
Covering Graphs using Trees
and Stars

Amitabh Sinha

Joint work with G. Even N. Garg J. Könemann R. Ravi

GSIA, Carnegie Mellon University

(Work done while visiting MPII Saarbrucken, Germany)

Covering Graphs using Trees and Stars – p.1

Covering Graphs using Trees
and Stars

Amitabh Sinha

Joint work with G. Even

N. Garg J. Könemann R. Ravi

GSIA, Carnegie Mellon University

(Work done while visiting MPII Saarbrucken, Germany)

Covering Graphs using Trees and Stars – p.1

Covering Graphs using Trees
and Stars

Amitabh Sinha

Joint work with G. Even N. Garg

J. Könemann R. Ravi

GSIA, Carnegie Mellon University

(Work done while visiting MPII Saarbrucken, Germany)

Covering Graphs using Trees and Stars – p.1

Covering Graphs using Trees
and Stars

Amitabh Sinha

Joint work with G. Even N. Garg J. Könemann

R. Ravi

GSIA, Carnegie Mellon University

(Work done while visiting MPII Saarbrucken, Germany)

Covering Graphs using Trees and Stars – p.1

Covering Graphs using Trees
and Stars

Amitabh Sinha

Joint work with G. Even N. Garg J. Könemann R. Ravi

GSIA, Carnegie Mellon University

(Work done while visiting MPII Saarbrucken, Germany)

Covering Graphs using Trees and Stars – p.1

Motivation: Nurse station location

• Hospital;
k nurses (each with her own station);
n patients in various beds.

• At 8 am, each nurse begins her “morning round” of
patients under her care.

• Morning round ends when all nurses have returned to
their bases.

• Objective: Assign patients to nurses so that morning
rounds end ASAP.

Covering Graphs using Trees and Stars – p.2

Motivation: Nurse station location

• Hospital;
k nurses (each with her own station);
n patients in various beds.

• At 8 am, each nurse begins her “morning round” of
patients under her care.

• Morning round ends when all nurses have returned to
their bases.

• Objective: Assign patients to nurses so that morning
rounds end ASAP.

Covering Graphs using Trees and Stars – p.2

Motivation: Nurse station location

• Hospital;
k nurses (each with her own station);
n patients in various beds.

• At 8 am, each nurse begins her “morning round” of
patients under her care.

• Morning round ends when all nurses have returned to
their bases.

• Objective: Assign patients to nurses so that morning
rounds end ASAP.

Covering Graphs using Trees and Stars – p.2

Motivation: Nurse station location

• Hospital;
k nurses (each with her own station);
n patients in various beds.

• At 8 am, each nurse begins her “morning round” of
patients under her care.

• Morning round ends when all nurses have returned to
their bases.

• Objective: Assign patients to nurses so that morning
rounds end ASAP.

Covering Graphs using Trees and Stars – p.2

Problem definition

• Input: Graph G = (V,E), edge
weights w, integer k.

• k-Tree cover: Set of trees
{T1, T2, . . . , Tk} such that
∪k

i=1V (Ti) = V .

• Objective: Minimize maxi w(Ti).

• Rooted version: Given roots
R ⊂ V , find a k-Tree cover with
each tree using a distinct root
in R.

• Star cover: Cover with stars,
same objective; may be rooted
or unrooted.

INPUT

Covering Graphs using Trees and Stars – p.3

Problem definition

• Input: Graph G = (V,E), edge
weights w, integer k.

• k-Tree cover: Set of trees
{T1, T2, . . . , Tk} such that
∪k

i=1V (Ti) = V .

• Objective: Minimize maxi w(Ti).

• Rooted version: Given roots
R ⊂ V , find a k-Tree cover with
each tree using a distinct root
in R.

• Star cover: Cover with stars,
same objective; may be rooted
or unrooted.

INPUT

Covering Graphs using Trees and Stars – p.3

Problem definition

• Input: Graph G = (V,E), edge
weights w, integer k.

• k-Tree cover: Set of trees
{T1, T2, . . . , Tk} such that
∪k

i=1V (Ti) = V .

• Objective: Minimize maxi w(Ti).

• Rooted version: Given roots
R ⊂ V , find a k-Tree cover with
each tree using a distinct root
in R.

• Star cover: Cover with stars,
same objective; may be rooted
or unrooted.

FEASIBLE SOLUTION

Covering Graphs using Trees and Stars – p.3

Problem definition

• Input: Graph G = (V,E), edge
weights w, integer k.

• k-Tree cover: Set of trees
{T1, T2, . . . , Tk} such that
∪k

i=1V (Ti) = V .

• Objective: Minimize maxi w(Ti).

• Rooted version: Given roots
R ⊂ V , find a k-Tree cover with
each tree using a distinct root
in R.

• Star cover: Cover with stars,
same objective; may be rooted
or unrooted.

FEASIBLE SOLUTION

Covering Graphs using Trees and Stars – p.3

Problem definition

• Input: Graph G = (V,E), edge
weights w, integer k.

• k-Tree cover: Set of trees
{T1, T2, . . . , Tk} such that
∪k

i=1V (Ti) = V .

• Objective: Minimize maxi w(Ti).

• Rooted version: Given roots
R ⊂ V , find a k-Tree cover with
each tree using a distinct root
in R.

• Star cover: Cover with stars,
same objective; may be rooted
or unrooted.

INPUT

Roots

Covering Graphs using Trees and Stars – p.3

Problem definition

• Input: Graph G = (V,E), edge
weights w, integer k.

• k-Tree cover: Set of trees
{T1, T2, . . . , Tk} such that
∪k

i=1V (Ti) = V .

• Objective: Minimize maxi w(Ti).

• Rooted version: Given roots
R ⊂ V , find a k-Tree cover with
each tree using a distinct root
in R.

• Star cover: Cover with stars,
same objective; may be rooted
or unrooted.

INPUT

Roots

Covering Graphs using Trees and Stars – p.3

Problem definition

• Input: Graph G = (V,E), edge
weights w, integer k.

• k-Tree cover: Set of trees
{T1, T2, . . . , Tk} such that
∪k

i=1V (Ti) = V .

• Objective: Minimize maxi w(Ti).

• Rooted version: Given roots
R ⊂ V , find a k-Tree cover with
each tree using a distinct root
in R.

• Star cover: Cover with stars,
same objective; may be rooted
or unrooted.

INPUT

Roots

Covering Graphs using Trees and Stars – p.3

Hardness (of rooted k-star cover)

• Reduction from BIN-PACK:
Given elements U with sizes su,
k bins of size B. Can we pack
elements in k bins?

• Convert to Rooted k-star
cover: Complete bipartite graph
between elements and bins,
edge weights = element sizes,
bins = roots.

• Claim: BIN-PACK is identical
to this special case of Rooted
k-star cover.

12

5

6

8

4

6

BINS OBJECTS SIZES

BIN−PACK

8

Covering Graphs using Trees and Stars – p.4

Hardness (of rooted k-star cover)

• Reduction from BIN-PACK:
Given elements U with sizes su,
k bins of size B. Can we pack
elements in k bins?

• Convert to Rooted k-star
cover: Complete bipartite graph
between elements and bins,
edge weights = element sizes,
bins = roots.

• Claim: BIN-PACK is identical
to this special case of Rooted
k-star cover.

12

5

6

8

4

6

VERTICES

8

12

6

8

8

8

6

8

(Complete bipartite)
Rooted k−Star cover

ROOTS

Covering Graphs using Trees and Stars – p.4

Hardness (of rooted k-star cover)

• Reduction from BIN-PACK:
Given elements U with sizes su,
k bins of size B. Can we pack
elements in k bins?

• Convert to Rooted k-star
cover: Complete bipartite graph
between elements and bins,
edge weights = element sizes,
bins = roots.

• Claim: BIN-PACK is identical
to this special case of Rooted
k-star cover.

12

5

6

8

4

6

VERTICES

8

Solution
ROOTS

Covering Graphs using Trees and Stars – p.4

Hardness of others

• Also by reduction from
BIN-PACK.

• Key: Poly time algorithm to con-
vert any solution to Rooted k-
star cover solution without in-
creasing cost. (In BIN-PACK
graph.)

12

5

6

8

4

6

VERTICES

8

Solution
ROOTS

Covering Graphs using Trees and Stars – p.5

Hardness of others

• Also by reduction from
BIN-PACK.

• Key: Poly time algorithm to con-
vert any solution to Rooted k-
star cover solution without in-
creasing cost. (In BIN-PACK
graph.)

12

5

6

8

4

6

VERTICES

8

Solution
ROOTS

Covering Graphs using Trees and Stars – p.5

Hardness of others

• Also by reduction from
BIN-PACK.

• Key: Poly time algorithm to con-
vert any solution to Rooted k-
star cover solution without in-
creasing cost. (In BIN-PACK
graph.)

12

5

6

8

4

6

VERTICES

8

Solution
ROOTS

Covering Graphs using Trees and Stars – p.5

Hardness of others

• Also by reduction from
BIN-PACK.

• Key: Poly time algorithm to con-
vert any solution to Rooted k-
star cover solution without in-
creasing cost. (In BIN-PACK
graph.)

12

5

6

8

4

6

VERTICES

8

Solution
ROOTS

Covering Graphs using Trees and Stars – p.5

Hardness of others

• Also by reduction from
BIN-PACK.

• Key: Poly time algorithm to con-
vert any solution to Rooted k-
star cover solution without in-
creasing cost. (In BIN-PACK
graph.)

12

5

6

8

4

6

VERTICES

8

Solution
ROOTS

Covering Graphs using Trees and Stars – p.5

Algorithm for Rooted k-tree cover

• Guess-and-check type algorithm.

• Guess optimal solution cost B. Let true optimum be B∗.

• If “fail”, then proof that B < B∗.
• If “success”, then find solution of cost no more than

4B.

• Binary search yields (weakly) polynomial time
4-approximation algorithm.

• Can be made strongly polynomial; approximation ratio
worsens to 4 + ε.

Covering Graphs using Trees and Stars – p.6

Algorithm for Rooted k-tree cover

• Guess-and-check type algorithm.

• Guess optimal solution cost B. Let true optimum be B∗.

• If “fail”, then proof that B < B∗.
• If “success”, then find solution of cost no more than

4B.

• Binary search yields (weakly) polynomial time
4-approximation algorithm.

• Can be made strongly polynomial; approximation ratio
worsens to 4 + ε.

Covering Graphs using Trees and Stars – p.6

Algorithm for Rooted k-tree cover

• Guess-and-check type algorithm.

• Guess optimal solution cost B. Let true optimum be B∗.

• If “fail”, then proof that B < B∗.
• If “success”, then find solution of cost no more than

4B.

• Binary search yields (weakly) polynomial time
4-approximation algorithm.

• Can be made strongly polynomial; approximation ratio
worsens to 4 + ε.

Covering Graphs using Trees and Stars – p.6

Algorithm for Rooted k-tree cover

• Guess-and-check type algorithm.

• Guess optimal solution cost B. Let true optimum be B∗.

• If “fail”, then proof that B < B∗.
• If “success”, then find solution of cost no more than

4B.

• Binary search yields (weakly) polynomial time
4-approximation algorithm.

• Can be made strongly polynomial; approximation ratio
worsens to 4 + ε.

Covering Graphs using Trees and Stars – p.6

Algorithm: Overview

Given B, set of roots R, and G.

1. Remove all edges with we > B.

2. Contract R; compute MST M .
{Ti}i := forest obtained by expanding R.

3. Decompose each Ti into trees {Sj
i }

j + Li s.t.

w(Sj
i) ∈ [B, 2B) and w(Li) < B.

4. Match trees {Sj
i }

j
i to roots in R within distance B from it.

• If possible, return “success”.
• If impossible, return “fail”.

Covering Graphs using Trees and Stars – p.7

Algorithm: Overview

Given B, set of roots R, and G.

1. Remove all edges with we > B.

2. Contract R; compute MST M .
{Ti}i := forest obtained by expanding R.

3. Decompose each Ti into trees {Sj
i }

j + Li s.t.

w(Sj
i) ∈ [B, 2B) and w(Li) < B.

4. Match trees {Sj
i }

j
i to roots in R within distance B from it.

• If possible, return “success”.
• If impossible, return “fail”.

Covering Graphs using Trees and Stars – p.7

Algorithm: Overview

Given B, set of roots R, and G.

1. Remove all edges with we > B.

2. Contract R; compute MST M .
{Ti}i := forest obtained by expanding R.

3. Decompose each Ti into trees {Sj
i }

j + Li s.t.

w(Sj
i) ∈ [B, 2B) and w(Li) < B.

4. Match trees {Sj
i }

j
i to roots in R within distance B from it.

• If possible, return “success”.
• If impossible, return “fail”.

Covering Graphs using Trees and Stars – p.7

Algorithm: Overview

Given B, set of roots R, and G.

1. Remove all edges with we > B.

2. Contract R; compute MST M .
{Ti}i := forest obtained by expanding R.

3. Decompose each Ti into trees {Sj
i }

j + Li s.t.

w(Sj
i) ∈ [B, 2B) and w(Li) < B.

4. Match trees {Sj
i }

j
i to roots in R within distance B from it.

• If possible, return “success”.
• If impossible, return “fail”.

Covering Graphs using Trees and Stars – p.7

Algorithm: Demonstration

1. Prune.

2. Contract R, compute MST.

3. Decompose.

4. Match.

INPUT

Roots

Covering Graphs using Trees and Stars – p.8

Algorithm: Demonstration

1. Prune.

2. Contract R, compute MST.

3. Decompose.

4. Match.

Roots

CONTRACTED ROOTS

Covering Graphs using Trees and Stars – p.8

Algorithm: Demonstration

1. Prune.

2. Contract R, compute MST.

3. Decompose.

4. Match.

Roots

MST

Covering Graphs using Trees and Stars – p.8

Algorithm: Demonstration

1. Prune.

2. Contract R, compute MST.

3. Decompose.

4. Match.

Roots

Expanded MST

Covering Graphs using Trees and Stars – p.8

Algorithm: Demonstration

1. Prune.

2. Contract R, compute MST.

3. Decompose.

4. Match.

Roots

Decompose into light trees

Covering Graphs using Trees and Stars – p.8

Algorithm: Demonstration

1. Prune.

2. Contract R, compute MST.

3. Decompose.

4. Match.

Roots

Match − success?

Covering Graphs using Trees and Stars – p.8

Algorithm: Success

Claim: On success, each tree has cost no more than 4B.

Proof: Each tree in our solution has 3 components:

Decomposed tree Sj
i , cost ≤ 2B.

Edge to root, cost ≤ B.

Leftover tree Li, cost ≤ B.

�

Covering Graphs using Trees and Stars – p.9

Algorithm: Success

Claim: On success, each tree has cost no more than 4B.

Proof: Each tree in our solution has 3 components:

Decomposed tree Sj
i , cost ≤ 2B.

Edge to root, cost ≤ B.

Leftover tree Li, cost ≤ B.

�

Covering Graphs using Trees and Stars – p.9

Algorithm: Success

Claim: On success, each tree has cost no more than 4B.

Proof: Each tree in our solution has 3 components:

Decomposed tree Sj
i , cost ≤ 2B.

Edge to root, cost ≤ B.

Leftover tree Li, cost ≤ B.

�

Covering Graphs using Trees and Stars – p.9

Algorithm: Success

Claim: On success, each tree has cost no more than 4B.

Proof: Each tree in our solution has 3 components:

Decomposed tree Sj
i , cost ≤ 2B.

Edge to root, cost ≤ B.

Leftover tree Li, cost ≤ B.

�

Covering Graphs using Trees and Stars – p.9

Algorithm: Failure

Lemma: On failure (matching does not exist), B < B∗.

Alternatively: If B ≥ B∗, matching exists.

Proof: Hall’s Theorem: We show |N(S)| ≥ |S| for all
S ⊆ {Sj

i }
j
i .

Consider optimal solution T ∗ = {T ∗

1 , . . . , T ∗

k }. Let
T ∗(S) = T ∗ ∩ S. Hence |N(S)| ≥ |T ∗(S)|.

Deleting all edges in S and adding all edges in T ∗(S) also
yields a spanning tree of G, and since our tree was MST,
w(T ∗(S)) ≥ w(S).

B∗|N(S)| ≥ B∗|T ∗(S)| ≥ w(T ∗(S)) ≥ w(S) ≥ B|S|. �

Covering Graphs using Trees and Stars – p.10

Algorithm: Failure

Lemma: On failure (matching does not exist), B < B∗.

Alternatively: If B ≥ B∗, matching exists.

Proof: Hall’s Theorem: We show |N(S)| ≥ |S| for all
S ⊆ {Sj

i }
j
i .

Consider optimal solution T ∗ = {T ∗

1 , . . . , T ∗

k }. Let
T ∗(S) = T ∗ ∩ S. Hence |N(S)| ≥ |T ∗(S)|.

Deleting all edges in S and adding all edges in T ∗(S) also
yields a spanning tree of G, and since our tree was MST,
w(T ∗(S)) ≥ w(S).

B∗|N(S)| ≥ B∗|T ∗(S)| ≥ w(T ∗(S)) ≥ w(S) ≥ B|S|. �

Covering Graphs using Trees and Stars – p.10

Algorithm: Failure

Lemma: On failure (matching does not exist), B < B∗.

Alternatively: If B ≥ B∗, matching exists.

Proof: Hall’s Theorem: We show |N(S)| ≥ |S| for all
S ⊆ {Sj

i }
j
i .

Consider optimal solution T ∗ = {T ∗

1 , . . . , T ∗

k }. Let
T ∗(S) = T ∗ ∩ S. Hence |N(S)| ≥ |T ∗(S)|.

Deleting all edges in S and adding all edges in T ∗(S) also
yields a spanning tree of G, and since our tree was MST,
w(T ∗(S)) ≥ w(S).

B∗|N(S)| ≥ B∗|T ∗(S)| ≥ w(T ∗(S)) ≥ w(S) ≥ B|S|. �

Covering Graphs using Trees and Stars – p.10

Algorithm: Failure

Lemma: On failure (matching does not exist), B < B∗.

Alternatively: If B ≥ B∗, matching exists.

Proof: Hall’s Theorem: We show |N(S)| ≥ |S| for all
S ⊆ {Sj

i }
j
i .

Consider optimal solution T ∗ = {T ∗

1 , . . . , T ∗

k }. Let
T ∗(S) = T ∗ ∩ S. Hence |N(S)| ≥ |T ∗(S)|.

Deleting all edges in S and adding all edges in T ∗(S) also
yields a spanning tree of G, and since our tree was MST,
w(T ∗(S)) ≥ w(S).

B∗|N(S)| ≥ B∗|T ∗(S)| ≥ w(T ∗(S)) ≥ w(S) ≥ B|S|. �

Covering Graphs using Trees and Stars – p.10

Algorithm: Failure

Lemma: On failure (matching does not exist), B < B∗.

Alternatively: If B ≥ B∗, matching exists.

Proof: Hall’s Theorem: We show |N(S)| ≥ |S| for all
S ⊆ {Sj

i }
j
i .

Consider optimal solution T ∗ = {T ∗

1 , . . . , T ∗

k }. Let
T ∗(S) = T ∗ ∩ S. Hence |N(S)| ≥ |T ∗(S)|.

Deleting all edges in S and adding all edges in T ∗(S) also
yields a spanning tree of G, and since our tree was MST,
w(T ∗(S)) ≥ w(S).

B∗|N(S)| ≥ B∗|T ∗(S)| ≥ w(T ∗(S)) ≥ w(S) ≥ B|S|. �

Covering Graphs using Trees and Stars – p.10

Algorithm: Failure

Lemma: On failure (matching does not exist), B < B∗.

Alternatively: If B ≥ B∗, matching exists.

Proof: Hall’s Theorem: We show |N(S)| ≥ |S| for all
S ⊆ {Sj

i }
j
i .

Consider optimal solution T ∗ = {T ∗

1 , . . . , T ∗

k }. Let
T ∗(S) = T ∗ ∩ S. Hence |N(S)| ≥ |T ∗(S)|.

Deleting all edges in S and adding all edges in T ∗(S) also
yields a spanning tree of G, and since our tree was MST,
w(T ∗(S)) ≥ w(S).

B∗|N(S)| ≥ B∗|T ∗(S)| ≥ w(T ∗(S)) ≥ w(S) ≥ B|S|. �

Covering Graphs using Trees and Stars – p.10

Strongly polynomial algorithm

Fix ε > 0.

• Sort edges w1 ≤ w2 ≤ . . . ≤ wm.

• If algorithm says wm = B < B∗, then contract all edges
of weight at most εwm

n2 . Now binary search in range
[εwm

n2 , nwm], which is polynomial.

• Otherwise, find i such that B∗ ∈ (wi, 4wi+1].

• If wi+1

wi

≤ n2

ε
, binary search in above range is polynomial.

• If not, set w′ = n2wi/ε. If B∗ ∈ [wi, w
′], then polynomial.

• If not, then contract all edges of weight at most wi. Now
binary search in [wi+1, 4wi+1] is polynomial.

Covering Graphs using Trees and Stars – p.11

Strongly polynomial algorithm

Fix ε > 0.

• Sort edges w1 ≤ w2 ≤ . . . ≤ wm.

• If algorithm says wm = B < B∗, then contract all edges
of weight at most εwm

n2 . Now binary search in range
[εwm

n2 , nwm], which is polynomial.

• Otherwise, find i such that B∗ ∈ (wi, 4wi+1].

• If wi+1

wi

≤ n2

ε
, binary search in above range is polynomial.

• If not, set w′ = n2wi/ε. If B∗ ∈ [wi, w
′], then polynomial.

• If not, then contract all edges of weight at most wi. Now
binary search in [wi+1, 4wi+1] is polynomial.

Covering Graphs using Trees and Stars – p.11

Strongly polynomial algorithm

Fix ε > 0.

• Sort edges w1 ≤ w2 ≤ . . . ≤ wm.

• If algorithm says wm = B < B∗, then contract all edges
of weight at most εwm

n2 . Now binary search in range
[εwm

n2 , nwm], which is polynomial.

• Otherwise, find i such that B∗ ∈ (wi, 4wi+1].

• If wi+1

wi

≤ n2

ε
, binary search in above range is polynomial.

• If not, set w′ = n2wi/ε. If B∗ ∈ [wi, w
′], then polynomial.

• If not, then contract all edges of weight at most wi. Now
binary search in [wi+1, 4wi+1] is polynomial.

Covering Graphs using Trees and Stars – p.11

Strongly polynomial algorithm

Fix ε > 0.

• Sort edges w1 ≤ w2 ≤ . . . ≤ wm.

• If algorithm says wm = B < B∗, then contract all edges
of weight at most εwm

n2 . Now binary search in range
[εwm

n2 , nwm], which is polynomial.

• Otherwise, find i such that B∗ ∈ (wi, 4wi+1].

• If wi+1

wi

≤ n2

ε
, binary search in above range is polynomial.

• If not, set w′ = n2wi/ε. If B∗ ∈ [wi, w
′], then polynomial.

• If not, then contract all edges of weight at most wi. Now
binary search in [wi+1, 4wi+1] is polynomial.

Covering Graphs using Trees and Stars – p.11

Strongly polynomial algorithm

Fix ε > 0.

• Sort edges w1 ≤ w2 ≤ . . . ≤ wm.

• If algorithm says wm = B < B∗, then contract all edges
of weight at most εwm

n2 . Now binary search in range
[εwm

n2 , nwm], which is polynomial.

• Otherwise, find i such that B∗ ∈ (wi, 4wi+1].

• If wi+1

wi

≤ n2

ε
, binary search in above range is polynomial.

• If not, set w′ = n2wi/ε. If B∗ ∈ [wi, w
′], then polynomial.

• If not, then contract all edges of weight at most wi. Now
binary search in [wi+1, 4wi+1] is polynomial.

Covering Graphs using Trees and Stars – p.11

Strongly polynomial algorithm

Fix ε > 0.

• Sort edges w1 ≤ w2 ≤ . . . ≤ wm.

• If algorithm says wm = B < B∗, then contract all edges
of weight at most εwm

n2 . Now binary search in range
[εwm

n2 , nwm], which is polynomial.

• Otherwise, find i such that B∗ ∈ (wi, 4wi+1].

• If wi+1

wi

≤ n2

ε
, binary search in above range is polynomial.

• If not, set w′ = n2wi/ε. If B∗ ∈ [wi, w
′], then polynomial.

• If not, then contract all edges of weight at most wi. Now
binary search in [wi+1, 4wi+1] is polynomial.

Covering Graphs using Trees and Stars – p.11

Algorithm for Unrooted k-tree cover

1. Prune edges we > B.
Let {Gi}i be components.

2. MSTi = MST of Gi.
ki = bw(MSTi)

2B
c.

3. If
∑

i(ki + 1) > k, return “fail”.

4. Decompose each MSTi into at
most ki+1 trees S1

i +. . .+Ski

i +Li

such that w(Sj
i) ∈ [2B, 4B) and

w(Li) < 2B. Return “success”.

Long edges pruned

Covering Graphs using Trees and Stars – p.12

Algorithm for Unrooted k-tree cover

1. Prune edges we > B.
Let {Gi}i be components.

2. MSTi = MST of Gi.
ki = bw(MSTi)

2B
c.

3. If
∑

i(ki + 1) > k, return “fail”.

4. Decompose each MSTi into at
most ki+1 trees S1

i +. . .+Ski

i +Li

such that w(Sj
i) ∈ [2B, 4B) and

w(Li) < 2B. Return “success”.

MST

Covering Graphs using Trees and Stars – p.12

Algorithm for Unrooted k-tree cover

1. Prune edges we > B.
Let {Gi}i be components.

2. MSTi = MST of Gi.
ki = bw(MSTi)

2B
c.

3. If
∑

i(ki + 1) > k, return “fail”.

4. Decompose each MSTi into at
most ki+1 trees S1

i +. . .+Ski

i +Li

such that w(Sj
i) ∈ [2B, 4B) and

w(Li) < 2B. Return “success”.

MST

Covering Graphs using Trees and Stars – p.12

Algorithm for Unrooted k-tree cover

1. Prune edges we > B.
Let {Gi}i be components.

2. MSTi = MST of Gi.
ki = bw(MSTi)

2B
c.

3. If
∑

i(ki + 1) > k, return “fail”.

4. Decompose each MSTi into at
most ki+1 trees S1

i +. . .+Ski

i +Li

such that w(Sj
i) ∈ [2B, 4B) and

w(Li) < 2B. Return “success”. Final solution

Covering Graphs using Trees and Stars – p.12

Analysis

Claim: On success, each tree has weight no more than 4B.

Claim: On failure, B < B∗.

Alternatively, if B ≥ B∗, then ki + 1 ≤ k∗i for all i.

Proof: Let optimal solution cover Gi with {T ∗

1 , . . . , T ∗

k∗

i

}. We
can make it span Gi by adding at most k∗i + 1 edges, so:

k∗

i∑

j=1

w(T ∗

i) + (k∗i − 1)B ≥ w(MSTi)

.

Therefore k∗i ≥ w(MSTi)
2B

+ 1
2 > ki. �

Covering Graphs using Trees and Stars – p.13

Analysis

Claim: On success, each tree has weight no more than 4B.

Claim: On failure, B < B∗.

Alternatively, if B ≥ B∗, then ki + 1 ≤ k∗i for all i.

Proof: Let optimal solution cover Gi with {T ∗

1 , . . . , T ∗

k∗

i

}. We
can make it span Gi by adding at most k∗i + 1 edges, so:

k∗

i∑

j=1

w(T ∗

i) + (k∗i − 1)B ≥ w(MSTi)

.

Therefore k∗i ≥ w(MSTi)
2B

+ 1
2 > ki. �

Covering Graphs using Trees and Stars – p.13

Analysis

Claim: On success, each tree has weight no more than 4B.

Claim: On failure, B < B∗.

Alternatively, if B ≥ B∗, then ki + 1 ≤ k∗i for all i.

Proof: Let optimal solution cover Gi with {T ∗

1 , . . . , T ∗

k∗

i

}. We
can make it span Gi by adding at most k∗i + 1 edges, so:

k∗

i∑

j=1

w(T ∗

i) + (k∗i − 1)B ≥ w(MSTi)

.

Therefore k∗i ≥ w(MSTi)
2B

+ 1
2 > ki. �

Covering Graphs using Trees and Stars – p.13

Analysis

Claim: On success, each tree has weight no more than 4B.

Claim: On failure, B < B∗.

Alternatively, if B ≥ B∗, then ki + 1 ≤ k∗i for all i.

Proof: Let optimal solution cover Gi with {T ∗

1 , . . . , T ∗

k∗

i

}. We
can make it span Gi by adding at most k∗i + 1 edges, so:

k∗

i∑

j=1

w(T ∗

i) + (k∗i − 1)B ≥ w(MSTi)

.

Therefore k∗i ≥ w(MSTi)
2B

+ 1
2 > ki. �

Covering Graphs using Trees and Stars – p.13

Analysis

Claim: On success, each tree has weight no more than 4B.

Claim: On failure, B < B∗.

Alternatively, if B ≥ B∗, then ki + 1 ≤ k∗i for all i.

Proof: Let optimal solution cover Gi with {T ∗

1 , . . . , T ∗

k∗

i

}. We
can make it span Gi by adding at most k∗i + 1 edges, so:

k∗

i∑

j=1

w(T ∗

i) + (k∗i − 1)B ≥ w(MSTi)

.

Therefore k∗i ≥ w(MSTi)
2B

+ 1
2 > ki. �

Covering Graphs using Trees and Stars – p.13

Extensions and conclusion

• Rooted k-star cover: Reduces to Generalized
Assignment problem, yields a 2-approximation.

• Unrooted k-star cover: LP rounding gives bicriteria
approximation: Covers with 2k stars, each costing no
more than twice the optimum.

• Tree cover algorithms also yield constant factor
approximations for tour cover, the original nursing
station location problem.

• Questions?

Covering Graphs using Trees and Stars – p.14

Extensions and conclusion

• Rooted k-star cover: Reduces to Generalized
Assignment problem, yields a 2-approximation.

• Unrooted k-star cover: LP rounding gives bicriteria
approximation: Covers with 2k stars, each costing no
more than twice the optimum.

• Tree cover algorithms also yield constant factor
approximations for tour cover, the original nursing
station location problem.

• Questions?

Covering Graphs using Trees and Stars – p.14

Extensions and conclusion

• Rooted k-star cover: Reduces to Generalized
Assignment problem, yields a 2-approximation.

• Unrooted k-star cover: LP rounding gives bicriteria
approximation: Covers with 2k stars, each costing no
more than twice the optimum.

• Tree cover algorithms also yield constant factor
approximations for tour cover, the original nursing
station location problem.

• Questions?

Covering Graphs using Trees and Stars – p.14

Extensions and conclusion

• Rooted k-star cover: Reduces to Generalized
Assignment problem, yields a 2-approximation.

• Unrooted k-star cover: LP rounding gives bicriteria
approximation: Covers with 2k stars, each costing no
more than twice the optimum.

• Tree cover algorithms also yield constant factor
approximations for tour cover, the original nursing
station location problem.

• Questions?

Covering Graphs using Trees and Stars – p.14

beatrice

beatrice
This research was sponsored in part by National Science Foundation (NSF) grant no. CCR-0122581.

beatrice

beatrice

	
	Motivation: Nurse station location
	Problem definition
	Hardness (of rooted k-star cover)
	Hardness of others
	Algorithm for Rooted k-tree cover
	Algorithm: Overview
	Algorithm: Demonstration
	Algorithm: Success
	Algorithm: Failure
	Strongly polynomial algorithm
	Algorithm for Unrooted k-tree cover
	Analysis
	Extensions and conclusion

