executions of each of the above three cases, we either fail or
produce a Hamilton cycle. The probability of failure is bounded by

dn? d%n?
ko((1 — p)@n/3®/2) 4 (1 _ p)&r?/10) < 9g-1 <1 _ %) - (1 _ %) o
4dflefmd3/10
= o)
provided (1) holds. O



An observation: We do not actually need the condition that a(H) < d?n/2 to
complete this proof. The weaker condition that d?n/2 bounds the independence
number of the neighborhood of each vertex is enough.

Acknowledgement Wethank the referees for a careful reading which found sev-
eral small errors.
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