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Abstract

We show that it is NP-hard to 2nk

-approximate the integral of a positive, smooth, polynomial-
time computable n-variate function, for any fixed integer k.

1 Introduction

Suppose F (·) is a real positive function defined on a cube C in Euclidean n-dimensional space Rn.
We consider the problem of approximating the integral I(F ) of F over C, with relative error ε,
under the additional assumption that F satisfies a smoothness condition.

The exact integration of multivariate functions is hard, under the widely conjectured hardness
of #P, given the result in [3], which implies that the exact calculation of the volume of an n-
dimensional polytope is #P-complete. In view of this, we would like to address the question
whether there is an algorithm that returns a value V̂ such that 1/(1 + ε) ≤ I(F )/V̂ ≤ (1 + ε), in
other words an algorithm that ε-approximates I(F ).

The first somewhat surprising answer to this question came with the major result of Dyer, Frieze
and Kannan ([5]), who showed that there is a fully polynomial randomized approximation scheme
(FPRAS) for the volume of an n-dimensional convex body. More precisely, they showed that
the volume of an n-dimensional convex body K given by a weak membership oracle M, can be
ε-approximated with failure probability ξ, with poly(n, ε−1, log ξ−1) calls to M. Here, M can be
thought of as a black-box algorithm that decides whether a given point is in K. This directly implies
that there is a FPRAS for the integration of n-variate concave functions that can be evaluated in
time poly(n) at any point in the cube C.

Subsequently, Applegate and Kannan ([2]), extended this result to positive, smooth and nearly
log-concave functions. Define

f(X) = lnF (X)

and let c be the edge length of C, t(n) be an upper bound on the time needed to evaluate F at any
point in C, and α, β satisfy

|f(X)− f(Y )| ≤ α

(
max
i∈[1,n]

|xi − yi|
)

(1)
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f(λX + (1− λ)Y ) ≥ λf(X) + (1− λ)f(Y )− β (2)

for all x, y ∈ C and λ ∈ [0, 1]. Their algorithm has running time

O(t(n)
n7

ε2
c2α2e2β log

n

ξ′
log

dαn

ξ
).

It can be seen that α measures the smoothness of F . This gives rise to the following definition of
smoothness.

Definition 1.1. A function F (·) is called k-smooth if it satisfies α ≤ nk. We denote by Sk the
set of k-smooth functions, and by S =

⋃
k Sk the set of smooth functions .

If β = 0, the function is log-concave (i.e. its logarithm is concave), so β can be viewed as a measure
of the distance of F from log-concavity. The natural question is whether the dependence on β
can be removed or somewhat alleviated. The contribution of this paper is to show that for any
fixed integer k, it is NP-hard to 2nk

-approximate the integral of positive smooth functions that
are computable in polynomial time. In fact, we show that considerably small improvements on the
dependence on β would imply unexpected (and rather indirect) algorithmic improvements for well
studied NP-complete problems. Formally, we show the following.

Theorem 1.2. For any fixed integer k ≥ 3, if there is a (randomized) 2nk
- approximation algo-

rithm with time complexity O(poly(α)2g(β)) for the problem of integration of functions from Sk+3,

then there is a O(poly(α)n(g(n))k+3
) (randomized) algorithm for the Hamilton Path problem on

graphs with n vertices.

Corollary 1.3. For any fixed integer k, it is NP-hard to 2nk
-approximate the integral of polynomial-

time computable functions from S.

We note here that, in general, only a few negative results concerning the approximability of counting
problems are known. As observed in [6], the hardness of counting problems in most cases follows
either from the NP-completeness of the corresponding decision problem, or from applying some
“boosting” reduction which exploits an embedded NP-complete problem (see [10, 6]). There appears
to be a paucity of results that prove the hardness of approximate counting problems for some other
more “interesting” reason. One such case is [4], which proves that there is no FPRAS for counting
the number of independent sets in graphs of maximum degree ∆ ≥ 25, unless NP=RP. As noted
in [7], in view of the lack of “satisfactory” results that prove inapproximability under reasonable
complexity-theoretical assumptions, research efforts have often been directed towards proving that
certain restricted algorithmic approaches fail (see section 4 of [7] and the references therein).

The rest of the paper is organized as follows. In section 2 we give an overview of the proof
technique, in section 3 we give the details of the proof and finally in section 4 we make some
concluding comments.
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2 Overview

We derive the result through a reduction from Hamilton Path (HP for short). Recall that HP
is one of the first problems shown to be NP-complete (see [9]). Given a graph G (in some usual
representation), HP asks whether there exists a simple path of length n, i.e. a path that goes
through every vertex of G exactly once.

With every graph G, we associate a function FG. If G has n vertices, FG is a function of n2

variables. The function FG has the the following useful characteristics. It can be computed at any
point x in a cube C of interest, in time polynomial in n. The parameters α, β of FG (defined in
inequalities 1,2 ), are polynomial in n. Also, the value of the integral of FG depends on whether
G contains a Hamilton Path or not. Specifically, if there is a HP, the integral of FG over a cube
C of constant edge size c, is lower bounded by an explicitly known quantity IH . If not, it is upper
bounded by INH , with IH/INH ≥ 2nk

, for any fixed constant k. It follows that the integral is not
2nk

-approximable.

Also, since β = O(nd) for some constant d (the smallest value of d we are able to exhibit in this paper
is 6), an improvement of the running time of the integration algorithm to poly(n, ε−1, α, 2b(1/d)−e′

),
for any e′ > 0, would give a 2o(n) randomized algorithm for Hamilton Path (the best currently known
upper bound is O(2n), see [1]), and through the Sparsificiation Lemma of [8] a 2o(n) randomized
algorithm for 3-SAT, where now n is the number of variables.

3 The Proof

3.1 Definition and Properties of the Function FG

Let G be a graph with n vertices and P be the set of length-n paths of G. The function FG(X) is
a function of n2 variables, X = {x11, . . . , xnn}. Each path p ∈ P is associated with a term fp(X),
and FG(X) =

∑
p∈P fp(X).

We now describe the term fp(X) for a path p. Assume an arbitrary numbering of the graph vertices
with numbers in [n]. We consider p as an ordered set of vertices v1, . . . , vn, where vi ∈ [n]. We let
m = nk, where k is an integer constant to be discussed later. We define

fp(X) =
n∏

i=1

gi(X)

with

gi(X) =

∏i−1
j=1 xm

vij

xm
vii

We will integrate FG over the cube C = [1, c]n
2
, so we study its properties in this cube. Each term

fp(X) is increasing in the variables appearing in the numerator and decreasing in the variables
appearing in the denominator. By setting the former to c and the latter to 1, we get that the
maximum value of fp(X) is O(cn2m). Since there are at most n! paths, it follows that for any
X ∈ C, FG(X) can be expressed with O(mn3 log n) bits.

3



As noted in [2], the smoothness parameter α, can be upper bounded by

α ≤ n2 max
X∈C,xi∈X

∣∣∣∣
∂

∂xi
ln F (X)

∣∣∣∣ = n2 max
X∈C,xi∈X

∣∣∣∣∣

∑
p∈P ∂fp(X)/∂xi∑

p∈P fp(X)

∣∣∣∣∣ (3)

Let xi ∈ X be any variable. Since the exponent of xi is at most nm, for all points X in C, we have

∂fp(X)
∂xi

≤ nmfp(X)

which combined with inequality 3, gives α ≤ n3m.

A note about the algorithm of [2] is due here. The algorithm operates on a grid imposed on C.
The coordinates of the grid are multiples of γ ≤ 1/2α. From the bound on α it follows that we are
interested in evaluating FG at points which are rationals expressible in polynomial space. From
the definition of FG, its value at any point of the grid is also a rational expressible in polynomial
space.

The definition of β trivially implies that any upper bound for f(X) is also an upper bound for β.
From the above analysis we get β ≤ O(mn3 log n). For a lower bound on β note that f(X) can
be written as f(X) = lnP (X)−m

∑
i,j∈[n] ln xij , where P (X) is a multivariate polynomial. Since

P (X) is not log-concave in general, the value of β can be lower bounded from the value of β for
the function f̂(X) = −m

∑
i,j∈[n] ln xij , which can be seen to be O(mn2). Thus,we get β ≥ mn2.

We finally note that FG(X) has some additional interesting properties. First, FG has derivatives of
any order, everywhere in the cube C. Also, its form is relatively simple, as it is a sum of rational
multivariate polynomials. In addition, given a graph G we can easily obtain a closed form for the
integral of FG, though of exponential length.

3.2 A Polynomial Time Algorithm for the Evaluation of FG

We give an algorithm that computes FG(X) at any point X, in n time steps. We extend the
definition of the path terms, to paths of length t. Concretely, we let

fp(X) =
t∏

i=1

gi(X)

with

gi(X) =

∏i−1
j=1 xm

vij

xm
vii

Let Pt(v) be the set of paths of length t that end in node v. Also, let Q1(v) = x−m
v1 . Inductively,

assume that just before time step t, for every v ∈ V we have computed

Qt−1(v) =
∑

p∈Pt−1(v)

fp(X)
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Let N(v) denote the set of neighbors of node v. At step t, for each node v we compute

Qt(v) =


x−m

vt

t−1∏

j=1

xm
vj


 ∑

v′∈N(v)

Qt−1(v′)

After n steps the quantities Qn(v) have been computed for all vertices v ∈ V . Then,

F (X) =
∑

v∈V

Qn(v)

The computation of Qt(V ) requires a polynomial number of operations. Since there are n steps
and n vertices, it follows that FG can be computed with a polynomial number of operations. The
points we are interested in are rationals expressible in polynomial space, and from the observations
of the previous subsection, all the intermediate quantities are expressible in polynomial space. It
follows that FG(X) can be evaluated exactly, at any point X ∈ C, in time polynomial in n.

3.3 Bounding the Integrals

We integrate F (X) over a cube C = [1, c]n
2
. Let dX = dx11 · . . . · dxnn and π be a permutation of

the variable names. Since
∫

X∈C

∑

p∈P
fp(X)dX =

∑

p∈P

∫

X∈C
fp(X)dX

we can consider the integral of each path separately. We will refer to the value of the integral of a
term corresponding to a path p as the integral of p. Also, since

∫

X∈C
fp(x11, . . . , xnn)dX =

∫

X∈C
fp (π(x11), . . . , π(xnn)) dX

we can rename the variables in any term of F . It is then easy to see that the integral of a path
depends only on the structure of the path and not on the particular vertices appearing on it.

We first consider the integral of a HP. Since HP is a simple path, there are no cancellations of
variables and its integral is

IHP =
∫

X∈C

(
n∏

i=1

1
xm

ii

)
·

 ∏

1≤i≤n ,1≤j≤i−1

xm
ij


 dX =

= (m + 1)−n(n−1)/2(m− 1)n(1− c−m+1)n(cm+1 − 1)n(n−1)/2(c− 1)n(n−1)/2

Let us now consider the integrals of other non-simple paths. Suppose a path p goes through n− d
distinct nodes. Then, the corresponding term fp is of the form

fp(X) =

(
n−d∏

i=1

1
xm

i

)
·



n(n+1)/2−t∏

i=n−d+1

xaim
i



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where t and ai are integers that depend on the structure of p. In this case, d monomials in the
denominator cancel with variables in the numerator, so that

n(n−1)/2−t∑

i=n−d+1

ai = n(n− 1)/2− d

By integrating, we get

∫

X∈C
fp(X) ≤ (1− c−m+1)n−d(c− 1)n(n+1)/2+t

n(n−1)/2−t∏

i=n−d+1

caim+1

≤ cn2
cm(

∑n(n−1)/2−t
i=n−d+1 ai) = cn2

cmn(n−1)/2c−md

Now suppose we are given a non-Hamiltonian graph. Since there are at most n! ≤ cn2
paths in the

graph, the integral of the associated function is

INH ≤ c2n2
cmn(n−1)/2c−m

On the other hand, if the given graph is Hamiltonian (and even if we consider only the integral of
the HP), the integral of the associated function is

IH ≥ c−O(n2 log n)cmn(n−1)/2

which gives a large gap, namely

IH

INH
≥ cm−O(n2 log n)

Recall that m = nk. By taking any fixed k ≥ 3 we get Theorem 1.3.

4 Conclusions

We showed that it is NP-hard to 2nk
-approximate the integral of smooth positive n-variate functions,

for any fixed integer k. We also argued that the currently best known integration algorithm cannot
be substantially improved, unless there exist faster algorithms for Hamilton Path and 3-SAT.

Note that the 2nk
-inapproximability holds for (k + 3)-smooth functions, with k ≥ 3. Also, in order

to obtain the full range of our inapproximability result, we make use of functions that progressively
become less efficiently computable. It is an interesting question whether similar inapproximability
properties can be shown for classes of functions with different trade-offs between their evaluation
time complexity and the value of their α, β parameters.

We feel that the most interesting open question is whether a lower bound can be proved on β, for
any smooth polynomially computable function FG which can be constructed using the techniques
of this paper.
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