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Abstract. This paper presents a scalable solution to the group mutual exclusion
problem, with applications to linearizable stacks and queues, and related problems.
Our solution allows entry and exit from the mutually exclusive regions in O(tr + τ)
time, where tr is the maximum time spent in a critical region by a user, and τ is
the maximum time taken by any instruction, including a fetch-and-add instruction.
This bound holds regardless of the number of users. We describe how stacks and
queues can be implemented using two regions, one for pushing (enqueueing) and
one for popping (dequeueing). These implementations are particularly simple, are
linearizable, and support access in time proportional to a fetch-and-add operation.
In addition, we present experimental results comparing room synchronizations with
the Keane–Moir algorithm for group mutual exclusion.

1. Introduction

There has been a long history of developing data structures that support asynchronous
parallel accesses—i.e., accesses for which neither the arrival times nor the number of
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processors involved is known ahead of time. Unfortunately, it has been very difficult
to develop truly efficient solutions for even some of the simplest asynchronous data
structures, such as stacks and queues. Solutions based on locks are typically very simple,
often relying directly on the sequential version. They are also linearizable [18], having
the highly desirable property that the high-level data structure operations (such as push,
pop, enqueue, dequeue) can be viewed as atomic. The problem is that solutions based
on locks can fully sequentialize access to the data structures. Furthermore locks have the
problem that if the process with the lock is blocked (e.g., swapped out by the operating
system or dies), then all processes can become blocked.

To avoid problems with blocking, many nonblocking (or lock-free) algorithms for
various data structures have been developed [2], [3], [13], [14], [23], [25], [32], [33],
most of which are linearizable. As with the versions that use locks, however, these al-
gorithms still sequentialize the access. For example, the algorithms for nonblocking
queues [17], [23], [32] and stacks [30] sequentialize the inserts and/or deletes. Further-
more, many of these implementations have other problems such as requiring an atomic
double compare-and-swap operation or requiring unbounded memory. We informally
use the term scalable to refer to an algorithm that does not sequentialize access to the
data structure it supports.

Gottlieb et al. [12] describe an algorithm for queues that implements enqueues
and dequeues in time proportional to a fetch-and-add operation. The work was part
of the Ultracomputer project [11] in which it was demonstrated that the fetch-and-add
operation can be implemented as part of a multistage switching network so that it runs
in about the same time as any access to shared memory (requests going to the same
location can be combined in hardware in the network). The scalability of the fetch-and-
add was also later justified theoretically by giving bounds on the run time on various
networks [24], and several software implementations have been described [34], [10].
Gottlieb et al.’s queue algorithm is hence scalable assuming a scalable implementation
of the fetch-and-add. Their algorithm, however, is not linearizable (see Section 5). It also
seems unlikely that the technique can be extended to other data structures such as stacks.
Shavit and Zemach describe a scalable and linearizable implementation of stacks based
on combining funnels [29]. It is not clear, however, what the bounds on running time
are, or how to extend the approach to queues. Neither the Gottlieb et al. nor the Shavit
and Zemach algorithms are nonblocking.

We are interested in data structures that support asynchronous parallel accesses that
are both scalable and linearizable, although not necessarily nonblocking. Furthermore
we are interested in giving bounds on the time needed to access the data structure, at
least under well-specified assumptions. We develop such algorithms using a scalable
solution to the group mutual exclusion problem [19]. In the group mutual exclusion
problem, multiple processes can simultaneously occupy a critical region of code, but
no two processes can simultaneously occupy certain mutually exclusive critical regions.
For example, our implementation of stacks allows multiple processes to occupy a push
region or a pop region simultaneously, but requires that no process can be in a push
region while another is in a pop region. Joung formalized the group mutual exclusion
problem and gave an algorithm for supporting it [19]. Keane and Moir describe another
algorithm that asymptotically improves performance under light load [20]. Both these
algorithms, however, sequentialize the entry and/or exit to the exclusive regions. In
Joung’s algorithm the entry requires a loop over all processes, and in Keane and Moir’s
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algorithm the entry and exit are performed under a global lock. In our context this would
sequentialize our data structures.

In this paper we describe an algorithm that supports group mutual exclusion with
parallel (and scalable) entry and exiting of the critical regions. Our algorithm is based on
implementing an enterRoom(i) operation that enters a critical region (room) i, and
an exitRoom() that exits the current room. As with the work of Gottlieb et al. [12] we
rely on a fetch-and-add primitive. A key property supported by our algorithm is that no
user will wait more than m(tr + kτ) time to enter or exit a room, where m is the number
of rooms, tr is the maximum time any user spends in a room, τ is the maximum time
taken by any instruction, and k is a constant. We refrain from using O(1) in place of kτ
since the time τ for an instruction might be a function of the number of processors—e.g.,
a memory reference or fetch-and-add might require O(log p) time on p processors [24].
We informally use the term “constant time” to mean the time taken by a constant number
of instructions.

We show how linearizable shared stacks and queues can be easily implemented
using room synchronizations, all with constant time access regardless of the number of
users. We also show how a dual concurrent write can be implemented. This operation
along with a shared stack play an important role in a real-time garbage collector [4], and
have been implemented using room synchronizations [6].

We present experimental performance results that compare our implementation of
group mutual exclusion with the Keane–Moir algorithm [20]. The experiments were
run on a 64 processor Sun UltraEnterprise 10000. Although this machine does not
support the fetch-and-add operation in hardware, our implementation still outperforms
the Keane–Moir algorithm under most situations. We expect that this is because the
sequentialized region required to implement a fetch-and-add is significantly smaller
than the sequentialized region required by the Keane–Moir algorithm. We also compare
our implementation to a simple lock-based implementation under a variety of settings.

One disadvantage of using group mutual exclusion is that if a user fails or stops while
inside a room, the user can block other users from entering another room. Approaches
based on group mutual exclusion are therefore inherently not nonblocking. In our model
this issue is captured by defining τ based on the gap in time between two consecutive
instructions (actions) on a process. Therefore if a process is allowed to stall or fail, τ can
be unbounded. We discuss this issue in Section 5.

We note that since the initial publication of our work [5], we discovered related
work by Dimitrovsky presented as an Ultracomputer technical note [7]. Dimitrovsky
suggests a similar technique for implementing stacks and queues. Instead of using mul-
tiple rooms, he uses a single “group lock.” By splitting the group lock into two parts
with a synchronization in the middle he is able to separate the pushes from the pops. The
implementation of his group lock is quite different from our rooms, and requires many
more fetch-and-adds to enter and exit. The work also does not formalize the techniques,
show that it is linearizable, or consider dynamic stacks.

1.1. A Motivating Example

To motivate our problem, we consider implementing a parallel stack using a fetch-
and-add. We assume the stack is stored in an array A and the index top points to the
next free location in the stack (the stack grows from 0 up). The fetchAdd(ptr,cnt)
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Fig. 1. The code for a parallel stack. (a) May not work if the push and pop are interleaved in time. (b) Avoids
this problem using a room synchronization.

operation adds cnt to the contents of location ptr and returns the old contents of the
location (before the addition). We assume this is executed atomically. Consider the stack
code shown in Figure 1(a). Assuming a constant-time fetchAdd, the push and pop
operations will take constant time. The problem is that they can work incorrectly if a
push and pop are interleaved in time. For example, in the following interleaving of
instructions

j = fetchAdd(&top,1); // from push
k = fetchAdd(&top,-1); // from pop
x = A[k-1]; // from pop
A[j] = y; // from push

the pop will return garbage. Without an atomic operation that changes the counter at the
same time as modifying the stack element, we see no simple way of fixing this problem.
One should note, however, that any interleaving of two or more pushes or two or more
pops is safe. Consider pushes. The fetchAdd reserves a location to put the value y,
and the write inserts the value. Since the counter is only increasing, it does not matter in
what order relative to the increments the values are inserted.

Therefore, if we can separate the pushes from the pops, we would have a safe imple-
mentation of a stack. Room synchronizations allow us to do this as shown in Figure 1(b).
The room synchronization guarantees that no two users will ever simultaneously be in
the PUSHROOM and POPROOM, so the push and pop instructions will never be inter-
leaved. However, it will allow any number of users to be in either the push or pop room
simultaneously.
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In Section 3 we prove that this stack is linearizable and that every access is serviced
in time proportional to the time of a fetch-and-add along with a constant number of
machine instructions. The experiments described in Section 4 are based on a variant of
this stack in which multiple elements are pushed or popped within each room.

Outline. The paper is organized as follows. Section 2 presents our room synchroniza-
tion algorithm and proves correctness and bounds on running time. Section 3 shows how
room synchronizations can be effectively used to implement shared queues, dual con-
current writes, and dynamic shared stacks. Section 4 presents our experimental results.
Section 5 discusses further issues and related work, and Section 6 concludes. The proofs
in Section 2 assume that the counters used in the algorithm are unbounded; extensions
to handle bounded counters appear in the Appendix.

A preliminary version of this paper appeared in the Proceedings of the 13th ACM
Symposium on Algorithms and Architectures, Crete, Greece, July 2001, pp. 122–133
(see [5]).

2. Room Synchronizations

The group mutual exclusion problem involves a set of m sessions and a set of p in-
dependent processes who repeatedly request access to various sessions. It is required
that distinct processes are not in different sessions concurrently, that multiple processes
may be in the same session concurrently, and that each process that tries to enter a ses-
sion is eventually able to do so [20]. Various authors have formalized these high-level
requirements in slightly different ways (see [19] and [20]).

In this section we present a scalable algorithm for the group mutual exclusion
problem. Although our algorithm meets the high-level requirements for group mutual
exclusion, we propose a slightly different formalization (as detailed below), motivated
by our target applications.

We first describe high-level primitives for supporting group mutual exclusion (Sec-
tion 2.1). In Section 2.2 we present a scalable algorithm for supporting these primitives.
In Section 2.3 we formalize our interface using the I/O Automata model. In Section 2.4
we prove the correctness of our algorithm. Finally, in Section 2.5 we present several
variants of our algorithm and further discussion.

2.1. Primitives

We refer to the particular interface we use to implement group mutual exclusion as room
synchronizations. In room synchronization a user wishing access to a room calls an Enter
Room primitive, which returns once the user is granted permission to enter the room.
When done with the room, the user exits the room by calling an Exit Room primitive.
In further detail, the basic primitives of room synchronization are:

• Create Rooms: Given a positive integer m, create a rooms object R for a set of
m rooms, and return a pointer (a reference) to R. There can be multiple rooms
objects at the same time.
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• Enter Room: Given a pointer to a rooms object R and a room number i , try to
enter room i of R. Return when the user has succeeded in entering the room.
When the primitive returns, the user is said to be inside the room. A room with a
user inside is said to be open.
• Exit Room: Given a pointer to a rooms object R, exit the room in R that the user

is currently inside. Because the user can be inside at most one room in R, there
is no need to specify the room number. When a user requests to exit a room, it is
no longer considered to be inside the room. If there are no users remaining inside
the room, the room is said to be closed.
• Destroy Rooms: Given a pointer to a rooms object, deallocate the rooms object.

Other Primitives. It may be natural to define additional primitives for room synchro-
nizations, as desired. We have considered two such primitives: Change Room and Assign
Exit Code. The Change Room primitive is equivalent to an Exit Room followed by an
Enter Room, but with the guarantee of entry into the requested room the next time the
requested room is opened. The dynamic stack example described in Section 3 requires
the Change Room primitive to prevent starvation and guarantee performance bounds.
The Assign Exit Code primitive is discussed in Section 2.5.

Remarks. The Enter Room and Exit Room primitives can be viewed as the counterparts
to the “trying” (e.g., lock) and “exit” (e.g., unlock) primitives for the mutual exclusion
problem. As with the mutual exclusion problem, what the users do while inside the
room (or critical section) is part of the application and not part of the synchronization
construct. This enables the generality of the primitive, as the same construct can be
used for a variety of applications. The drawback is that, as with mutual exclusion, the
construct relies on the application to alternate entering and exiting requests by a given
user.1

The Create Rooms and Destroy Rooms primitives are executed once for a given
rooms object, in order to allocate and initialize the object prior to its use and to deallocate
the object once it is no longer needed. To simplify the discussions that follow, we mainly
focus on a single rooms object, for which Create Rooms has already been executed, and
Destroy Rooms will be executed once the object is no longer needed. Extending the
formalizations and discussions to multiple rooms objects and to issues of creating and
destroying objects is relatively straightforward.

2.2. A Scalable Room Synchronization Algorithm

Figure 2 presents our room synchronization algorithm (protocol). Shown is the C code
for the rooms data structure, and for the Create Rooms, Enter Room, and Exit Room
primitives. The protocol is designed to achieve the following goals:

• only one room open at a time,

1 The alternative is to combine the enter and exit primitives with the inside-the-room code into one
monolithic construct. This has the disadvantage that either a distinct primitive would be needed for each
inside-the-room code segment, or the code and data would need to be assigned to the primitive or passed as
an argument.
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Fig. 2. Room synchronization code.

• any number of users can be inside the open room, and
• parallel entry and exit to rooms.

(These goals are formalized in Section 2.3.)
Consider a rooms object with m rooms. The procedure createRooms is used to

allocate the rooms data structure for this object. The data structure includes three arrays
of size m: wait, grant, and done. The arrays hold three counters for each room, all
initially zero. It includes a numRooms field, set to m. It also includes an activeRoom
field, which holds the room number of the (only) room that may be open, and an active
field, which is used to indicate when there is no active room, e.g., initially and whenever
there are no users either inside a room or waiting to enter a room.

Protocol Assumptions. The protocol assumes a linearizable shared memory [18] sup-
porting atomic reads, writes, fetch-and-adds, and test-and-sets on single words of
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memory. We have explicitly avoided atomic operations on two or more words of memory,
and we use only the weaker fetch-and-increment form of fetch-and-add. AfetchAdd(&x,
1) instruction atomically (1) returns the current value of x and then (2) increments x . A
testSet(&x) instruction atomically (1) returns 1 if x is currently 0, and 0 otherwise,
and then (2) sets x to 1.

The rooms data structure is stored in the shared memory. All other variables in the
code are local to the process executing the code. The code is written so that each line
contains at most one shared memory access, so that each line corresponds to an atomic
action with respect to the shared memory. This facilitates the correctness proofs that
follow. In our actual implementation, the code is simplified by removing this restriction,
e.g., Steps 6 and 7 are merged to simplyr->grant[i] = r->wait[i]. Moreover, for
multiprocessors that do not support a linearizable shared memory [1], memory barriers
(or similar constructs) may need to be inserted into the code, either for correctness or
to expedite the shared memory access. On the TSO memory model [1] provided on Sun
multiprocessors, for example, memory barriers are not needed for correctness.

The protocol also assumes that the maximum number of concurrent users is less
than the largest number that can be stored in an “int.” It may be helpful for the reader to
assume for now that the counters are unbounded, i.e., there is no concern about overflow
of any fixed sizedint in the code. We treat issues of bounded versus unbounded counters
in the Appendix. In fact, we show in the Appendix that the protocol in Figure 2 is correct
even if the wait, grant, and done counters “overflow” (wrap around within) a fixed
sized int.

Entering and Exiting a Room. Users enter a room by incrementing the wait counter
to get a “ticket” for the room (Step 2), and then waiting until that ticket is granted
(Steps 3–10). Users exit a room by incrementing the done counter (Step 14). Once
the done counter matches the grant counter (Step 15), then all users granted access
to the room have exited the room. The unique user to increment the done counter up
to the grant counter (the last done) does the work of selecting the next active room
(Steps 16–24). This user cycles through the rooms, reading each room’s wait counter
into currWait and comparing this with the room’s grant counter. The first room
discovered whose wait exceeds its grant—indicating waiting tickets—is selected as
the next active room (Step 20). The grant counter of that active room is set to be equal
to currWait (Step 21), thereby granting all tickets for that room up to and including
currWait. If, after cycling through all the rooms once, the last done user has failed to
discover a room with waiting tickets, it resets active to 0 (Step 25). Whenever active
is 0, a ticketed user can succeed in the test-and-set of Step 4, set its requested room as
the next active room (Step 5), and grant tickets for that room (Step 7).

Note that the technique of using a wait counter and a grant counter is used in
mutual exclusion protocols such as TicketME [8], [21]. Mutual exclusion protocols are
simpler because only one user is granted access at a time. Thus the grant counter can
double as the done counter and the test for granting access is simply whether your ticket
equals the grant counter.

2.3. Formalization

To prove correctness and other properties of our room synchronization algorithm, we
first formalize room synchronization (our particular interface for group mutual exclusion)
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using the well-studied I/O Automaton model [21]. Our terminology and formal model
are an adaptation of those used in [21] for formalizing mutual exclusion.

Each user j is modeled as a state machine that communicates with an agent pro-
cess pj by invoking room synchronization primitives and receiving replies. The agent
process pj , also a state machine, works on behalf of user j to perform the steps of the
synchronization protocol. Each agent process has some local private memory, and there
is a global shared memory accessible by all agent processes. The set of agent processes,
together with their memory, is called the protocol automaton. An action (an instruction
step) is a transition in a state machine. We say an action is enabled when it is ready to
execute. Actions are low-level atomic steps such as reading a shared memory location or
incrementing a local counter. An execution is a sequence of alternating states and actions,
beginning with a start state, such that each action is enabled in the state immediately
preceding it in the sequence and updates that state to be the state immediately succeeding
it. Thus actions are viewed as occurring in some linear order.2

Asynchrony is modeled by the fact that actions from different agent processes can be
interleaved in an arbitrary manner; thus one agent may have many actions between actions
by another agent. A weak form of fairness among the agent actions is the following: an
execution is weakly fair if it is either (a) finite and no agent action is enabled in the
final state, or (b) infinite and each agent has infinitely many opportunities to perform an
action (either there is an action by the agent or no action is enabled) [21].

Certain actions are specially designated as external actions; these are the (only)
actions in which a user communicates with its agent. For room synchronization, the
external actions for a user j (and its agent) are:

• EnterRoomReqj (i): the action of user j signalling to its agent pj a desire to
enter room i .
• EnterRoomGrantj (i): the action of agent pj signalling to user j that its Enter

Room request has been granted.
• ExitRoomReqj : the action of user j signalling to its agent pj a desire to exit its

current room.
• ExitRoomGrantj : the action of agent pj signalling to user j that its Exit Room

request has been granted.

The trace (trace at j) of an execution is the subsequence of the execution consisting of
its external actions (for a user j).

The terminology above focuses on modeling the agents that act on behalf of user
requests, as needed to formalize both room synchronization and room synchronization
algorithms. Section 3, on the other hand, focuses on modeling user applications, such
as stacks and queues, that make use of room synchronizations. All of the terminology
stated above for agents can be similarly defined in order to model users. For example,
each user process has some local private memory, and there is a global shared memory
accessible by all user processes. From the perspective of the present section, however,
all users do is make requests to enter or exit rooms.

2 Although an execution is modeled as a linearized sequence of low-level actions, this is a completely
general model for specifying parallel algorithms and studying their correctness properties: the state changes
resulting from actions occurring in parallel are equivalent to those resulting from some linear order (or inter-
leaving) of these actions, given that the actions are defined to be sufficiently low level.
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Properties. We first state formally a condition on users of room synchronization and
their agents. A trace at j of an execution for a rooms object with m rooms is said to be
behaved if it is a prefix of the cyclically ordered sequence:

EnterRoomReqj (i1), EnterRoomGrantj (i1), ExitRoomReqj , ExitRoomGrantj ,
EnterRoomReqj (i2), . . .

where i1, i2, . . . ∈ [1..m]. In other words, (i) the Enter Room and Exit Room primitives
by a given user alternate, starting with an Enter Room, (ii) the user waits for a request
to be granted prior to making another request, (iii) conversely, the agent waits for a
request before granting a request and only grants what has been requested, and (iv) the
requested room numbers are valid. We say a user j’s requests are behaved if no request
is the first misbehaved action in the trace at j (formally, there is no EnterRoomReqj or
ExitRoomReqj in the trace at j such that the prefix of the trace up to but not including
this action is behaved, but the prefix including the action is not behaved). In a behaved
trace at j , EnterRoomReqj (i) transitions user j from outside all rooms to preparing to
enter room i , EnterRoomGrantj (i) transitions user j from preparing to enter room i to
inside room i , ExitRoomReqj transitions user j from inside to preparing to exit, and
ExitRoomGrantj transitions user j from preparing to exit to outside. A room i is open
if there is at least one user inside room i , and otherwise closed.

We can now state formally our target properties for room synchronization. A protocol
automaton A solves the room synchronization variant of the group mutual exclusion
problem for a given collection of users with behaved requests if the following properties
hold:

P1. Trace behaved: In any execution, for any j , the trace at j is behaved. One
implication is that only users requesting to enter a room are given access to the
room, and only after its EnterRoomReq and before any subsequent ExitRoomReq.

P2. Mutual exclusion among rooms: There is no reachable state of A in which more
than one room is open.3 Equivalently, in any execution, between any EnterRoom-
Grantj (i) in the trace and the next ExitRoomReqj (or the end of the trace if there
is no such action) there are no EnterRoomGrant(i ′) actions for i ′ �= i .

P3. Weakly concurrent access to rooms: There are reachable states of A in which
more than one user is inside a room.

P4. Bounded waiting (i.e., no user starvation): In any weakly fair execution: (1) If all
users inside a room eventually prepare to exit the room, then any user preparing
to enter a room eventually gets inside the room. (2) Any user preparing to exit a
room eventually gets outside the room.

Keane and Moir [20] formalize group mutual exclusion using three properties. Two
of our properties (P2 and P4) are equivalent to two of theirs. Our property P1 is explicit
in our I/O Automaton formulation, and more implicit in [20]. Our property P3 is weaker
than their third explicit property, which can be stated in our terminology as follows.

3 A stronger property is to require that at most one room can be open even if some user requests are not
behaved.
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• Concurrent entering: In any weakly fair execution, any user preparing to enter
a room i , such that no other user is either preparing to enter, inside, or preparing
to exit a different room i ′, eventually gets inside the room (even if no other user
prepares to exit a room).

This property allows a late arriving user always to join an open room if no user is waiting
on another room. In contrast, we consider an additional property that expressly forbids
this:

P5. No late entry: In any execution, a user outside room i at any point when the room
is open will not be permitted inside room i as long as it remains open.

Both the dual concurrent write and the dynamic stack algorithms we describe in Section 3
require this property. The algorithms are not correct if concurrent entering is allowed.

Another property we target is:

P6. Demand driven: When a user is inside a room or outside all rooms, there are no
actions by its agent. Thus, an agent performs work only in response to a request
by its user.

This property ensures that the total work performed by agents does not depend on the
total number of potential users.

Finally, it is often useful to target liveness conditions that are stronger than the fact
that a desired event “eventually” happens. For this, we introduce upper bounds on the
time for all the salient operations. Let τ be an upper bound on the (wall clock) time for
an action by an agent with at least one enabled action.4 Let tr be an upper bound on the
time a user is inside a room. We target the following timing property:

P7. Constant time to enter and exit: In any execution, any user preparing to enter
a room is inside the room within time T1 ≤ T1(tr , τ,m), and any user preparing
to exit a room is outside the room within time T2 ≤ T2(τ,m).

Because the timing property is with respect to τ , it is closely tied to the set of atomic
actions in the protocol, and may hide a dependence on p. For example, actions in our
room synchronization algorithm include concurrent reads, concurrent test-and-sets, and
concurrent fetch-and-adds. Thus, we also perform a more detailed analysis that accounts
separately for potentially more expensive operations such as fetch-and-adds.

2.4. Proofs of Correctness and Scalability

In this section we show that our room synchronization algorithm satisfies properties P1–
P7. Although the algorithm is not presented as an I/O automaton, we can view each
step of the C code as an atomic action in the corresponding I/O automaton. This is
done without loss of generality, because each step accesses at most one shared memory
location. For simplicity, we also restrict our attention to the case where wait, grant,
and done are unbounded counters (with no overflow), and hence they are monotoni-

4 This can be formalized using the timed I/O Automaton model [21]. Note that in the absence of a positive
lower bound on the time for an action, we have not restricted the relative speeds of the agents. Moreover, the
time bound applies only to the analysis of time performance, and not to any correctness (safety) properties.
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cally nondecreasing. (The generalization to the bounded counters case appears in the
Appendix.) Readers not interested in the proof may proceed to Section 2.5.

Theorem 1. The room synchronization protocol in Figure 2 (with unbounded counters)
satisfies properties P1–P7, with enter wait time T1 ≤ (tr + O(τ )) ·m and exit wait time
T2 = O(τ · m) for property P7.

Proof. To simplify the notation, we omit explicit reference to the rooms object pointer
r , e.g., we use enterRoom(i) instead of enterRoom(r, i).

We use the following definitions. For an execution σ , let σ | j be the subsequence of
σ consisting of its actions for a user j or its agent pj . A user j has a ticket for a room
i after an execution σ for each Step 2 of enterRoom(i) in σ | j with no subsequent
Step 14 of exitRoom in σ | j . A user j with a ticket for a room i is blocked after an
execution σ if myTicket at j is greater than grant[i]. A user j is in the advance
room region after an execution σ if some step among Steps 5–7, 16–21, or 25 is enabled,
or Step 15 is enabled with a successful conditional test.

Property P1. In the protocol of Figure 2, an EnterRoomReqj (i) (ExitRoomReqj ) action
corresponds to the user j initiating a procedure call to enterRoom(i) (exitRoom, re-
spectively). An EnterRoomGrantj (i) (ExitRoomGrantj , respectively) action corresponds
to the completion and return of this procedure. Consider any execution and any user j
with behaved requests. An EnterRoomGrantj (i) (ExitRoomGrantj ) action cannot be the
first misbehaving action in the trace at j , because it can occur in the trace only immedi-
ately after the matching EnterRoomReqj (i) (ExitRoomReqj , respectively) that initiated
the procedure call. Thus the trace at j is behaved.

Property P2. To prove mutual exclusion, we begin with the following lemma.

Lemma 1. Each user (with a behaved trace) has at most one ticket.

Proof. Suppose there exists an execution σ such that a user j has multiple tickets
after σ . By the definition of having a ticket, for each such ticket, there is a Step 2 in
σ | j with no subsequent Step 14 in σ | j . For each such Step 2, there is a preceding
EnterRoomReqj , but no subsequent ExitRoomGrantj because Step 14 must precede any
ExitRoomGrant. Thus the trace at j is not behaved, and hence property P1 fails to hold, a
contradiction.

The heart of the mutual exclusion proof is the following lemma, which presents four
invariants that also provide insight into the protocol.

Lemma 2. In any execution (with behaved traces):

1. If a user j is inside room i , then j is an unblocked user with a ticket for room i .
2. For all rooms i , wait[i] ≥ grant[i] ≥ done[i], and wait[i]−done[i]

is the number of users with tickets for room i . Moreover, for each t ingrant[i]+
1, ...,wait[i], there is exactly one blocked user for room i withmyTicket = t ,
and no other blocked users for room i .
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3. At most one user is in the advance room region. If a user j is in the advance room
region, then active = 1 and for all rooms i , grant[i] = done[i]. If Step 7
(one of 19–21) is enabled at a user j , then grant[i] ≤ currWait at j ≤
wait[i] (grant[newAr]≤ currWait at j ≤ wait[newAr], respectively).

4. If there exists an unblocked user with a ticket for room i , then active = 1
and activeRoom = i . If Step 6 (7, 14, 21) is enabled at a user j , then
activeRoom = i (i , ar, newAr, respectively) at j .

Proof. The proof is by induction on the number of actions in the execution. Initially,
wait[i] = grant[i] = done[i] = 0, and all four invariants hold for the start state.
Assume that all four invariants hold for all executions of t ≥ 0 actions. Consider an
arbitrary execution σ with t actions and consider all possible next actions α. Without
loss of generality, assume that α is an action by user j or its agent. Let s1 be the last state
in σ and let s2 be the updated state after α occurs.

We first show invariant 1 holds in s2. If user j is inside room i , then because the trace
at j is behaved, the last external action at j is EnterRoomGrantj (i). The last occurrence
of Step 2 of enterRoom(i) in σ | j precedes the EnterRoomGrantj (i) in σ , and there
can be no subsequent Step 14 because there is no subsequent ExitRoomReq in σ | j . Thus
j has a ticket for room i . Moreover, suppose j were blocked. Then myTicket at j is
greater than grant[i] after σ . Let σ = σ1ασ2 where α is the above Step 2, σ1 is the
prefix of σ prior toα, and σ2 is the suffix of σ afterα. By Lemma 1 and examination of the
code, we see that there is no possible step in σ2 by user j that modifies myTicket at j :
its value is the same in all states in σ2. Moreover, only Steps 7 and 21 set grant[i], and
hence it follows inductively by invariant 3 that grant[i] is nondecreasing. Thus user
j’s myTicket > grant[i] in all states in σ2. Thus in all such states, j is not enabled
to exit the enterRoom while loop, and hence there would be no EnterRoomGrantj (i)
in σ2| j , a contradiction. Thus user j is not blocked, and invariant 1 is maintained.

To show invariant 2 holds in s2, we must consider all the cases whereα updates either
myTicket, one of the counters, the number of ticketed users, or the number of blocked
users, namely, Steps 2, 7, 14, and 21. Step 2 of enterRoom(i) increments wait[i],
and creates a blocked user with myTicket equal to the new value of wait[i]. By
Lemma 1, this is the only ticket for user j . Thus invariant 2 is maintained. As for Step 7
of enterRoom(i), inductively by invariant 3, grant[i] has not decreased due to this
step and grant[i] ≤ wait[i] in s2. It follows that the step maintains invariant 2.
Likewise, Step 21 maintains the invariant for room newAr. If Step 14 is enabled in
s1, then user j has a ticket (by definition) for some room i . Moreover, by an argument
similar to the one above for invariant 1, j is not blocked. Thus inductively by invariant 4,
activeRoom = i = ar in s1. Step 14 increments done[ar], and, by Lemma 1, it
decrements the number of users with tickets for room ar, so the invariant is maintained.
Hence, in all cases, invariant 2 holds in s2.

To show invariant 3 holds in s2, we again consider each relevant case for α, namely,
Steps 2, 4–7, 14–21, and 25. If α is a Step 2, this only increases wait[i], so the last part
(and hence all) of the invariant is maintained at all users. If α is a Step 4 that succeeds
in enabling Step 5 in s2, then active = 0 in s1 (otherwise, the testSet would return
0). Inductively by invariants 2 and 4, grant[i] = done[i] for all rooms i in s1, and
hence in s2. Inductively by invariant 3, there are no users in the advance room region in
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s1. Moreover, α sets active = 1. Thus the invariant is maintained. If α is a Step 14,
then, as argued above, Step 14 increments done[ar], where j is an unblocked user
with a ticket for a room ar in s1. Inductively by invariant 4, for all rooms i �= ar, there
are no unblocked users with a ticket for room i in s1, and so, inductively by invariant 2,
grant[i] = done[i] in s1 and hence in s2, and grant[ar]> done[ar] in s1. Thus
inductively by invariant 2, there is no user in the advance room region in s1. In order for
j to be in the advance room region in s2, myDone at j must equal grant[ar] in s2 (so
that Step 15 is enabled with a successful conditional). This occurs only if grant[ar]
= done[ar] in s2, because myDone = done[ar] after α.

Next, note that if α is a Step 5–7, 15 (with a successful conditional), 16–21, or
25, then user j is in the advance room region in s1. Inductively by invariant 3, j is
the only such user in s1, and hence no other user has a Step 7, 19, 20, or 21 enabled.
Thus if α is a Step 7 or 21, its setting of grant does not violate the last part of the
invariant. Moreover, there are no users in the advance room region in s2, so the invariant
is maintained. If α is a Step 25, there are no users in the advance room region in s2, and
the invariant is maintained. If α is a Step 6, then currWait at j equals wait[i] in s2,
and, inductively by invariant 2, wait[i] ≥ grant[i], so the invariant is maintained.
Similarly, the invariant is maintained if α is a Step 18. If α is a Step 5, 15–17, or 19–20,
then inductively by invariant 3 and the fact that none of these steps add a user to the
advance room region, set active = 0, update grant or update done, the invariant is
maintained. Hence, in all cases, invariant 3 holds in s2.

Finally, to show invariant 4 holds in s2, we consider each relevant case for α, namely,
Steps 2, 4–7, 13, 20, 21, and 25. If α is a Step 2, then by invariant 2 applied to both s1

and s2, the number of unblocked users with tickets for room i is unchanged. Moreover,
active andactiveRoom are unchanged, so the invariant is maintained. Ifα is a Step 4,
it can only set active to 1, so the invariant is maintained inductively. If α is a Step 5,
then user j is in the advance room region in s1, and, hence, inductively by invariant 3,
there is no other user in the advance room region in s1. Thus inductively by invariants 2
and 3, there are no unblocked ticketed users in s1, and hence in s2. As argued above,
Step 14 is enabled at some user j ′ only if j ′ is an unblocked ticketed user. Thus Step 14
is not enabled at any user in s2. Moreover, a Step 6, 7, or 21 is enabled at some user
j ′ only if j ′ is in the advance room region. Thus none of these steps are enabled in s1,
and hence in s2, with the exception of Step 6 being enabled at user j in s2. However,
α sets activeRoom = i , as is required. Hence, the invariant is maintained. Likewise,
Step 20 maintains the invariant for activeRoom = newAr in s2. If α is a Step 6 or 7,
then, inductively by invariant 4, activeRoom = i in s1 and hence in s2. User j is in the
advance room region in s1, so, inductively by invariant 3, active = 1 in s1 and hence in
s2. Step 7 can only unblock users with tickets for room i , so the invariant is maintained.
The case for Step 21 is symmetric. If α is a Step 13, then active and activeRoom
are the same in s1 and s2. For user j , α sets ar = activeRoom and enables Step 14. As
argued above, j is an unblocked user with a ticket for a roomar in s1; thus, inductively by
invariant 4, active = 1 in s1 and hence in s2. Step 13 does not create a new unblocked
ticketed user, so, inductively by invariant 4, the invariant is maintained. Finally, if α is
a Step 25, then user j is in the advance room region in s1, and hence, as argued above
for Step 5, there are no unblocked ticketed users in s2, and the invariant is maintained.
Hence, in all cases, invariant 4 holds in s2.

This concludes the proof of Lemma 2.
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To complete the proof of property P2, suppose there were an execution resulting
in two distinct rooms i and i ′ with users j and j ′ inside the respective rooms. Then
by invariant 1 of Lemma 2, j ( j ′) is an unblocked user with a ticket for room i (i ′,
respectively). Thus by invariant 4 of Lemma 2, activeRoom equals both i and i ′, a
contradiction.

Property P5. Let σ = σ1 α1 σ2 α2 σ3 be a trace behaved execution where α2 is an Exit-
RoomReq action that closes a room i , α1 is the (corresponding) last EnterRoomGrant(i)
that opened room i , and σ1, σ2, and σ3 are sequences of alternating states and actions.
Let j be a user outside room i in some state s in σ2. We must show that there is no
EnterRoomGrantj (i) between s and the end of σ2.

First note that throughout σ2, there exists an unblocked user with a ticket for room i
(invariant 1 of Lemma 2). Thus by invariants 2 and 4 of the same lemma, grant[i] <
wait[i] and active = 1 throughout σ2.

Because user j is outside room i in s, its last external action for i prior to s (if any)
is an ExitRoomGrantj and hence, because the trace is behaved, its next external action
for i after s (if any) is an EnterRoomReqj (i). If Step 2 of enterRoom is executed by
agent j , then by the observations in the previous paragraph, myTicket at j is greater
than grant[i]. Moreover, active = 1, and so j will be unable to exit the while
loop. Thus, there is no EnterRoomGrantj (i) between s and the end of σ2.

Property P7. Let m be the number of rooms, let p be the number of users, let tr be an
upper bound on the time a user is inside a room, and let τ be an upper bound on the time
for an action by an agent with at least one enabled action. Property P7 holds due to the
following observations. (1) A user desiring a ticket will get a ticket within a constant
number of its agent’s actions. (2) The last done when exiting a room i starts at room i+1
and cycles through all m rooms (including back to i), granting access to the first room it
encounters with ticketed users (specifically, with users that grabbed tickets prior to last
done’s setting of its currWait—such users become unblocked). (3) Each unblocked
ticketed user in the enterRoom while loop will get inside the room within a constant
number of its agent’s actions once it is unblocked. (4) A room with ticketed users gets
its turn (i.e., is granted access) within m turns or less. Moreover, in the interim, Step 6
is executed at most once and Step 18 is executed fewer than 2m times. This holds even
if the last done finds no rooms with ticketed users, because no turns were granted by
the last done and the worst case for a user with a ticket for room i occurs when Step 5
selects room i + 1 for the next turn, and each room gets a turn before finally room i gets
a turn. (5) Each turn for a room takes at most tr + O(τ ) time.

Thus in any execution, any user preparing to enter a room is inside the room in time
T1 ≤ (tr + O(τ )) · m. Moreover, in any execution, any user preparing to exit a room is
outside the room in time T2 = O(τ ·m) for the last done and O(τ ) for all others. (Note
that the m in T2 does not result in an m2 in T1, due to observation (4) above.)

In the above time analysis, we are implicitly assuming that τ is not a function of p,
e.g., the time for a fetch-and-add is independent of p. If instead, we let t f = t f (p) be an
upper bound on the time for a fetch-and-add with p processors (e.g., t f = log p), then
T1 ≤ (tr + 2 · t f + O(τ )) · m and T2 ≤ t f + O(τ · m).
Other Properties. The remaining properties (P3, P4, P6) are either obvious or are
easy consequences of the above properties. Note that all the time bounds and properties
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hold even in the presence of arbitrarily fast agents who do their best to starve other
agents.

This concludes the proof of Theorem 1.

2.5. Discussion

Note that active may be set to 0 even when there are users waiting with their tickets.
However, such users must have grabbed their tickets after the last agent done checked
to see if there were ticketed waiters. Moreover, although all agents granted access to a
room are spinning waiting for that room to open, and hence will tend to proceed together
into the room, in the worst case the agents may proceed to enter the room and exit the
room at very different rates. Thus a room may open and close multiple times before all
the granted agents are done with the room. Furthermore, an agent that is slow to grab a
ticket may be bypassed by faster agents an unbounded number of times. This does not
contradict property P7, because within O(τ ) time the slow agent will grab a ticket, and
from there will proceed in constant time (a function of tr , τ , and m) to enter inside the
room. On the other hand, if all agents run at roughly the same speed, an agent can be
bypassed for its desired room at most once.

Our algorithm performs a test-and-set in Step 4 of enterRoom. A well-known
performance optimization when using test-and-set is first to test whether the value is 0
and only perform the test-and-set if the value is 0. Thus the test-and-set is only performed
when there is evidence that it might succeed.

A desirable property of our algorithm, when the preceding optimization is used,
is that it is a local spin algorithm when executed on a cache-coherent multiprocessor.
On such multiprocessors, when a shared variable is read by a processor, it is cached
locally to that processor. As long as the value remains in the cache, any subsequent
reads of the shared variable will hit in the cache and be serviced without any global
communication. When a processor seeks to update the value of the shared variable,
invalidation messages are sent to all the cache copies, and these copies are removed
from the local caches. Thus a processor learns when the value has changed and only
then does any global communication take place. In our algorithm, a user waiting to en-
ter a room is spinning waiting for a change to grant[i] or active. Thus no global
communication occurs until one of these values changes. The values of grant[i] and
active can each change at most twice before the user can enter the room (recall that
the user can be bypassed once). If the test-and-set is implemented such that invalida-
tions are not sent if the value does not change, then regardless of the relative timings of
user actions, each user performs only O(1) global communications to enter and exit a
room (except for the last done, who performs O(m) global communications to exit the
room). As an optimization, when the number of processes exceeds the number of
processors, a spinning process can explicitly give up the processor (e.g., through a
thr yield() command), thereby minimizing the number of processor cycles wasted
doing spinning.

To satisfy the stronger mutual exclusion among rooms property discussed in the
footnote to property P2, it suffices to ignore all misbehaving requests, as follows. As-
sociate with each room a vector V , one two-bit entry per user, indicating the effective
status of the user, as outside (0), preparing to enter (1), inside (2), or preparing to exit
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(3). At the beginning of enterRoom (prior to Step 2), determine the id of the user,
and if V [id] �= 0 or the requested room number is invalid, the user is misbehaving
and a failure code is returned. Otherwise, set V [id] = 1 and permit the user’s agent to
proceed with Step 2. At the end of enterRoom (just prior to Step 11), set V [id] = 2.
Similarly, at the beginning of exitRoom (prior to Step 13), determine the id of the user,
and if V [id] �= 2, the user is misbehaving and a failure code is returned. Otherwise, set
V [id] = 3 and permit the user’s agent to proceed with Step 13. Finally, set V [id] = 0
just prior to Steps 22 and 27.

We have used round-robin scheduling of rooms, although more sophisticated
scheduling strategies might be implemented instead. For example, one could more fre-
quently schedule commonly requested rooms. Note that the round robin performed by
the last done implies that in the case of only a single user, the user’s agent wastes time
cycling through all the rooms each time it enters a room. Again, one could devise a more
clever scheduling of rooms, while possibly sacrificing fairness.

We implemented a version of the Exit Room primitive that includes a special
exit code. Exit code is assigned to a room using an Assign Exit Code primitive
(assignExitCode) that takes a pointer to a function and a pointer to the arguments
to the function. The exit code is executed by the last user to be done, prior to searching
for the next active room (i.e., between Steps 15 and 16 of exitRoom). Thus we are
guaranteed that the exit code is executed once, and only after all users granted access to
the room are no longer inside the room, but before any users can gain subsequent access
to any room. We have found the exit code to be quite useful in our applications of room
synchronization (an example is given later in Figure 6 and is also used in our experiments
of Section 4). Intuitively, the exit code can be viewed as enabling functionality such as
“the last one to leave the room turns out the lights.” The need for this functionality does
not arise with mutual exclusion, because there is only a single user inside the critical
section at a time.

Recall that the Change Room primitive (changeRoom) is equivalent to an Exit
Room followed by an Enter Room, but with the guarantee of entry into the requested
room the next time the requested room is opened. It can be implemented by acquiring
a ticket for the next room (as in Step 2 of enterRoom) before exiting the current
room.

3. Applications

In this section we describe four applications of room synchronizations: a shared stack,
a shared queue, a dual concurrent write, and a dynamic shared stack. The shared stack
is a more detailed description of the example covered in the Introduction, and the dual
concurrent write is a problem that came up in a real-time garbage collector [4].

3.1. Shared Stack

Our implementation of a linearizable shared stack is given in Figure 3. The code is a more
detailed version of the code given in the Introduction. The newStack routine creates
a new stack object, including allocating an array of a fixed size mysize and calling
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Fig. 3. The code for a shared stack using room synchronizations.

createRooms to create two rooms associated with the stack (one for pushing and one
for popping).

Theorem 2. The algorithm of Figure 3 implements a linearizable stack, such that both
the push and the pop operations take O(τ ) time, where τ is an upper bound on the time
for any instruction (action).

Proof. We first show that the stack is linearizable. Consider a collection of p users
executing push and pop operations on a stack according to the code in Figure 3, and p
agents executing enterRoom and exitRoom operations in response to user requests.
Let σ be an arbitrary execution involving these users and agents. We assume that no
push or pop has been executed before the initial state of this execution (top = 0, and
both rooms are closed). Consider the subsequence of the actions in σ comprised of the
fetch-and-add actions generated by Step 24 of the push operation and Step 36 of the pop
operation. We call these the commit actions. We argue that the ordering of these commit
actions specifies a proper linearized order of the corresponding stack operations.

We call each interval of σ in which the PUSHROOM or POPROOM is open a
push or pop interval, respectively. The push and pop intervals cannot overlap because
of property P2 of rooms. We note that since all push code (lines 24–29) is within a
push room, all actions for an individual push must occur within a single push interval.
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Similarly for pops. Hence we only need show that the pushes and pops properly linearize
within their respective intervals, and that the state when leaving an interval is consistent.

Consider the push operation. If a push interval has commit actions that cause an
overflow, we call the first such action the first overflow. We partition each push interval
into two subintervals, the part preceding a first overflow, called the successful push
interval, and the part at or after, called the overflow interval. If there is no overflow,
then the whole push interval is successful. Note that no action in a successful push
interval can decrement s->top. Within a successful push interval, each committing
fetch-and-add reserves a location in which to put the new item. Any commits from other
pushes coming after but within the successful push interval will reserve higher, and
hence later in “time,” locations in the stack. Also, all writes to the reserved locations
in Step 29 will complete within the push interval since they fall before the exitRoom
instruction.

Now consider a first overflow action. This action increments s->top to s->size
+ 1. In the remaining overflow interval s->top will never go below s->size. This
is because s->top is only incremented or reset to s->size. Hence all commits in the
overflow interval will cause an overflow, which is what one would expect from a linear
ordering of pushes. Furthermore when exiting the push interval, s->topwill have value
s->size, as desired, since each overflow finishes by setting it to this value. Together
with the discussion in the previous paragraph, this means that all pushes within a push
interval will have the proper linear order defined by the commit actions. Furthermore, the
state when leaving the push interval will have all pushed values written, and the counter
set properly. A similar argument can be made for the pops (where empty takes the place
of overflow), and hence any interleaving of pushes and pops will be linearizable, and the
linear order will be based on their commit actions.

We now show the time bounds. Note that the time that a user is in a room is bounded
by the time for a fetch-and-add, and a constant number of other standard instructions
(i.e., reads, writes, arithmetic operations, and conditional jumps). Each user is therefore
in a room for at most tr = O(τ ) time. Based on Theorem 1, the maximum time a user
will wait to enter or exit a room is O(m(τ + tr )). Since m = 2 the total time to enter,
process, and exit is O(τ ).

3.2. Shared FIFO Queue

Our implementation of a linearizable shared FIFO queue is given in Figure 4. The queue
object contains top, which points to the top of the queue (i.e., the next location to insert
an element), and bot, which points to the bottom of the queue (i.e., the first element to
remove). The implementation properly checks for overflow and underflow (emptiness).
In the case of overflow during an enqueue, the element is not inserted and the top
pointer is not incremented (the implementation first increments it, but then resets it).
Similarly in the case of an empty queue, the bot pointer is not incremented. Assuming
the int type is of fixed precision then bot and top can both overflow. In our code
and proof we assume there is no overflow, but it is not hard to fix the code to handle
overflow without affecting the correctness or time bounds. This can either be done by
taking advantage of wraparound when an integer overflows, or by using exit code (see
the end of the previous section) to reset the counter when it is close to overflowing. In
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Fig. 4. The code for a shared queue using room synchronizations.

the case of wraparound the range of int has to be greater than 2 * (q->size + p)
and a multiple of q->size.

Theorem 3. The algorithm of Figure 4 implements a linearizable FIFO queue, such
that both the enqueue and the dequeue operations take take O(τ ) time, where τ is an
upper bound on the time for any instruction (action).

The proof is almost identical to the proof of Theorem 2.

3.3. Dual Concurrent Writes

Our next application is a dual concurrent write. The dual concurrent write operation takes
a single value and writes it to two arbitrary locations, called a pair. We assume writes to
the same pair from different users can overlap in time. However, concurrent writes can
only involve the same location if they appear in the same ordered pair—i.e., (l1, l2) and
(l1, l3) cannot be written concurrently. We are interested in linearizable solutions that
take constant time. Linearizability implies that both locations of a pair that is written
end up with the same value. This operation has an application in our real-time garbage
collector. This application is discussed below. Because of the intended application in the
garbage collector, we are also interested in solutions that do not require a synchronization
location for each pair.
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Fig. 5. The code for a dual concurrent write using room synchronizations.

Our solution is shown in Figure 5. An interesting aspect of this implementation is
that it only involves a single room, and requires property P5 of rooms. We note that
the implementation requires no additional memory beyond the room structure, which is
constant size, and independent of the number of pairs.

Theorem 4. The algorithm of Figure 5 implements a linearizable dual concurrent write
that takes O(τ ) time, where τ is an upper bound on the time for any instruction (action).

Proof. We first show that the dual concurrent write is linearizable. As before, let σ be
an arbitrary execution involving p users and agents. Consider the subsequence of the
actions in σ comprised of the write actions generated by Step 4. We call these the commit
actions. We argue that the ordering of these commit actions specifies a proper linearized
order of the corresponding write operations.

For each dual write to a pair of locations (l1, l2), we call the interval in σ between
the commit action and the ExitRoomReq action an (l1, l2) write interval. We call each
maximal interval that is covered by (l1, l2) write intervals, an (l1, l2) active interval. We
call the dual write associated with the last commit to l1 within an (l1, l2) active interval,
the last write, and the associated value, the last value. We call each maximal interval in
which the COPYROOM is open a copy interval.

We argue that the state immediately following any (l1, l2) active interval will contain
its last value in both l1 and l2. Because of property P5 of rooms, the copy interval used
by the last write must start after it commits its value to l1 (in σ ). Consider all writes
to (l1, l2) that join the copy interval used by the last write, or any later copy intervals
within the active interval. Since the copies must all start after the last value is written
to l1, they all copy this same value into l2 (the interleaving of their reads and writes
does not matter). Since there is at least one such copy (the one associated with the last
write), the last value will be properly copied into l2 in the state immediately following
the (l1, l2) active interval. Having the last value written into both l1 and l2 is consistent
with a linearized order of the writes.

With regard to time, the time spent in the room only involves a read and a write, so
by Theorem 1, a user will only have to wait O(τ ) time, and the total time for the write
is also O(τ ).
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Our parallel real-time garbage collector uses a version of this dual concurrent write.
To achieve real-time bounds, the collector copies the memory graph while the program
is still running. This means that every location could have two copies, called the primary
(the one accessed by the program) and the replica (the copy that is being made). When the
program writes to a variable it needs to be sure that both copies of the variable are updated
consistently. The protocol is somewhat more complicated than the dual concurrent write
in that in addition to needing to support concurrent writes, there is a process that is
copying elements from the primary to the replica. With the implementation we gave for
dual concurrent writes, however, this is trivial to implement—the copy routines simply
executes lines 5–8. In practice it is extremely important that every memory location does
not require a separate synchronization variable—this could double the memory size.

In our actual implementation, we execute the initial write to the primary copy (l1)
immediately on a write but at that point only store away the fact that this location needs
to be copied to the replica (l2). This allows us to make no changes to how a write is
compiled—keeping track of the writes is required anyway to maintain cross pointers
between generations properly. The copying of values to the replica is then batched in
groups, meaning that multiple copies are done while a user is in the COPYROOM. This
amortizes the cost of entering and exiting.

3.4. Shared Dynamic Stack

We now consider implementing a linearizable shared dynamic stack. In a dynamic stack
we assume the size of the stack is not known ahead of time and hence the space allocated
for the stack must be capable of growing dynamically. In practice such dynamic stacks
are quite important. If an application uses a collection of stacks that share the same pool
of memory, it is crucial to minimize the space needed by each stack (i.e., allocating the
maximum that each might possibly need is impractical). Our implementation is given
in Figure 6. It makes use of the assignExitCode and changeRoom functions, and
requires property P5 of rooms. We assume that INITSIZE is greater than the maximum
number of concurrent users and is an even number. The pushRoomExit routine is
assigned as the exit code to the PUSHROOM and runs whenever the PUSHROOM is exited,
including when exiting through the changeRoom function.

Each time the stack grows, the allocated space is doubled and the old stack s->B is
copied to the new larger one s->A. This copying is executed incrementally—each push
on the top half of s->A copies one element from s->B to the bottom half of s->A. Once
the top half of s->A is full, s->B is fully copied into the bottom half of s->A. There
are two active arrays, s->A and s->B, at all times—when a new s->A is allocated the
old s->B is freed and the old s->A becomes the new s->B (s->B is always half as
large as s->A). The pushRoomExit code is responsible for checking if the stack has
overflowed (indicated by the variable s->start) and allocating a new s->A if it has.

The push code works as follows. It tries to reserve a slot using the first fetchAdd.
If this causes an overflow, a flag s->start is set to indicate to the pushRoomExit
code that the size of the stack needs to be doubled. As with the static stack, s->top is
then reset to s->size to undo the effect of the failed reservation. The changeRoom
forces the user to wait until all users exit the room, at which point the pushRoomExit
code is executed by a single user before the room is re-entered. If the reservation failed
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Fig. 6. The code for a shared dynamic stack.

on the first try, it will succeed on the second try since we assume the maximum number
of users is bounded by the increase in size of the stack, which is at least INITSIZE.
Note that the use of a changeRoom is critical for this to be the case since it limits to one
the number of reservations any other user can make in the interim. Using an exitRoom
followed by an enterRoom could allow another user to enter and exit many times before
the attempt by the failed reservation is retried. When the reservation succeeds, and if it
is in the top half of the stack, the push writes the data to the new array (s->A) and also
copies an element from the old array (s->B) to the new one. If the reservation succeeds
but it is in the bottom half, the push only writes the value to the old array. A later push
in the top half will copy it to the new array.
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The pop code is similar to the static stack except that it looks for the value in the
old array (s->B) if the index is in the bottom half and the new array (s->A) if it is in
the top half.

We claim that the algorithm of Figure 6 properly implements a linearizable stack of
dynamic size, and that each push and pop will take time at most proportional to the cost
of a malloc or fetch-and-add. Since we did not formalized the assignExitCode or
changeRoom functions, we do not state a formal theorem.

4. Experimental Results

In this section we describe the results of two sets of tests. The first set compares the
performance of group mutual exclusion using our algorithm and Keane and Moir’s algo-
rithm [20], henceforth the KM algorithm. The second set gives timings for an implemen-
tation of a shared work stack. The experiments were performed on a Sun UltraEnterprise
10000 with 64 250 MHz UltraSparc-II processors. We only ran our experiments on up
to 32 processors because that was all we were able to access consistently. The Ultra-
Enterprise is a shared-memory machine with a compare-and-swap instruction, but no
fetch-and-add. The fetch-and-add is therefore simulated using the compare-and-swap.
Using a compare-and-swap is not scalable since the fetch-and-add itself is sequentialized,
but as the experiments show, in most cases we still outperform the KM algorithm.

Group Mutual Exclusion. Our first set of experiments compare our algorithm for group
mutual exclusion with the KM algorithm and to locks. We implemented the KM algorithm
using MCS locks [22] as suggested by Keane and Moir and used in their experiments.
For all experiments we assume two rooms. In the experiments each processor loops for
n rounds. Each round randomly selects one of the two rooms with a certain probability
(a parameter of the experiment), enters the room, does some work (inside work), exits
the room, and does some work (outside work). In the case of simple locks, only one
processor can be in a room at a time.

We varied the number of processors, the amount of work performed inside and
outside the rooms, and the ratio of requests for the two rooms. All experiments were run
on from 1 to 32 processors. For the inside and outside work we report on two settings. For
the low load setting the processors do no work inside or outside the room—they simply
enter and exit rooms. This is meant to test the overhead when the requests to the room
are fine grained and frequent. For the high load setting the processors do significant, and
about equal, work inside and outside the room. The work inside the room is selected
based on a Gaussian distribution with mean equal to the outside work, which is fixed. The
standard deviation is selected equal to half the outside work. We include some variance
in the inside work since it is a more realistic scenario than all processors requesting the
room for exactly the same amount of time. For the ratio of requests to the two rooms
we also report on two settings. The first setting selects each room with p = .5, and the
second setting selects one room with p = .1 (leaving p = .9 for the other). Having
imbalance in requests allows us to study better the effect of allowing concurrent entering
since if one room is only accessed infrequently, this will maximize the potential benefits
of concurrent entering.
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Fig. 7. Comparisons of our algorithm with KM and locks.

The results for the two loads (low and high) and two ratio of requests (.5 and .1)
are plotted in Figure 7. We used n = 1000 rounds. The experiments show that our
algorithm is faster than the KM algorithm for the low load—up to a factor of 5 faster
in the range from 10 to 15 processors. For the low loads the cost of the locks is not
very high since no work is being done inside the lock. Locks are actually faster than our
algorithm on up to about 7 processors, and faster than KM on up to about 20 processors.
For the high load our algorithm and KM perform similarly. The KM algorithm does
slightly better for a small number of processors (about 2–15) for the p = .1 case. This is
because KM allows concurrent entering. Since one room is only requested infrequently,
the concurrent entering often allows a processor to enter while the room is in use. As
the number of processors increases this benefit decreases since the likelihood increases
that some processor requests the p = .1 room and prevents concurrent entering. As the
graphs show, the cost of locks is significant for high load since they do not allow any
sharing of work in the rooms.

Shared Stack. Our second set of experiments compare implementations of a shared
work stack using our room synchronizations and using locks. This is meant as a more
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“real-world” example. The benchmark is loosely structured on the parallel graph traversal
of a garbage collector [6]. We have therefore picked parameters and characteristics that
roughly match the needs of that application. The overall structure of the benchmark is
that each processor takes some work from the shared stack, does some simulated local
work on what it has grabbed, and then puts work back.

The shared stack is initialized with h elements each with a count of d (the count
is described below). Each processor repeatedly pops k elements from the shared stack
onto its local stack, “operates” on the elements, and then pushes the entire contents of its
local stack back to the shared stack. The pop of k elements is executed within a single
room (for the room synchronization version) or a single lock (for the locks version). Each
element with a count of c (> 0) generates two new elements of count c−1, and a element
with a zero count simply disappears. In other words, each of the original h elements will
generate 1+ 2+ 4+ 2c = 2c+1− 1 elements over the lifetime of the benchmark (a total
of h(2c+1−1) elements are pushed and popped from the stack before the stack becomes
empty). In addition to processing the elements on the local stack, each processor waits
for a random amount of time between popping and pushing. The random time is selected
uniformly between 0 and 2tk , where tk is a parameter of the experiment, and is meant
to represent the work associated with processing a stack element. In the case of garbage
collection, such additional work might include decoding objects, copying objects, and
installing forwarding pointers. We note that although the linearizability of the stack is
not necessary for correct garbage collection, it is critical for the purpose of properly
detecting termination.

For our experiments we use n = 16,000, c = 11, and k = 500. We ran the experi-
ments on 1–30 processors. In all cases the average of five times for the given experiment
is reported. Figure 8 shows three graphs with varying wait times (the parameter tk). The
graphs correspond, from first to last, to applications where the time to process an item
is 40%, 100%, or 600% of the time it takes to transfer the items from the shared stack to
the local stack. In each graph the bottom line (widely spaced dots) represents the work
for the uniprocessor case when no synchronization is performed and no wait time is in-
troduced. The next line (dotted) adds a varying amount of work reflected in the distance
from the bottom line. Finally, the solid and dashed curves represent the rooms and locks
versions of the benchmark with synchronization and additional work. The vertical axis
represents the total work performed, which is calculated as the product of the wall-clock
time and the number of processors. In all cases perfect speedup corresponds to the flat
thinly spaced dotted line.

The rooms synchronization has good performance, introducing an overhead approx-
imately equal to basic stack transfer time (without synchronization or additional work).
The overhead is mostly independent of the number of processors, indicating that the
speedup achieved is (after including the overhead) linear. Additionally the magnitude
of the overhead is also independent of the amount of additional work introduced. In
contrast, at few processors, the locks version has almost no overhead. However, as the
number of processors increase, the contention in acquiring locks increases, causing a
rapid performance degradation. The point at which this transition occurs varies from im-
mediately to 10 processors and 20 processors for the three wait times, respectively. This
trend is expected as the introduction of additional work between popping and pushing
means that the processors spend less time locking the push and pop code.
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Fig. 8. Total work (elapsed time in seconds × number of processors) versus number of processors, for 40%
additional wait time, 100% additional wait time, and 600% additional wait time.

We note that we also implemented the Treiber nonblocking stack [30], but the
performance was so poor, due to a large overhead and the fact that it did not scale, that
we did not include the results in this paper.

5. Related Work and Discussion

There is a long history of synchronization models and synchronization constructs for par-
allel and distributed computation. At the one end of the spectrum, there are synchronous
models such as the PRAM, in which the processors execute in lock-step and there is
no charge for synchronization. Shared data structure design is simplified by not having
to deal with issues of asynchrony. Bulk-synchronous models such as the BSP [31] or
the QSM [9] seek to retain the simplicity of synchronous models, while permitting the
processors to run asynchronously between barrier synchronizations (typically) among
all the processors. Algorithms designed for these models are necessarily blocking (due
to the barrier synchronizations). For the loosely synchronous applications considered in
this paper, there are significant overheads in implementing shared data structures using
barrier synchronizations, because all the processors must coordinate/wait even if they
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are not currently accessing the data structure. In many contexts, this is not practical.
For example, in our parallel garbage collector, a process only needs to access the shared
stack when the thread running on the process allocates memory. In general the allocation
behavior of threads is completely unpredictable. It would be a major problem to suspend
all threads on a regular basis so they can coordinate on a stack operation.

At the other end of the synchronization models spectrum are the fully asynchronous
models, in which processors can be arbitrarily delayed or even fail, and shared data
structures are designed to tolerate such delays and failures. Wait-free data structures [14]
have the property that any user’s request (e.g., a push or pop request) will complete in a
bounded number of steps, regardless of the delays or failures at other processors. Because
of the large overheads in wait-free data structures, there has been considerable work on
nonblocking (or lock-free) data structures [14], which only require that some user’s
request will complete in a bounded number of steps (although any particular user can
be delayed indefinitely). Examples of nonblocking data structures work includes [2],
[3], [13], [14], [15], [23], [25], [32], and [33]. Most of these implementations still
fully sequentialize access to the data structure. Moreover, they often require unbounded
memory (because of the so-called ABA problem [32]), or the use of atomic operations
on two or more words of memory (such as a double compare-and-swap or transactional
memory [16], [27]). Such operations are significantly more difficult to implement in
hardware than single word atomic operations. Thus, wait-free and nonblocking data
structures are essential in contexts where the primary goal is making progress in highly
asynchronous environments, but there is a significant cost to providing their guarantees.

Room synchronizations are designed for asynchronous settings more concerned with
fast parallel access (and bounded memory) than with providing nonblocking properties.
In other words, settings between those suitable for bulk-synchronous models and those
suitable for fully asynchronous models. In the experimental results presented in this
paper, as well as experiments with a parallel garbage collector, we have obtained good
performance with room synchronizations on the Sun UltraEnterprise 10000, a 64 pro-
cessor shared-memory machine. This gives some indication that room synchronizations
are suitable for that machine. We expect similar performance on other shared-memory
machines such as the SGI Power Challenge and the Compaq servers.

We note that our experiments are run in an environment in which each process is
mapped to one processor. This means that it is unlikely that a process will be swapped
out (context switched) by the operating system while inside a room. There are a couple
of potential mechanisms to deal with the case where the operating system could swap out
a process while inside a room. First, the interrupt for a context switch might be delayed
until the exitRoom. This can be achieved for many situations on most processors by
temporarily disabling certain kinds of interrupts while inside a room. A second potential
solution is to have a special interrupt handler code that restores the state of the process
to a point in which it is safe to exit the room, and then exit the room before submitting
to the context switch. This would only be applicable under certain conditions.

The algorithm by Gottlieb et al. for parallel queues [12] (mentioned in the Intro-
duction) has characteristics which our similar to ours. Like ours, the algorithm works
with unpredictable arrival times or requests, is based on the fetch-and-add operation, and
can fully parallelize access. Also like ours, it is not nonblocking. It, however, has some
important disadvantages compared with our algorithm. Firstly, it is not linearizable—the
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following can occur on two processors:

P1 P2
enqueue(v1) enqueue(v2)

v1 <- dequeue()
EMPTY <- dequeue()

Secondly, the algorithm requires a lock (or counter) for every element of the queue. This
requires both extra memory for each element, and manipulating this lock for every insert
and delete. In our solution it is easy to batch the inserts or deletes, as was done in our
experiments. Thirdly, the technique does not appear to generalize to other data structures
such as stacks. The technique does have an advantage, which is that the blocking is at a
finer granularity—per location rather than across the data structure.

There have been a number of papers describing techniques for reducing the con-
tention in accessing shared data structures (e.g., [28], [26], and [29]). The diffracting
trees of Shavit and Zemach [28] are not linearizable. The work of Shavit and Zemach
on combining funnels leads to a linearizable and scalable implementation of stacks [29].
The idea is that pushes and pops can combine if they collide in a software combining
tree. Pushes cannot efficiently combine with each other, but if two equal-size combining
trees, one consisting of pushes and one consisting of pops, try to combine, then all the
push requests can be combined with the pop requests. A time bound for the algorithm is
not given, but experimental results on a simulator show that the technique scales well. It
would be interesting to compare this technique with an implementation of linearizable
stacks using our technique.

The group mutual exclusion algorithms of Joung [19] and Keane and Moir [20]
sequentialize entry and exit to the critical regions. The algorithm of Joung sequentializes
access by requiring every entry and exit from a critical region to loop through an array
of length p. This means that even when only one user is requesting a critical region,
the access takes p time. The algorithm, however, requires no synchronization primitives
beyond atomic reads and writes. The algorithm of Keane and Moir [20] uses a locks
(mutual exclusion) to access the key data structures needed to enter and exit a critical
region. If all users concurrently request a critical region, they must sequentially access
the code inside the lock. However, if only one user requests a critical region, its request
can be serviced in constant time. The particular primitives they require depend on how
the mutual exclusion is implemented. Their best variant, experimentally, is based on
Mellor-Crummey and Scott’s mutual exclusion algorithm [22] and hence requires a
compare-and-swap operation. We note that it is not completely fair to compare the
performance of our algorithms with theirs because we use a significantly more powerful
synchronization primitive—the fetch-and-add. In effect our results are based on reducing
group mutual exclusion to a fetch-and-add, and therefore potentially taking advantage
of scalable implementations of the fetch-and-add.

We note that there is a difference in the semantics supported by our algorithm and
those of Joung and of Keane and Moir. In particular, we do not support the concurrent
entering requirement, and instead support the contradictory no late entry requirement
(property P5). Either of these requirements may prove more useful depending on the
context.
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6. Conclusions

In this paper we presented a scalable solution to the group mutual exclusion problem.
Our techniques are likely to be useful in a parallelism context that lies between highly
synchronous models such as the PRAM or BSP model, and highly asynchronous models
where it is assumed processors can stall, fail, or become disconnected. In particular, our
algorithms can handle requests that come in at arbitrary times, and from arbitrary subsets
of the processors. They, however, are blocking and hence if a processor fails in certain
critical regions of the code, other processors can become blocked. Based on our room
synchronization solution, we presented simple and efficient implementations of shared
stacks and queues. These data structures are linearizable, handle asynchronous requests,
and allow for constant-time access (assuming a constant-time fetch-and-add).
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Appendix. Bounded Counters

In this appendix we discuss the issues of bounded counters in the room synchronization
protocol. The difficulty in adapting our protocol to use only bounded counters is that it
employs inequality tests in order to admit multiple waiting users at once. If not careful,
inequality tests can be foiled by the wrap around arising with bounded counters. This
section contains the following results:

• We prove that the (unbounded) variables in each of the two inequality tests in the
protocol never differ by more than the number of users p.
• Using this, we show how to modify the protocol to use only bounded variables,

with maximum value at most B, for any B > max{2p,m, r}, where m is the
number of rooms and r is the largest value of a pointer variable in the protocol.
• We prove that the modified protocol satisfies properties P1–P7.
• We argue why, in practice, our modifications are unnecessary, because the code

in Figure 2 is correct as shown (thanks to twos-complement arithmetic).

A.1. Additional Properties of the Unbounded Protocol

We first prove that the (unbounded) variables in each of the two inequality tests in the
protocol (Step 3 of enterRoom and Step 19 of exitRoom) never differ by more than p.
Step 3 compares myTicket at j and grant[i]; this is addressed by Lemma 3. Step 19
compares currWait at j and grant[newAr]; this is addressed by Lemma 4.

Lemma 3. In any execution (with behaved traces) of the room synchronization pro-
tocol (with unbounded counters), if there is a user j with a ticket for room i , then
|myTicket at j − grant[i]| ≤ p.
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Proof. We use the invariants of Lemma 2. By invariant 2,myTicket−grant[i] ≤ p.
In the bulk of the proof we show that grant[i] − myTicket < p. For purposes of
contradiction, consider the shortest execution σ which ends in a state such that user j has
a ticket for room i and grant[i]− myTicket ≥ p. Let σ = σ1α1σ2, where α1 is the
last occurrence of Step 2 by user j , σ1 is the prefix of σ prior to α1, and σ2 is the suffix
of σ after α1. Let s1 be the last state in σ1 and let s2 be the updated state after α1 occurs.
By invariant 2, wait[i] ≥ grant[i] in s1, and hence myTicket > grant[i] in
s2, and user j is blocked. Thus unless σ2 contains a step that increases grant[i] and
unblocks user j , we have a contradiction.

Accordingly, let σ2 = σ3α2σ4, where α2 is the first occurrence in σ2 of a Step 7 or 21
that increasesgrant[i] and unblocks user j . Let s3 be the last state in σ3 and let s4 be the
updated state afterα2 occurs. Assume σ2 is a Step 7 (the case for Step 21 is similar). Step 7
updates onlygrant[i]. Let gold (gnew) be the value ofgrant[i] in s3 (s4, respectively).
Because user j is blocked in s3, myTicket > gold. By invariant 2, wait[i]−gold ≤ p.
Because Step 7 is enabled in s3, there is a user k in the advance room region, and hence,
by invariant 2, currWait at k ≤ wait[i]. By Step 7, we have gnew = currWait at k.
Therefore, gnew − myTicket < gnew − gold = currWait at k − gold ≤ wait[i] −
gold ≤ p.

Moreover, it follows from invariant 2 that grant[i] never decreases. Thus user j
is unblocked in all states in σ4. It follows from invariants 2 and 2 that in all states in σ4,
grant[i] > done[i], no user is in the advance room region, and grant[i] = gnew.
Thus grant[i]− myTicket < p in the last state in σ , a contradiction.

Lemma 4. In any execution (with behaved traces) of the room synchronization pro-
tocol (with unbounded counters), if there is a user j with Step 19 enabled, then 0 ≤
currWait at j − grant[newAr] ≤ p.

Proof. By invariant 2 of Lemma 2, when Step 19 is enabled, currWait at j −
grant[newAr] ≥ 0. By invariants 2 and 2, currWait at j − grant[newAr] ≤
wait[newAr]− grant[newAr] ≤ p.

A.2. Protocol Modifications and Correctness Proof

Next, we show how to modify the protocol to use only bounded variables. Let p be the
number of users, and let B be an integer greater than 2p. We make the following changes
to the code in Figure 2:

• Let any fetchAdd on a shared counter increment that counter modulo B. Simi-
larly, the addition by 1 in Steps 2 and 14 are performed modulo B.
• Define a function greater() as follows:

int greater(int a, int b) {
return ((a > b && a - b <= p) || (a < b && b - a > p));

}
• Replace myTicket - r->grant[i] > 0 in Step 3 with greater
(myTicket, r->grant[i]), and currWait - r->grant[newAr] > 0
in Step 19 with greater(currWait, r->grant[newAr]).
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We call this the room synchronization protocol with bounded counters. Note that a and b
are passed by value, so we retain the property that each step contains at most one shared
memory access.

The rationale behind the function greater is summarized by the following lemma.

Lemma 5. Let B and p be positive integers such that B > 2p. For all nonnegative
integers x and y such that |x − y| ≤ p,

x > y if and only if greater(x%B, y%B).

Proof. Let x1 and x2 be nonnegative integers such that x1 = x%B and x = x1+ x2 · B.
Let y1 and y2 be nonnegative integers such that y1 = y%B and y = y1+ y2 · B. Because
|x − y| ≤ p < B, |x2 − y2| ≤ 1. Note that greater(x%B, y%B) = greater(x1, y1).

If x2 = y2 + 1, then x > y and x − y = x1 + B − y1 ≤ p < B/2. Thus,

x1 < y1 − B/2 and y1 − x1 > B/2 > p. (A.1)

Suppose x > y. If x2 = y2, then x1 > y1 and x1 − y1 ≤ p, so greater(x1, y1) is
true. If x2 = y2+1, then, by (A.1) above, x1 < y1 and y1− x1 > p, so greater(x1, y1)
is true.

Suppose x = y. Then x1 = y1, so greater(x1, y1) is false.
Finally, suppose x < y. If y2= x2, then x1 < y1 and y1−x1≤ p, sogreater(x1, y1)

is false. If y2 = x2 + 1, then, by (A.1), x1 > y1 and x1 − y1 > p, so greater(x1, y1)
is false.

We now have the components in place to prove the correctness of the modified
protocol.

Theorem A.1. The room synchronization protocol with bounded counters satisfies
properties P1–P7.

Proof. Let Ab (Au) be the automaton for the protocol with bounded (unbounded, re-
spectively) counters. Let A∗b be the automaton Ab augmented with history variables that
keep track of the unbounded counters corresponding to each bounded counter.

By Lemmas 3 and 4, the two inequality tests in Au are only applied for (unbounded)
variables that differ by at most p. Thus based on Lemma 5, there is a straightforward
correspondence between the states and actions in A∗b and those in Au, such that any
execution of A∗b can be mimicked by Au (formally, there is a simulation relation from A∗b
to Au [21]). It follows that any trace of Ab is a trace of A∗b is a trace of Au, and hence the
safety properties of Au carry over to Ab (i.e., properties P1, P2, P5, and P6). The proofs
of the remaining properties follow the proofs of the same properties for Theorem 1.

A.3. Correctness of the Original Code

Finally, a key observation is that in practice, equivalent arithmetic and comparisons occur
automatically, so that the code in Figure 2 is correct as shown. This is because when
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integers are represented in twos-complement, then letting the counters wrap around to a
negative number (ignoring the overflow) gives the desired result for any inequality test
in the protocol. More specifically, consider an inequality test between two numbers x
and y. The inequality test x − y > 0, when x and y are represented as twos-complement
integers with a bounded number of bits, gives the same result as the inequality test x > y
when x and y are represented as unbounded integers, as long as x and y differ by less
than the maximum integer representable by the given number of bits. By Lemmas 3
and 4, the counters differ by at most the number of users p, which we assume is less than
the maximum integer. Note that it is important to use |myTicket - r->grant[i]
> 0| instead of |myTicket > r->grant[i]| in the enterRoom code (Step 3, see
also Step 19), in order for the (bounded variable) comparison to evaluate as desired for
correctness.
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