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Abstract

We describe a general technique for converting an online algodittiona truthtelling mechanism. We require that the
original online competitive algorithm has certain “niceness” properties in that actions on future requests are independent
of the actual value of requests which were accepted (though these actions will of course depend upon the set of accepted
requests). Under these conditions, we are able to give an online truth telling mechanism (where the values of requests
are given by bids which may not accurately represent the valuation of the requesters) such that our total profit is within
O(p + log u) of the optimum offline profit obtained by an omniscient algorithm (one which knows the true valuations
of the users). Herp is the competitive ratio oB3 for the optimization version of the problem, apds the ratio of the
maximum to minimum valuation for a request. In general there 3@og 1) lower bound on the ratio of worst-case profit
for a truth telling mechanism when compared to the profit obtained by an omniscient algorithm, so this result is in some
sense best possible. In addition, we prove that our construction is resilient against many forms of “cheating” attempts,
such as forming coalitions.

We demonstrate applications of this result to several problems. We develop online truthtelling mechanisms for online
routing and admission control of path or multicast requests, assuming large network capacities. Assuming the existance
of an algorithms for the optimization version of the problem, our techniques provide truthtelling mechanisms for general
combinatorial auctions. However, designing optimization algorithms may be difficult in general because of online or
approximation lower bounds. For the cases described above, we are able to design optimization al§drjtamsrtizing
the lost benefit from online computation (and from approximation hardness in the case of multicast) against the benefit
obtained from accepted requests.

We comment that our upper bounds on profit competitiveness imply, as an obvious corollary, similar boliotshion
efficiency, namely overall well-being of all the users. This contrasts with most other work on truthtelling mechanisms for
general online resource allocation, where only efficiency is maximized, and competitiveness can be arbitrarily poor.
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1 Introduction

We construct a general technique for converting an algorithm for online optimization to a truthtelling mechanism. We will
draw examples from optimization problems such as online routing [3, 4] and construction of multicast trees [6, 5, 12]. For
the most part, the optimization algorithms described in those papers may be used as black boxes, with our protocol layered
atop the algorithm to guarantee truthful behavior by rational agents. Online optimization is a broad topic in computer
science literature, and there are many other examples to which our techniques could be applied.

Truthtelling mechanism design is a longstanding problem in economics and gametheory, with one of the earlier ex-
amples being the Vickrey auction [18] and VCG mechanisms [18, 9, 14]. In computer science theory, recent work has
given results describing truthtelling mechanisms for shortest path [1], multicast [11], load balancing [17], allocation of
goods [15, 7], and allocation of digital goods [8, 13]. Many of these problems can be viewed in an online setting (where
requests arrive one at a time in an adversarial fashion) and only some of the earlier results consider the online scenario.

There are two separate issues in dealing with combinatorial auctions:

e existence: do profit-competitive truthtelling online mechanism designs exest?

e computatability: if so, can they be computed in polynomial time?

Our main contribution is the introduction of a general technique to transform various online optimization problems into
truthtelling mechanisms. This transformation introduces onigdaiitive loss in the competitive ratio (a multiplicative loss
is relatively straightforward), enabling us to produce best-possible competitive bounds for a variety of problems of which
the specific instances presented are only a sample.

The most general result is a truthtelling mechanism for general online combinatorial auctions, assuming an online opti-
mization function exists. In general, combinatorial auctions require exponential size representation of input and exponential
computation effort.

As applications of our general framework we present constructive results for interesting special cases, where internal
structure of the problem enables polynomial representation of the input, as well as polynomial approximation in spite
of exponential number of options. Specifically, we give first online polynomial-time optimally-competitive truthtelling
mechanisms for a number of basic online optimization problems in capacitated networks, including:

constrained network routing and admission control, where selection must be made among exponentially many paths.

multicast routing, where steiner trees need to be selected, among exponentially many trees.

multicast admission control, where multicast requests to be admitted must be selected among exponential number of
possibilities.

combined multicast routing and admission control, combining all of the problems above.

The latter three results may be contrasted against various hardness results [10] for the same problems.

Our techniques assume the existence of an online optimization algorithm. In the case of combinatorial auctions, no
such algorithm can have a reasonable competitive ratio in the general setting. This may be seen via a reduction from online
routing on a unit-capacity network. However, if we assume large supply of each item in the combinatorial auction, it is
straightforward to apply the algorithm of [3] to the optimization version of the problem. Alternately, some auctions with
additional constraints (for example each customer requests only a small subset of items) may permit such an optimization
algorithm.

In the case of multicast, the hardness results arise from optimizing the function of benefit minus cost. Since we
cannot solve steiner tree exactly in polynomial time, we cannot obtain any reasonable approximation to the difference
problem [10]. However, we can exploit the fact that in a capacitated network there is no direct notion of externally-
imposed cost, and we only need to worry about internally-maintained “opportunity cost”. The error in optimization of
opportunity cost because of computational hardness can effectively be amortized against the benefit gained from earlier
multicast routings if the capacities are reasonably large.



2 Modéd and problem statement

Single-option auctions. We consider serving a sequence of requests which arrive one at a time online. Each request may
be represented by a pdir;, b;). Herer; is a statement of the resources requested; this may be in many different forms (for
example it might be a source-sink pair in a communication network, a node to be added to a multicast tree, or in general a
list of feasible subsets of the products to be auctioned). The vatiaidea bid, which represents the amount of money the
requester is willing to pay the auctioneer if the requested resources are provided. As each request arrives, we have several
decisions to make. We must decide whether to accept or reject the request. If we accept, there may be several feasible
ways to satisfy;, and we must select one such way. Finally, we must determine aypriceb; to charge the user for our
services.

In general we assume each user has a valuatiowhich represents the amount he is really willing to pay for request
i. The bidb; will be computed in order to optimize usés benefit (benefit is zero if the request is rejected apd- p; if
the request is accepted and the user is charged pyjcén algorithm is defined to beruthtelling if each user computed
b; = v; when trying to optimize benefit.

General Multiple-option (combinatorial) auctions. We consider the case of combinatorial auctions, in which we are
simultaneously auctioning a number of distinct items. Each customer places bids on several subsets of the items up for
auction. Our goal is to provide each customer with one of the subsets he requested (or an empty subset) and charge some
price, such that we do not oversell our supply of any of the auctioned items and our income is maximized. This problem
does not fit the framework outlined above, in that each customer may have several distinct bids, and we must determine not
only whether to accept the customer but which subset of the items to give him. We will again represent incoming requests
by pairs(r;, b;), but herer; is a collection of feasible sets of items, ands a function relating the set offered to the bid.

2.1 Measuresof performance

Competitiveness. Suppose we accept some set of requdst®ur total income is equal tb= 3, , p;. The optimum
offline omniscient income is the maximum, over sdts, of I* = 3. _ .. v;. We define our competitive ratio to be the
maximum over request sequende®f the ratio ﬁ Our algorithms will be randomized and the expected value of our
result is over the set of random choices made.

We assume that we are given an online algorithm for the optimization version of the problem. This algorithm guarantees
some competitive ratip, which means the algorithm accepts some set of requestsh that

PED bil> > bi.

i€A i€EA*

This algorithm is not truthtelling, in that users may well benefit from setiing v;.

Efficiency or global well-being. We comment that our upper bounds on profit competitiveness imply, as an obvious
corollary, similar bound oglobal efficiency, namely overall well-being of all the users. This contrasts with most other work

on truthtelling mechanisms for general online resource allocation, where only efficiency is maximized, and competitiveness
is, in most cases, arbitrarily poor.

Computational hardness. Another issue is ability to compute solutions in polynomial time. General combinatorial
auctions require exponential representation of input and exponential computation effort. There are two approaches. One
“non-constructive” approach is to assume existence of certain external optimization procedure, or “black box”, performing
necessary computational work; this approach is commonly used in the literature, since many problems in this domain are
impossible even to approximate. A “constructive” approach requires specifying a polynomial time algorithm for the above
“pblack box” computation, and we will give such constructive results for problems in routing and admission control.



3 Statement of results

3.1 Basicresults

We give a truth telling algorithm usingrbitrary nice online optimization algorithm as a black box, which will be
O(p + log 1) competitive against the offline omniscient algorithm, where max; v; (we assume the minimum nonzero
valuation is one). We observe that there istHiog 1) lower bound [13] in most cases. In addition, it is straightforward
to obtainO(p log i) competitivity as follows. We choose a random numbebetweenl andy via an exponential distri-
bution, and discard all requests with < m. The remaining requests are sent to the online algorithm with bid equal to
m.

In addition to improving this ratio t@)(p + log i), our algorithm is resilient against various attacks including retries
and coalitions. We show in section 4.3 that even if users are allowed to “cheat” in these ways, our expected income remains
competitive with the offline omniscient algorithm.

In section 4.4 we explain how to modify the algorithm if we do not have knowledge of the yafuadvance.
We first present our algorithm for the single-choice auction and then generalize to arbitrary combinatorial auctions.

3.2 Applicationsof basic results

Network admission control for unicast. We consider the following problem. We are given a capacitated network.
Communication requests arrive one at a time online. Each request specifies a path from the source to the destination node,
and a bid for the service of satisfying the connection. We will model this network in terms of permanent reservations

of virtual circuits; the algorithm can be easily extended to controlling reservations with known durations. Our goal is to
devise a strategy for admission control (as well as pricing the admitted requests) in order to maximize our income without
exceeding the network capacities. We will assume that the network capacities are reasonably large({&ibleas?

wheren is the number of nodes in the graph anis the maximum request valuation).

The optimization version of this problem was addressed in [3]. Assuming that each request is accompanied by a true
valuation (rather than a possibly untruthful bid),@€log nu)-competitive online algorithm was given, and matching lower
bounds were provided. The large capacity restriction on the edges is necessary for this guarantee; the case of unit-capacity
edges is provably hard. We would like to extend this result to an auction setting.

The algorithm of [3] works as follows. Each edge in the network is assigned an “opportunity” cost which is exponential
in the current load on the edge. For each request, we compute a cost which is the sum of the cost of the edges along the
shortest satisfying path. If this cost is less than the value of the request, then we accept and update the loads. Otherwise
we reject the request (loads remain unchanged). We observe that the actions of this deterministic algorithm are entirely
determined by the set of accepted requests (the actual values of requests do not effect the action of the algorithm other than
by determining whether to accept or reject). This algorithmi¢e, and therefore ideal for the technique described in Fig.
1.

It immediately follows that we can construct a truthtelling mechanism with competitip/+ log u) = O(lognu),
which is asymptotically identical to the competitivity of the best possible online algorithm for the optimization version of
the problem. We have effectively lost nothing by transforming to the auction problem.

In addition, we observe that the costs generated by the algorithm of [3] are nondecreasing (as the loads only rise with
time) and additive. It follows that our mechanism is resilient against retries, coalitions, and resellers.

Combined unicast routing and admission control. In additional to controlling the rates, we can also select the routes
between senders and receivers. Notice that there are exponentially many options, and only one needs to be selected. This
is an example of an combinatorial auction that can be handled in polynomial time.

Again, the optimization version of this problem was addressed in [3], with @og n)-competitive online algorithm
was given, and matching lower bounds were provided. The algorithm in in [3] selects shortest path in the above opportunity
cost, and applies admission control procedure above.

Once again, a truthtelling mechanism with optimal competiti@ty + log 1) = O(log npu) follows, which is resilient



against retries, coalitions, and resellers.

Multicast admission control is a generalization of unicast admission control.

Instead of paths from senders to receivers, we are given a forest of trees, rooted at a number of senders. We are given
a set of bids; for each of the nodes, and we can choose to connect some or all of the requested nodes into a tree. Our
algorithm’s income will be the total prices assigned to the nodes which are actually part of the tree we construct. We are
limited by network bandwidths in the underlying graph; each edge has a capacity and we may place at most a bounded
number of trees along the edge.

In the case of multicast, the hardness results arise from optimizing the function of benefit minus cost. Since we
cannot solve steiner tree exactly in polynomial time, we cannot obtain any reasonable approximation to the difference
problem [10]. Here we exploit the fact that in a capacitated network there is no direct notion of externally-imposed cost,
except internally-maintained “opportunity cost”. The latter can be only approximately optimized because of steiner tree
hardness, but the errors in this computation can effectively be amortized against the benefit gained from earlier multicast
routings if the capacities are reasonably large.

This situation differs from the scenario presented by Feigenbaum et al [10], in that they are trying to construct a
single-commodity multicast tree with costs on the edges in an offline scenario, whereas we are solving a multi-commodity
problem, namely packing large numbers of multicast trees into a graph with capacity constraints (but no costs) on the
edges. In contrast to the hardness results presented for the single tree with costs ([10] shows that the problem is effectively
inapproximable), we are able to provide polylogarithmic positive results for the capacitated problem.

Multicast admission control with routing is a generalization of the above, when we also need to construct a “steiner
tree”. In this case, the computational hardness results arise from optimizing the function of benefit minus “opportunity”
cost. Since we cannot solve steiner tree exactly in polynomial time, we cannot obtain any reasonable approximation to the
difference problem [10]. However, in a capacitated network there is no direct notion of cost. We will compute an online
“opportunity cost” which will be only approximate because of steiner tree, but the errors in this computation can effectively
be amortized against the benefit gained from earlier multicast routings if the capacities are reasonably large.

4 Single-choice auction

The single-choice auction algorithBY uses any deterministic or “nice” (see Def. 1) randomized online algoiiitan a
black box .

Computemn betweenl andy. With probability + we havem = 1, otherwisem = 2* with probabilitym for each
i < log u.

Basic Algorithm

¢; + minwv such that5 acceptgr;, ¢;) .

Feed(r;, b;) to B & updateB’s state

If b; > me; then accept and charge = mc;. /* Otherwise we reject request /

Figure 1:The algorithm for a single-choice auction.

Notice that the online algorithi8 will update its state (assuming we accepted reqgi)esten if we in fact computed
b; < mc; and rejected request

Theorem 4.1 Let 5 be a any deterministic or “ nice” randomized algorithm (Def. 1) which is p-competitive, and let 1 be
the range of bids. Then, algorithm B’ in Fig. 1 is truthtelling mechanismwhich is O(p + log 1) competitive against the
offline omniscient algorithm.



4.1 Preliminaries
Definition 1 We define an online algorithm as niceif the following conditions hold.

e If arequest is a accepted with a bid b, it must also be accepted with larger bid b’ > b.

o thedecision of whether to accept request i (whether i € A) may depend upon the current members of set A, but does
not depend upon the bids b; of the members j € A. It may however, depend upon the bids b ; that were rejected, i.e.

j¢A

Theorem 4.2 If there exists a deterministic online p-competitive algorithm for the optimization problem, then there exists
a nicealgorithmwith the same competitiveratio.

Proof: Suppose we are given a deterministic online algorifhmWe construct algorithn8’ as follows. Some stream
of requestsR arrives. As each requestrrives, we compute; to be the minimum value such that, if algorithfnwere
presented with requests; , min(by, ¢1)), (ra, min(bs, ¢2)), ..., (13, ¢;), then it would accept the request, ¢;). Algorithm
B’ accepts requestf its bid satisfiesh; > c;.

It is immediate that algorithn8’ satisfies the niceness conditions. Increasing the bid of an accepted request will not
cause it to be rejected (since the new bid is still more thanThe decision of whether to accept requiedtpends upon the
previous requests; and the values of the minimum 6f andc; for them. Since only the rejected requests hiaye< c;,
it follows that only the bids of rejected requests can effect our decision.

It remains to analyze the competitive ratio. Suppose there was some requestitndach could be fed to algorithm
B’ for which the competitive ratio is worse than We construct a new request stre&hby replacing the bid of request
i with min(b;, ¢;). Now supposes’ rejects some requesfrom streamR. It follows that/3 would reject request from
streamR’. Similarly, if B’ accepts requesgtfrom streamR, then B would accept the request. We know thatdifis
the set of requests accepted BYyfrom streamR, thenp >, , b; < >, 4~ b;. However, consideB acting on stream
R'. We have profify |, , min b;, ¢;, whereas there exists an alternate solution which gains grofit, . min b;, ¢;. Since
algorithmp is p-competitive, we know that » °, , min b;, ¢; > ), 4. min b;, c;. We now consider replacingin b;, c;
with the valueb;. The lefthand side of the inequality increasesb a% c; for each request € A. The righthand side of
the inequality increases by a smaller amount, since€ c; for each request id* except those also accepted Ay So we
havep ;. 4 bi > 3 4+ bi @s desired. ]

4.2 Analysisfor asingle choice case

We will consider several categories of requests. There are some reguehish our algorithm accepted. There is some
set@ of requests which havg < b;; these are the requests whilaccepts, but we will accept only some of them because
of our random choice afi. Finally, there is a seP of requests which the optimum omniscient offline accepts, but which
haveb; < c; and which we reject. We need to show that our total incdme , p; is comparable to the optimum income,
which is bounded above by, p v; + ZZEQ v;.

Lemma4.1l

Zvi szci

ieP ieqQ

Proof: Consider the given online algorithm for the optimization problem. If we feed this algorithm the(pairs), it

will accept exactlyi € @Q. We now consider feeding the algorithm the pdirs, min(b;, ¢;)). Sincec; is defined as the
minimum bid such thatr;, ¢;) will be accepted, and the future actions of the algorithm do not depend upon the actual bids
submitted by accepted requests, the algorithms behavior on this new request stream will be identical to its behavior on the
original request stream. Since the algorithm is truth telling, we bave v;, and one feasible solution to the problem
involves accepting the sét and obtaining income o} ;. , v;. We were given @-competitive algorithm which obtains
income OfZieAQ min(b;, ¢;) = ZieQ ¢;, and the presumed competitivity yields the desired result. [ ]



Lemma4.2

1
E[ZP@] > B Zci

i€A i€Q

Proof: Consider any requeste (). Notice that this set does not depend upon our choiee.ddvith probability % we will
havem = 1 and thug; = ¢; andA = Q. So the expected value OF ; _ , p; will be at least half the value oZiEQ c;. H

Lemma4.3

> vi <4(log ) E[Y_ pil

i€Q i€A

Proof: We note that) is the set of requests accepted®yand does not depend upon our choice of the random value
For anyi € @, we will compute its expected contribution to the righthand sum. With proba% we selectedn

such thatne; < v; < 2me;, in which case we will have € A andp; > %vi. The expected contribution of requégb

> _ic a4 Pi Will be at least; ﬁ;;u' and summing this over requestgives the desired bound. ]
Theorem 4.3

> i < (2p+4logw)E)D_ pi

i€EA* i€A

Proof: We know the setd* is a subset of) |J P. Thus we have) ;. 4. vi < > ;.o vi + D ;cpvi- We now apply the
lemmas to obtairy ;. 4. v; < (2p + 4log p)E[> ", 4 pil- [

We also need to show that this algorithm is truthtelling. This is immediate from previous work.
Theorem 4.4 The algorithmis a truthtelling mechanism.

Proof: We observe that the prigg is independant of the bilg;; the price is set based upon previous requests and a random
numbern. If the bid does not match the true valuation, the price remains unchanged, so the bidder does not bemefit.

4.3 Retry, Coalitions, and Resellers

Truthtelling mechanisms make certain assumptions about the requesters. It is assumed that each requester is an independent
agent who offers one and only one bid to the auction. This model is not realistic. First, we have the possibility of retry.

An individual whose request is rejected might continue resubmitting requests until one is accepted. If the computed price
for this request fluxuates, it might be beneficial to the requester to lie about his bid, then retry on a reject (possibly with a
different bid). Second, we have the possibility of coalitions. A group of requesters could agree to lie about their valuations

or to reorder their requests. Third, we have the possibility of resellers, where a group of requesters merge their requests
into a single request (for the sum of the required resources); they will benefit if the price computed by the algorithm for the
union is less than the sum of the individual prices.

We will show that our approach remains competitive despite retries, coalitions, and resellers, provided the given online
optimization algorithm has certain additional properties.

Theorem 4.5 If the costs computed by B for a particular request are nondecreasing, then our approachisresilient against
retries.

Proof: If we repeat request; at some later timg > 4, then the computed cost will kg > ¢;. The computed price will
therefore benc; > mc;, which is only larger. ]

Theorem 4.6 If the costs computed by B for a particular request are nondecreasing, then our approachisresilient against
coalitions.



Proof: Suppose some set of requestsorm a coalition. Some of these requests R might lie about their valuations,
biddingb; # v;. Bid i has three possibilities, it may be pre-rejected (rejected without effecting future actions of the
algorithm), pre-accepted but rejected later (causingupdate its costs), or actually accepted. The actudl paktermines

which set the request will join, but has no other effect. Suppose regliesand causes itself to be rejected (be< ¢; <

v;). In this case, since the requestill not effect the actions of the algorithm it may as well be removed from the request
stream. The coalition would only benefit by re-adding requedta time subsequent to all other coalition members. On
the other hand, suppose requéesies and causes itself to be pre-accepted but rejected, instead of being accepted. This
means we have; < b; < mc; < v;. We observe that the actions of the algorithm on other subsequent requests are
uneffected by this (since the algorithm only depends upon the pre-accepts and the choicH ofe had seb ; = v; then

all future actions of the algorithm are unchanged, but we will obtain additional benefjt-efme; > 0, so the coalition

has no incentive to lie in this way. The only other possible “lies” involve setting v;. It follows that the coalition has a
dominant strategy which might reorder the requests, but which guardntees; for all requests. But our competitivity
guarantee of for the online black box¥8 was against adversarial orderings of the requests, so we retain our competitivity
in the face of coalitions. ]

Theorem 4.7 If B assigns cost to a union of requests which is at least equal to the cost of those requests appearing in
sequence, then our approachis resilient against resellers.

Proof: Suppose requests froitio j apply to a reseller. The algorithm will see a single reqt@@ti:i i Zi:i b;). The
cost computed for this union of requests wille> Y7 . ¢;, leading to a price ofnC'. But if the requests had not used
the reseller, they would see a sum of prices which is only smaller, implying that the benefit has been reduced. B

4.4 Guessing the Max Bid

The technique described in Fig. 1 depends upon knowledge of the maximum possible bid. This knowledge is needed in
order to determine the distribution of random variahbie If the algorithm uses a value for this maximum bid which is

too low, then it will not be competitive. If the value is too high, then the competitive ratio deteriorates (since it depends
logarithmically upon the valug). In some applications a reasonable accurate guegswilf be available, but in general

this may not be the case. We will describe an alternate method for generatihgch does not depend on prior knowledge

of the valueu. This method is based on the idea of classify and select on unbounded range, first presented by Lipton and
Tomkins [16].

Theorem 4.8 Let B be a“nice” randomized algorithm which is p-competitive. e can design a truthtelling mechanism
whichisO(p+log p(loglog 1t)?) competitive against the offline omniscient algorithm, where . is the range of bids, without
prior knowledge of the value of .

Proof: The algorithm is unchanged, except that we must gensratea different way. We will setn = 1 with probability

%. Otherwise, we set = 2¢ with probability density functiogm for nonnegativé. Integrating the probability
function, we have total probability equal to one. We now consider the probability of selectiondpe “just right” to charge
some request ify its bid. Before, this probability Wa%ml—w- Now, the probability looks Iik@(m) and this

yields the result claimed. [ |

5 General Combinatorial Auction

The multiplicative random factar in our algorithm (Fig. 1) might tempt the customers to lie in case of auctions with
multiple choices. For example, suppose the customer would like eitherlimnitem 2, and their values to him ar&0
and10 respectively. Suppose we have casts= 90 for item one and- = 1 for item two. Clearly the customer prefers to
purchase item one if the prices are equal to the costs. However, once we add the random mwltiplidf frequently be

the case that00 — 90m < 10 — m and the customer prefers item two.

We can avoid this problem by making the factormefadditive instead of multiplicative. We assume we are given a
black box online algorithn8 which will be competitive assuming all bids are truthful and each customer bids on only a



single set of items. Various results show that producing such a black box is difficult. If we assume that only a single copy
of each item is available, then we are required to solve an approximation of the unit-capacity online flow problem, which
has hardness results from (among others) [3]. However, if we assume large supply of each item we can immediately obtain
such a black box using an exponential-cost routing algorithm.

In addition, we assume that given a request pairb; ), we are able to select a se€ r; which maximized;(s) —c;(s).
If the request; is given as a polynomial length “list” of feasible sets, then this computation is straightforward. There are
interesting cases where the list of feasible sets is exponential in length and we are unable to compute this maximization
exactly. The next section will deal with extensions of this type.

Combinatorial Auction Algorithm
With probability 3 setm = 0, otherwisem = 27 with probabilitym for eachi < log p.
For each set, compute:;(s) as the minimum value such thBtacceptgr;, ¢;(s)).
SelectS which maximized;(s) — ¢;(s). Feed(s, b;(s)) to B, updating its state.
If b;(s) > m + ¢;(s) then accept
give s to the customer and charge = m + ¢;(s) [*Otherwise we reject requeat/

Figure 2:The algorithm for mutiple-choice (combinatorial) auction.

We will first prove this algorithm is a truthtelling mechanism.
Theorem 5.1 The algorithmistruthtelling.

Proof: Suppose a customer requests one of severat sEtg each set, we implicitly assign a prigg(s) = m+c¢;(s). The
customer’s goal is to obtain the set which will maximize the difference of utility and prig¢e) — p;(s). This is exactly

the same set which maximizeg(s) — ¢;(s). If the customer is truthful, he will receive the most desirable set, and since
the price paid is independent of the customer’s bids, the algorithm is truthtelling. ]

We again analyze the algorithm by considering several sets of requests. We havefsetjuests which we accept,
set(@ of requests which algorithi8 accepts (which havg;(s) > ¢;(s)), and setP of requests which are accepted by
the offline omniscient but which we rejected altogether. In addition, we will now di¢ideto () 1, requests which have
bi(s) > 1b;(s*), andQ2, requests which havie(s) < 1b;(s*). Heres* represents the set which the offline optimum
ominiscient uses to accept requeéf the optimum rejects requestthens * is the set of maximurh; (s*)).

Theorem 5.2
> vils*) < (6p +8log W E[Y _ pi]

IEA* €A

Proof: We split A* into several sets:A* € Q;(JQ2|JP. As before, we have , pvi(s*) < 2p> ;.4 pi from

lemma 4.1. We now consider the membergf. For any request € @1, there is a probability Ofmﬁ that we set

m such that we obtain a price with(s) > p; > 3bi(s) > 1bi(s*), sowe have, , vi(s*) < 8loguE[Y";. 4 pi]- This

leaves the sef),. For each of these requests, we could have used used the optimum set to satisfy them but chose not to.
It follows that $v;(s*) > vi(s) — ¢i(s) > vi(s*) — ¢;(s*), from which we conclude that;(s*) < 2¢;(s*). We can now

argue that if5 were given the requests (- along with their optimum subsets and half the optimum valuations, it would
reject. We conclude thatC, ., vi(s*) < 4pE[>_,c 4 pi] using arguments similar to those in lemma 4.1 for pre-rejected
requests. Combining these equations yields the lemma claimed. ]

We observe that the above algorithm is not resilient against resellers, since the cost assigned to a union of requests adds
the randomm only once instead of multiple times, allowing the reseller to obtain a benefit.

6 Polynomial-time Multicast Routing/Admission M echanisms

The problem can be viewed as an extension of the case of combinatorial auctions presented in the previous section. We are
given a list of feasible subsets (multicast trees) along with valuations for each of them. However, the list of feasible subsets



is now exponentially long, and we cannot determine thes setiich optimizesh ;(s) — ¢;(s) (optimizing this function is
precisely what [10] shows to be hard). In fact, we cannot even approximate the difference! Instead, we will assume we are
given a black box algorithmi which guarantees to finewith 3(b;(s) — ci(s)) > b;(s*) — ¢;(s*) (for somes > 1) under

the assumption that the optimizing séthasb;(s*) > ac;(s*) (for somea > 2). For the case of multicast trees, any

of the various approximation algorithms for the maximal dense subtreeN/ ST') will serve this purpose; for example

we could use the algorithms of [2]. As usual, we additionally have the algoditiwinich performs online optimization
(without truthtelling) under the assumption that we are given one tree-bid pair at a time and must choose to accept or reject
(an exponential cost algorithm on the edges such as [3] will serve for multicast).

We have the following algorithm:

Computemn betweerD andu. With probability% we havem = 0, otherwisem = 2¢ with probabilitym for each
i <logu.

Multicast Algorithm

Use.4 to computes which optimizes;(s) — ¢;(s)

Feed(s, b;(s)) to B & updateB’s state

If b;(s) > m + ¢;(s) then accept and charge = m + ¢;(s). /* Otherwise we reject request /

Figure 3:The algorithm for multicast.

The analysis again proceeds by dividing the requests into four sets. We haVvefseilguests which we accept, ggt
of requests for which;(s*) > ac;(s*) for the optimum set*, set@- for whichb;(s*) < ac;(s*) but the online algorithm
B still finds a way to accept, and sBtwhich the offline omniscient algorithm accepts Butejects.

Theorem 6.1 3, 1. vi(s*) < (dpa + 8(log ) BE[Y S, 4 Pil

Proof: We split A* into several sets:A* € Q1 JQ2JP. We consider a requeste P. If there was a set with
bi(s) > ac;i(s), then we would have found a set with positive benefit minus costfawduld have accepted. It follows
thatv;(s) < ac;(s). We conclude that the algorithi# would reject the request, v;(s)/«) for any sets € r;, and
competitivity of B yields the inequality) . » vi(s*) < 2paE[} ;. 4 pi] @s in lemma 4.1. We now consider the members
of ;. For these requests we have a probab% of settingm just right such that we obtain a price pf > %bi(s).
Membership inQ, implies that;(s*) > ac;(s*) whichimpliess(b;(s) —c;i(s)) > b;(s*) —c;(s*). From these inequalities
along witha > 2, we conclude thafb;(s) > 1b;(s*), allowing us to show that

> vi <8(log w)BE[Y _ pil.

1€EQ1 i€A

Finally, we consider s&p,. Membership inQ)» implies thatv;(s*) < ac;(s*). It follows that the algorithn8 would reject
(s*,v;i(s*)/), so again obtain the inequalily’,; . o, vi < 2paE[} ;. 4 p:]. Combining these inequalities yields the result
claimed. -

This yields a competitive ratio @P(pa+ 5 log ). However, we observe that the algorithm described is not truthtelling.
If the customer lies about his valuatiols it might induce our approximation algorithph to choose a different satto
satisfy the customer. Conceivably this setould have a larger value of;(s) — ¢;(s), leading the customer to prefer it.
However, by modifying the bids to cause this to occur, the customer is only helping the algorithm. We state this formally
as follows.

Theorem 6.2 If the customersliein order to improve their benefit, the algorithmis still competitive.

Proof: Suppose customeérlies. This leads to customerbeing assigned some set instead of the set which would
have been assigned had he been truthful. So the customer’s value minus priceds(8Qw- ¢;(s’) — m instead of
vi(s) — ¢;(s) — m. We assume that customeis acting in his own self-interest, so we conclude thats') — ¢;(s') >
v;(s) — ¢;(s). But this means the customer is effectively producing a “better” approximation algadthfor us, and the
proof of the preceding theorem will again hold. [ |



7 Appendix: Published Prices and Open Problems

We consider the problem of publishing prices. Here, we would like to be able to post a price which does not change based
upon rejected requests. In our modular approach described earlier, the costs will change on the basis of pre-rejects. We can
modify the algorithm to the following:

Published Price Algorithm

¢; + min v such that acceptgr;, ¢;) .

Post pricesnc; for r;; a newm is computed for each customer.
If b; > mc;, then feedr;, b;) to B & updateB’s state

Figure 4:The algorithm for price-posting.

In this algorithm, the prices are independent of the rejects. However, the prices are continually being assigned new
random values for each request. This is undesirable both because we do not have true “published prices” and because the
algorithm is no longer resilient against retries.

Since our offered price is always at leagt we guarantee we will not violate capacity constraints and so forth if the
generic online could not do so.

The proof of competitivity for this new algorithm requires only slight modifications. We can still classify requests as
“pre-rejected” if they havé; < ¢; (in other words, they will be rejected automatically regardless of the random number).
Each request belongs to some categny), or A. Which category it belongs to depends upon random variables, since
the value of the cost at the current time is no longer deterministic (it depends on which earlier requests were accepted).

However, we can still show that ha\Eiep v < pZiEQ c; as a deterministic guarantee. We now consider some
request. There is some probability it was pre-rejected, but let's assume that is not the case. Oncelyetakas given,
whether this request is actually accepted is independent of previous events.

Also, we can still guarantee théflog 1) E[p;|i € Q] > v;. This enables us to bound the expected cost much as before.
The above arguments are formalized below.

Lemma7.1

Zvi <chi

ieEP i€A

Proof: This will be a deterministic guarantee, and we will show it is true for any request stream and set of random
choices. Suppose for some request stream and random choices the theorem fails. We will construct a modified request
stream as follows. First, for each requéstith ¢; < v; < ¢;r;, we remove requestand random number; from the
streams of requests and random numbers. We now have a new request stream, and the behavior of the algorithm on this
stream will be identical (since the eliminated requests were to be rejected anyway). We now consider what would happen
if we feed this request stream to the generic online algorithm. We have eliminated the "random rejects” so the generic
online will accept exactly the same requests on this new request stream as our randomized algorithm. In fact, even if we set
v; = min(v;, ¢;) for each request, the generic online will still accept exactly the same set of reguesish our online
algorithm accepts. This means the generic online obtains benefit eqhaltg c;, whereas it could have obtained at least
>_icp Vi (Observing that these requests were not modified in any way and are still a part of the request stream with their
original valuations). Since the generic online has a competitive rajotbe theorem must hold. [ |

Lemma7.2

E[Z v;] < 2(log ,u)E[Z it

i€Q i€A

Proof: Define potential function

¢ =2(logu) Y ciri— Y i

€A i€Q
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Consider what happens gowhen request arrives. There is some probability (based upon earlier requests and random
choices) that; < ¢;. If this happens, then requesuill be rejected, but will not be a member of the §itso the value of
¢ will be unchanged. Otherwise, with some probability we haye- ¢;. In this case, we will have;r; < v; < 2¢;r; with
probability1/(logu). If this happens we will havee A, and the potential function will increase by(logu). Regardless,
we will havei € @ so the potential function will decrease by. In an expected sense, the potential function does not
decrease.

This gives the lemma claimed. u
Combining the two theorems gives:

E[Y vi+ Y v <2[(logp) + plE[>_ ciri

i€Q i€EP €A

The main open problem is combining the various extensions to the algorithm. Ideally, we would like to be able to
publish prices which the customers can take or refuse, with the assumption that prices do not change except after a sale
is made. Our extension regarding published prices does not quite handle this because a distinct random number must be
applied to each customer (they do not simply accept or refuse the published price).
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