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ABSTRACT
We consider the practical problem of task assignment in a
server farm, where each arriving job is immediately dis-
patched to a server in the farm. We look at the benefit of
cycle stealing at the point of the dispatcher, where jobs nor-
mally destined for one machine may be routed to a different
machine if it is idle. The analysis uses a technique which we
refer to as dimensionality reduction via busy period transi-
tions. Our analysis is approximate, but can be made as close
to exact as desired, and is validated via simulation. Results
show that the beneficiaries of the idle cycles can benefit un-
boundedly, due to an increase in their stability region, while
the donors are only slightly penalized. These results still hold
even when there is only one donor server and 20 beneficiary
servers stealing its idle cycles.
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General Terms
Performance, Algorithms
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Server farm architecture
The “server farm” is a common architecture used by busy
web sites, computation centers, file servers, and any other
service which receives more requests than can be handled by
a single server. The server farm is popular because it allows
for increased computing power while being cost-effective and
easily scalable. The server farm architecture is shown in
Figure 1.
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Figure 1: Illustration of server farm architecture.

In a server farm, each arriving “job” (request) is imme-
diately dispatched by a high-speed front-end router (a.k.a.,
dispatcher) to exactly one of the servers, which handles the
job. Common dispatchers include Cisco’s Local Director [5]
and IBM’s Network Dispatcher [15]. The immediate dis-
patching of jobs is crucial for scalability and efficiency; it’s
important that the router not become a bottleneck. There
is typically no communication between servers, which may
not even know of each others’ existence.

The rule used by the dispatcher for assigning jobs to servers
is known as the task assignment policy. The choice of the
task assignment policy has a significant effect on the per-
formance perceived by users. Designing a distributed server
system thus often comes down to choosing the “best” pos-
sible task assignment policy for the given model and user
requirements. While devising new task assignment policies
is easy, analyzing even the simplest policies can prove to be
very difficult: Many of the long-standing open questions in
distributed computing involve the performance analysis of
task assignment policies.

In this paper we consider the particular model of a server
farm in which servers are homogeneous and the execution
of jobs is non-preemptive (run-to-completion), i.e., the ex-
ecution of a job can’t be interrupted and subsequently re-
sumed. Our model is motivated by servers at supercom-



puting centers, where jobs are typically run-to-completion
(see Table 1). Our model is also consistent with validated
stochastic models used to study a wide range of high-volume
Web sites [16, 31], studies of scalable systems for departmen-
tal computers within an organization [29], and telecommu-
nication systems with heterogeneous servers [4].

Previous work on task assignment
The analysis of task assignment policies has been the topic of
many papers. Below we provide a brief overview. We limit
our discussion to task assignment in non-preemptive systems
with immediate dispatch. For a more general discussion see
[10] and the references therein.

By far the most common task assignment policy used
is Round-Robin. The Round-Robin policy is simple, but it
neither maximizes utilization of the servers, nor minimizes
mean response time.

When the job sizes come from an exponential distribu-
tion, the best policy for minimizing mean response time is
Least-Remaining-Work, where incoming jobs are sent to the
server with the least total unfinished work [34]. This re-
quires knowing the size of jobs (a.k.a., service requirements,
processing requirements). In the case where the sizes are
not known, then the Shortest-Queue task assignment pol-
icy – where incoming jobs are immediately dispatched to the
server with the fewest number of jobs – has been shown to
be optimal under an exponential job size distribution and
Poisson arrival process [33, 9].

While policies like Least-Remaining-Work and Shortest

Queue perform well under exponential job size distributions,
they perform poorly when the job size distribution has higher
variability. In such cases, it has been shown analytically
and empirically that the Dedicated policy far outperforms
these other policies with respect to minimizing mean re-
sponse time [11, 30]. In the Dedicated policy, some servers
are designated as the “short servers” and others as the “long
servers.” Short jobs are always sent to the short servers and
long jobs to the long servers. The Dedicated policy is also
popular in practice (e.g. Cornell Theory Center) where dif-
ferent server machines have different duration limitations:
0–1/2 hour, 1/2 – 2 hours, 2 – 4 hours, 4 – 8 hours, etc.,
and users must specify an estimated required service require-
ment for each job [14]. The intuition behind the Dedicated

policy is that, under high-variability workloads, it is impor-
tant to isolate short jobs from the long jobs, as having short
jobs wait behind long jobs is very wasteful. The Dedicated

policy is also popular in supermarkets and banks, where a
separate queue is created for “short” jobs.

Even when the job size is not known, it has been demon-
strated that a policy very similar to Dedicated, known as
the TAGS policy (Task Assignment by Guessing Size) works
almost as well when job sizes have high variability. Like
Dedicated, the TAGS policy significantly outperforms other
policies that do not segregate jobs by size [10].

Motivation for cycle stealing
Given the extremely high variability of job sizes under so
many computer workloads [7, 8, 12, 30, 22, 28, 27], Dedicated
assignment is clearly preferable to other policies. However
Dedicated is still clearly not optimal. One problem is that
Dedicated can lead to situations where the servers are not
fully utilized: five consecutive short jobs may arrive, with
no long job, resulting in an idle long server. This is espe-

cially likely in common computer workloads, where there are
many short jobs and just a few very long jobs, resulting in
longer idle periods between the arrivals of long jobs.

Ideally one would like a policy which combines the variance-
reducing benefit of the Dedicated policy with the high-
utilization property of other policies: We would like to seg-
regate jobs by size so as to provide isolation for short jobs,
but during times when the long job server is free, we would
like to steal the long server’s idle cycles and use those to
serve incoming short jobs. This would both decrease the
mean response time of short jobs, and also enlarge the sta-
bility region of the overall system. It is important, though,
that we permit the short jobs to use the long server only
when that server is free, so that we don’t starve the long
jobs. Nonetheless, because jobs are not preemptible, there
will still be some penalty to a long job which arrives to
find a short job serving at the long server. Our specific
cycle stealing algorithm, called CS-Immediate-Dispatch, or
CS-Immed-Disp for short, will be described in Section 2.

Beneficiaries and donors
Above we’ve used the terms “short server” to describe the
server designated for “short” jobs and “long server” to de-
scribe the server designated for “long” jobs, but which can
be used for new short arrivals if idle. Our reason for talking
about a “short server” and a “long server” is to emphasize
the tremendous performance benefit achievable when jobs
can be segmented by size. The analysis in this paper, how-
ever, applies more generally to any situation where there is
a “beneficiary server” and a “donor server”, where newly ar-
riving beneficiary jobs may use the donor server if it is idle.
Throughout, we will therefore use the terms beneficiary and
donor jobs/servers. For completeness we will consider three
cases: beneficiary jobs shorter than donor jobs; beneficiary
jobs indistinguishable from donor jobs; and beneficiary jobs
longer than donor jobs. We will find that the beneficiary
jobs benefit in all three cases. The donor jobs suffer lit-
tle, except in the case where the beneficiary jobs are much
longer than donor jobs, causing donor jobs to sometimes get
stuck waiting. But even in this case, it will turn out that
the penalty to the donor jobs is dominated by the benefits
to the beneficiary jobs.

Difficulty of analysis and new analytic approaches
Cycle stealing is a very old concept, and policies based on
cycle stealing have been suggested in countless papers. How-
ever until this year ([13, 26]) the analysis of cycle stealing
has eluded researchers. This paper provides the first analysis
of cycle stealing under immediate dispatch task assignment.
Our primary goal is to derive the mean response time for the
beneficiaries and the mean response time for the donors.1

Observe that even for the simplest instance of our prob-
lem – where job arrivals are Poisson and beneficiary jobs
and donor jobs are drawn i.i.d. from respective exponential
distributions – the continuous-time Markov chain represen-
tation of the system is mathematically difficult. This is due
to the fact that the state space

(number beneficiary jobs, number donor jobs)

grows infinitely in two dimensions (2D). While truncation of
the Markov chain is possible, the errors introduced by ignor-
1The response time is defined as the time from when the job
arrives until it leaves the system.



Name Location # Servers Server Machine
Xolas [21] MIT Lab for Computer Science 8 8-processor Ultra HPC 5000 SMP
Pleiades [20] MIT Lab for Computer Science 7 4-processor Alpha 21164 machine
J90 distributed server NASA Ames Research Lab 4 8-processor Cray J90 machine
J90 distributed server [1] Pittsburgh Supercomputing Center 2 8-processor Cray J90 machine
C90 distributed server [2] NASA Ames Research Lab 2 16-processor Cray C90 machine

Table 1: Examples of server farms described by the architectural model of this paper. Observe that each
server machine is a multi-processor machine. The schedulers used are Load-Leveler, LSF, PBS, or NQS. These
schedulers typically only support run-to-completion (non-preemptive) within a server machine because (i)
timesharing within a multiprocessor server is not supported [Parsons, Sevcik 97], and (ii) the huge memory
requirements of these parallel jobs make timesharing too expensive [Feitelson et. al. 97]. Typically in such
settings users submit an upper bound on their job’s CPU requirement, beyond which point the job is killed.

ing portions of the state space (infinite in 2D) can be quite
significant, especially at higher loads2. Thus truncation is
not sufficiently accurate nor robust for our purposes.

Our approach consists of several ideas. First, we define
our CS-Immed-Disp algorithm in a way that will allow the
decomposition of the system into two processes: the benefi-
ciary server process and the donor server process. We can
solve the donor server process exactly, providing a closed-
form expression for the Laplace transform of response time
of donor jobs. We can also derive all moments of the busy pe-
riod duration for the donor server, where the donor server’s
busy period is defined as the time from when the server be-
comes busy until it becomes idle again. We next analyze
the beneficiary server. Normally this would require tracking
both the number of donor and beneficiary jobs in a 2D-
infinite chain. However, we show that we can extract all
the information we need by tracking only the number of
beneficiary jobs and whether the donor server is busy or
not. To do this we use a special type of transition in our
Markov chain which we call a busy period transition, and
which represents the length of the donor server’s busy pe-
riod. Such transitions allow us to represent the beneficiary
server state using a 1D infinite chain. This chain can be
easily solved using known numerical (matrix analytic) tech-
niques. While a closed-form solution is preferable, our chain
is compact enough, and matrix analytic methods powerful
enough, that only a couple seconds are required to generate
any of the results curves in this paper.

The only approximation in our method with respect to
this paper lies in the accuracy of the representation of the
donor server’s busy period. This can be made as accurate
as desired, as all moments of the donor server’s busy pe-
riod are known. In this paper we match 3 moments and
verify via simulation that this is sufficient. To summarize,
we are able to analyze this heretofore intractable problem
by (i) defining our policy so as to allow decomposition of
the server states, and (ii) using busy period transitions to
reduce dimensionality.

The above analysis allows for very general conditions. The
service requirements of the beneficiary and donor jobs are
assumed to be drawn i.i.d. from any general distribution

2For ρB = 1.1 and ρD = 0.7, truncation leads to ∼ 25%
error, even with 2 × 502 states, and takes > 10 minutes
to compute (here ρB represents the load at the beneficiary
server and ρD the load at the donor server). As ρB nears
1.16119 (ρB < 1.16119 is necessary for stability when ρD =
0.7) , the error increases indefinitely. Under job sizes more
variable than exponential, the error is greater.

(which we model using a Coxian distribution [6]).3 The ar-
rival process is assumed to be Poisson, but can be extended
to a MAP process (Markovian Arrival Process) [25]. The
analysis also generalizes nicely to the case of n beneficiary
servers.

The work in this paper complements two other papers:
[13] and [26]. These other papers also look at the question
of cycle stealing, however under different models which are
not appropriate for server farms.

In [13], there is a central queue at the dispatcher and no
queueing at the servers. This model lacks practicality for
server farms, but is interesting theoretically since it leads
to a much larger stability region as compared to immediate
dispatch, since donors can help with all beneficiary jobs, not
just new arrivals. The analysis of the central queue policy
does not lend itself to decomposition of the servers (as in
this paper). Therefore the analysis in [13] requires making
certain independence approximations.

In [26], the model differs still further. Similarly to [13],
the donors can help with all beneficiary jobs, not just new
arrivals. In addition, the service is preemptive, which means
that the donor server quits work on a beneficiary job when
new donors arrive. The preemptive service model greatly
simplifies the analysis, which enables the analysis of addi-
tional parameters like switching costs and thresholds.

In both [26] and [13] it does not appear possible to analyze
the case of multiple beneficiary servers, as in this paper.

Outline
Section 2 presents the CS-Immed-Disp algorithm. Sections 3
through 5 discuss the case of a single beneficiary server and a
single donor server, including: the analysis of CS-Immed-Disp
(Section 3); stability criteria (Section 4); and results show-
ing the gain to beneficiary jobs and the penalty to donor jobs
(Section 5), as a function of load, job sizes, and variability in
the job size distributions. Section 6 discusses analysis and
results for the case of multiple beneficiary servers. In Sec-
tion 7 we validate our analysis technique against simulation
and limiting cases.

Summary of Results
Our analysis leads to the following conclusions:

We find that immediate dispatch with cycle stealing vastly

3Coxian distributions are a subset of phase-type distribu-
tions. Phase-type distributions are commonly used for rep-
resenting general distributions as a combination of exponen-
tial distributions of different rates, which allows the general
distribution to be modeled in a Markov chain.
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Figure 2: CS-Immediate-Dispatch algorithm.

improves the performance of the beneficiaries. By increasing
the stability region for the system, CS-Immed-Disp results
in finite response time even when the beneficiary load ex-
ceeds 1. We find that the donor jobs do not suffer much by
having their idle cycles stolen. When the beneficiary jobs
are smaller on average than the donors, the suffering of the
donors is truly negligible. Even when the beneficiary jobs
are ten times larger on average than the donors, the donor
jobs’ response times increase by only a small factor, and this
increase is dwarfed by the “infinite” improvement possible
for beneficiary jobs.

The performance of the beneficiary jobs is surprisingly in-
sensitive to the variability of the donor job size distribution,
with noticeable impact only in the region where the bene-
ficiary load exceeds 1. The performance of donors is nega-
tively impacted by higher variability in beneficiary jobs.

We find, importantly, that the benefit to beneficiary jobs
remains substantial and the penalty to donor jobs remains
relatively low, even when there are 20 beneficiary servers.
This underscores the power of cycle stealing and is impor-
tant news for many applications outside of server farms,
e.g., the sharing of unused bandwidth by multiple flows in
Weighted Fair Queueing (WFQ) routers. Interestingly, we
see that the change in going from i to i+1 beneficiary servers
is strongly nonlinear. There is a big drop-off in going from 1
to 2 beneficiary servers, but a much smaller change in going
from 5 to 20 beneficiary servers.

2. ALGORITHM AND NOTATION
The natural immediate-dispatch cycle stealing algorithm

might look something like this: Donor jobs are immediately
dispatched to the donor server. Beneficiary jobs are imme-
diately dispatched to the beneficiary server, unless the ben-
eficiary server is busy and the donor server is idle, in which
case the beneficiary job goes to the donor server. Unfor-
tunately, this algorithm does not appear tractable because
the stochastic process defining the system cannot be decom-
posed: Even the analysis of only the donor server requires
keeping track of both the number of beneficiary jobs and the
number of donor jobs, which is still a 2D-infinite chain.

Fortunately, if we perturb the algorithm just slightly, we
produce a policy which we can decompose and analyze us-
ing the method of dimensionality reduction via busy period
transitions. Our algorithm is called CS-Immed-Disp (cycle
stealing under immediate dispatch). There is a designated
beneficiary job server and a designated donor job server.
An arriving donor job is always dispatched to the donor job
server. An arriving beneficiary job first checks if the donor

job server is idle. If so, the beneficiary job is dispatched to
the donor job server (regardless of the number of jobs at
the beneficiary queue). If however the donor job server is
not idle (either it’s working on a donor job or a beneficiary
job), then the arriving beneficiary job is dispatched to the
beneficiary server. Jobs at a server are serviced in FCFS
order. The CS-Immed-Disp algorithm is shown in Figure 2.

The CS-Immed-Disp algorithm is an improvement over
simple Dedicated, since a fraction of the arrival stream of
beneficiary jobs can be offloaded to the donor server, while
only slightly penalizing donor jobs.

In the more general case (see Section 6), there may be
several beneficiary servers and a single donor server. Jobs
destined for beneficiary server i will first check if the donor
server is idle and if so go there. If not, they will go to their
designated beneficiary server.

Throughout we assume that beneficiary (respectively, donor)
jobs arrive according to a Poisson process with rate λB (re-
spectively, λD). The size, a.k.a. service requirement, of
beneficiary jobs (respectively, donor jobs) is denoted by the
random variable (r.v.) XB (respectively, XD) and is as-
sumed to be represented by a Coxian distribution. The ith
moment of the size of a beneficiary (respectively, donor) job
is therefore E[Xi

B ] (respectively, E[Xi
D]). The load at the

beneficiary server (respectively, donor server) is defined to
be ρB = λB ·E[XB ] (respectively, ρD = λD ·E[XD]). In the
case of multiple beneficiary servers, we have arrival rates:
λB1 , λB2 , . . . , λBn , with job sizes XB1 , XB2 , . . . , XBn , re-
spectively. We assume that the first three moments of the
busy periods are finite, and the queues are stable.

3. ANALYSIS FOR TWO SERVERS
Our analytic approach involves a three-step process: ana-

lyzing response time for the donor jobs; deriving the donor
server busy period; and analyzing the beneficiary server by
incorporating results from the donor server busy period.

The first step is accomplished by analyzing the donor job
server. Observe that the state of the donor server is inde-
pendent of the state of the beneficiary server: The donor
server receives arrivals at rate λB + λD when it is idle, but
receives arrivals at rate only λD when it is busy. Further-
more, when the donor server is idle, the probability that the
next arrival is a beneficiary job, as opposed to a donor job
is λB

λB+λD
. The simplest way to analyze such a system is

via virtual waiting time analysis. To avoid disturbing the
flow of the paper, we postpone the proof of this theorem to
Appendix B.

Theorem 1. Let T (D) represent the response time of donor

jobs and let �T (D)(s) denote it’s Laplace transform. Then:
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where

π0 =
1 − ρD

1 + ρB
.

Here π0 represents the fraction of time that the donor server
is idle.

Our second step is to derive all moments for the busy
and idle periods of the donor server, for use in our analy-
sis of the beneficiary server. The donor server idle time is
exponentially-distributed with rate λD + λB. To derive the
length of the busy period for the donor server, we need to
distinguish between two types of busy periods: (1) A busy
period made up entirely of donor jobs, whose duration is
represented by the r.v. BD; and (2) A busy period started
by one beneficiary job followed by zero or more donor jobs,
whose duration is represented by the r.v. BBD. We then
have the following Laplace transforms:

�BD(s) = �XD(s + λD − λD
�BD(s));

�BBD(s) = �XB(s + λD − λD
�BD(s)).

From these transforms we compute the first three mo-
ments of each type of busy period as follows:

E [BD ] =
E [XD ]
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To obtain the moments of a general busy period for the
donor server, observe that, due to Poisson arrivals, a busy
period is of type BBD with probability λB/(λB +λD) and of
type BD with probability λD/(λB + λD). Hence, denoting
by B the duration of a general busy period, we have

E
�
B�
�

=
λB

λB + λD
E
�
B�

BD

�
+

λD

λB + λD
E
�
B�

D

�
.

We now construct a phase-type distribution to match as
many moments of the donor server’s busy period as are of in-
terest. Many methods exist for matching moments to phase-
type distributions: [17, 18]. We find that simply fitting a
2-stage Coxian distribution to the first three moments of
the donor server’s busy period works sufficiently well for
our purposes.

Our last step is to analyze the beneficiary server. Analysis
of the beneficiary server would seem to require a 2D-infinite
Markov chain which tracks the number of donor and ben-
eficiary jobs. However, if we use busy period transitions,
a 1D-infinite chain suffices as follows: Observe that the ar-
rival rate at the beneficiary server is λB during times when
the donor server is busy and 0 during times when the donor
server is idle. To represent the beneficiary server, we there-
fore only need to track the number of beneficiary jobs (1D-
infinite), while maintaining a binary state recording whether
the donor server is busy. Figure 3(a) shows the Markov
chain model for the beneficiary server, under the simplifica-
tion that job sizes are exponentially-distributed. Here the
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Figure 3: Markov chain for the beneficiary server.
(a) Where job sizes are exponentially-distributed.
(b) Where job sizes are Coxian.

busy period duration for the donor server is shown as a sin-
gle bold transition marked B. Figure 3(b) is the Markov
chain that we actually solve for the beneficiary server. Here
the job sizes are drawn from a 2-stage Coxian distribution,
used to match the first 3 moments of the respective job size
distribution. The busy period duration for the donor server
is also matched to 3 moments by a 2-stage Coxian.

We solve the Markov chain in Figure 3(b) for the number
of beneficiary jobs at the beneficiary server using well-known
matrix analytic methods4. Then via Little’s Law[23], we ob-
tain the mean response time of beneficiary jobs at the bene-
ficiary server. Aggregating beneficiary jobs at both servers,
we then have by Poisson-Arrivals-See-Time-Averages [34]:

E [ Time for beneficiary jobs ] =

Pr{Donor server idle} · E [XB ] +

Pr{Donor server busy} · E [Time at benefic. server] .

While the mean response time for the donor jobs is exact,
the mean response time for beneficiary jobs is an approxima-
tion which depends on the accuracy of the approximation of
the busy period of the donor server. We have matched the
first three moments of the busy period of the donor server.
Greater accuracy can be achieved by matching more mo-
ments, by using a higher degree Coxian, until in practice

4The matrix analytic method [24, 19] is a compact and fast
method for solving QBD (quasi-birth-death) Markov chains
which are infinite in one dimension, where the chain repeats
itself after some point. The repeating portion is represented
as powers of a generator matrix which can be added as one
adds a geometric series to produce a single matrix. Every
curve in this paper which used matrix analytic analysis was
produced within a couple seconds using the Matlab 6 envi-
ronment.
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the results are arbitrarily close to the actual quantities.

4. STABILITY CONDITIONS
For Dedicated assignment it is required that ρD < 1

and ρB < 1, where ρD (respectively, ρB) denote the load
made up of donor jobs (respectively, beneficiary jobs). For
CS-Immed-Disp we will see that the region of stability is
much wider. A proof of the following theorem is in Ap-
pendix A:

Theorem 2. The stability condition for donor jobs is
ρD < 1, and the stability condition for beneficiary jobs is the
solution to: ρD < 1

ρB
+ 1 − ρB.

The restriction on ρB for Dedicated and CS-Immed-Disp

is shown in Figure 4. Observe the advantage of cycle stealing
in extending the stability region. When ρD is near zero, ρB

can be as high as 1.6.

5. RESULTS OF TWO SERVER ANALYSIS
In this section we evaluate the results of our analysis. All

figures are organized into two parts: the benefit to ben-
eficiary jobs and the penalty to donor jobs. To evaluate
these benefits/penalties we compare with the Dedicated al-
gorithm which involves no cycle stealing. In all results fig-
ures, we hold ρD fixed and consider the full range of stable
ρB for three sets of mean job sizes: beneficiaries have mean
size 1 and donors have mean size 1; beneficiaries have mean
size 1 and donors have mean size 10; beneficiaries have mean
size 10 and donors have mean size 1.

We generated results for various beneficiary and donor
jobs size distributions. Due to space limitations, we show
only a small subset of the result plots generated, but include
the broader picture in our discussion below. In Figure 5
we assume that beneficiary job sizes are drawn from an ex-
ponential distribution and donor job sizes are drawn from
a Coxian distribution with squared coefficient of variation,
C2 = 8.5 In Figure 6 we consider job size distributions with
a range of C2 values.

Looking at Figure 5, we see that the benefit to the benefi-
ciary jobs is unbounded as ρB → 1, since the mean response
time for beneficiary jobs is infinite under Dedicated, and
only a small finite value under CS-Immed-Disp (in column
(a), these finite values are 5 when ρD = 0.5, and 15 when

5The squared coefficient of variation, C2, is defined to be
the variance divided by the squared mean.

ρD = 0.8). Note: graphs have been truncated so as to fit on
the page.

By comparison, the penalty imposed on donor jobs by cy-
cle stealing is always relatively small in our experiments.
This penalty increases with ρB, but not greatly. Looking at
Figure 5(row 2), we see that even when ρB = 1, the penalty
to donor jobs is only 10% for the case where beneficiaries and
donors are equal and only 1% for the case where beneficia-
ries are shorter than donors. In the pathological case where
beneficiaries are longer than donors, the penalty is greater.
This is to be expected since jobs are not preemptible and
a donor job may now get stuck waiting behind a benefi-
ciary job 10 times its size. Observe that the relative penalty
to donor jobs is significantly reduced at higher donor loads
(ρD = 0.8).

Figure 6 considers the effect of increasing the job size vari-
ability of donors and of beneficiaries. Increasing donor job
size variability (from C2

D = 1 to C2
D = 8 to C2

D = 49)
has the expected impact on the donor jobs (an equivalent
increase for CS-Immed-Disp and Dedicated), however has
surprisingly little impact on the performance of the benefi-
ciary jobs, with the noticeable impact occurring only when
ρB > 1. We would have assumed the opposite: that benefi-
ciaries would prefer less variable donor job sizes because that
means less variable donor busy periods and more regular
help. Increasing the beneficiary job size variability has the
expected impact of more penalty to the donors. Higher ben-
eficiary variability creates higher beneficiary response times
for both algorithms (even at lower ρB), without affecting
either algorithm’s stability region.

In summary we see throughout that beneficiary jobs may
benefit unboundedly from cycle stealing, regardless of donor
and beneficiary variability. We also seen that the impact to
donor jobs is comparatively small.

6. ANALYSIS AND RESULTS UNDER MUL-
TIPLE BENEFICIARY SERVERS

We now discuss the scenario where there are n classes
of beneficiary jobs (each with its own server) and a single
donor server. Beneficiary jobs of class i arrive with rate
λi and have size XBi (Coxian-distributed). The beneficiary
jobs of class i first check if the donor server is idle and if so
go there, otherwise they go to the ith beneficiary queue.

The analysis for the multi-server case is very similar to the
two server case. The system state can again be decomposed
into the donor queue and the beneficiary queues. The donor
server receives arrivals with rate λD when it is busy, but
rate λD +

�
i λBi when it is idle. Following the same virtual

waiting time analysis as for the two server case, we obtain
the following results for the response time of a donor job:

Theorem 3. Assuming n beneficiary job classes with job
sizes XB1 ,...,XBn and arrival rates are λB1 ,...,λBn, respec-
tively, the performance of donor jobs has the following rep-
resentation:

T̃ (D)(s) =
s +

�n
i=1 λBi(1 − X̃Bi(s))

s − λD + X̃D(s)λD

π0 ·�XD(s);

E
�
T (D)

�
=

ρD

1 − ρD

E
�
X2

D

�
2E [XD]

+

�n
i=1 ρBi

E
�
X2

Bi

�

2E[XBi ]

1 +
�n

j=1 ρBj

+E [XD] ;
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How beneficiaries gain from cycle-stealing – ρD = 0.8
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How donors suffer from cycle-stealing – ρD = 0.8
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Figure 5: Results of analysis for 2 servers, in the case where donors are drawn from Coxian distribution with
appropriate mean and C2 = 8 and beneficiaries are drawn from an exponential distribution with appropriate
mean. (a) E[XB ] = 1 ; E[XD] = 1; (b)E[XB ] = 1; E[XD] = 10; (c) E[XB ] = 10; E[XD] = 1. Note different scales.
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Figure 6: Effect of variability in donor job size and beneficiary job size on performance.
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where

π0 =
1 − ρD

1 +
�n

j=1 ρBi

represents the fraction of time that the donor host is idle.

Next we derive the busy period for the donor server. Sim-
ilarly to the two server case we have:

�BD(s) = �XD(s + λD − λD
�BD(s));

�BBiD(s) = �XBi(s + λD − λD
�BD(s)).

for 1 ≤ i ≤ n, where n is the number of beneficiary servers.

E [BD] =
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; E

�
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Again, similarly to the 2-server case, we have:

E
�
B�
�

=

�n
i=1 λBiE

�
B�

BiD

�
�n

j=1 λBj + λD
+

λD�n
j=1 λBj + λD

E
�
B�

D

�
.

Finally we analyze the Markov chain for the ith benefi-
ciary queue. This chain is shown in Figure 7. Observe that
we only track the number of beneficiary jobs of class i, as
well as tracking whether the donor server is busy or idle. The
bold transition marked B will be replaced by a 2-stage Cox-
ian which matches the first 3 moments of the donor server
busy period, as computed by the above equation.

Also, the stability condition is easily extended from The-
orem 2 as follows:

Theorem 4. The stability condition for the donor queue
is ρD < 1, and the stability condition for the i-th beneficiary

queue is ρD <
1+
�

j ρBj

ρBi
−�

j ρBj , ∀i.

In Figure 8 we show results for the case of 1 to 20 benefi-
ciary classes, where the beneficiary classes and are all i.i.d.
with exponentially-distributed job sizes with mean 1. There
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Figure 7: MC for ith beneficiary server – shown
where job sizes are exponentially-distributed. Note
the similarity to Figure 3(a).

are many interesting observations to be made (some not
shown on the figure for lack of space). First, observe that
even with 20 beneficiaries, the response times of beneficia-
ries under CS-Immed-Disp is still a big improvement upon
Dedicated, because of the enlarged stability region. Specif-
ically, at ρB = 1, the mean response time is infinite under
Dedicated, but only 41 under CS-Immed-Disp for each of the
beneficiary classes (not viewable from figure). Furthermore,
observe that the change in going from i to i+1 beneficiaries
decreases rapidly with i: There is a big change in beneficiary
performance when we increase from 1 beneficiary class to 2
beneficiary classes. However, there is almost no change at
all in moving from 20 beneficiary classes to 30 beneficiary
classes. Observe likewise that increasing the number of ben-
eficiary classes only slightly effects donor performance be-
yond the first few beneficiaries. After that point, the donor
performance is bounded by an M/G/1 with setup cost XB

(that is, an M/G/1 consisting of only donor jobs, where the
first arrival to a busy period always sees a beneficiary job).
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Figure 8: Response times for the case where there
are n beneficiary classes, all i.i.d.. Each curve shows
a different value of n, with higher values of n lead-
ing to less gain for beneficiaries and more pain for
donors. In the graph we fix ρD = 0.5. Donor and
beneficiary jobs are exponentially-distributed with
mean size 1.

7. VALIDATION OF ANALYTICAL METHOD
As we are proposing a new analytical scheme to arrive at

near-exact calculations of waiting times in the system, it is of
paramount importance that we demonstrate the correctness
of our proposed method. In this section, we validate the
accuracy of our method in two ways:

(i) Validation against known limiting cases: We
compare the output of our algorithm with known exact re-
sults from the literature when these exist. Due to the com-
plexity of our system, this is possible only in a limited num-
ber of special cases; specifically when the traffic intensity
of one of the customer classes approaches either zero or the
saturation point of the system.

(ii) Validation against simulation: Having evaluated
our approximation methods for limiting cases, we next con-
sider intermediate loads. Computer simulation provides an
effective method for testing our analytical results over a
broad range of loads, limited only by the fact that simu-
lation accuracy decreases as the relative traffic intensities
approach saturation [3, 32].

7.1 Validation against known limiting cases
Below we describe two limiting cases. In both cases we

assume beneficiary jobs are exponentially distributed, and
donor jobs are drawn from a Coxian distribution with C2 =
8. Many other distributions of job sizes were evaluated, all
resulted in the same limiting behavior.

Limiting Case 1: Fix ρB, take ρD → 1. Under this case,
under CS-Immed-Disp it becomes increasingly difficult for
the beneficiary jobs to gain access to the donor server. Thus,
the mean response time for beneficiary jobs should approach
that of an M/G/1 queue with load ρB. This is in fact the
case, as shown in Figure 9 (row 1), where we fix ρB = 0.9
and evaluate the response time for beneficiary jobs as ρD is
set progressively closer to 1.

Limiting Case 2: Fix ρD, take ρB → 0. Under this case,
under CS-Immed-Disp it becomes increasingly unlikely that
a donor job will be obstructed by a short job. Thus the
mean response time for donor jobs should approach that of
an M/G/1 queue with load ρD. This is in fact the case,
as shown in Figure 9 (row 2), where we fix ρD = 0.9 and
evaluate mean response time for donors as ρB approaches 0.

7.2 Validation against simulation
Event-driven simulations of CS-Immed-Disp were run in C

on a 700MHz Pentium III with 256 MB RAM. We experi-
mented with a range of beneficiary and donor loads, mean
job sizes, and variability in the job size distributions (up to
C2 = 8). Each experiment consisted of measuring mean re-
sponse time over 106 arrivals with a warmup period of 50,000
arrivals. Each experiment was repeated thirty times (using
different seeds) and the average of the thirty replications
was compared with the analytically-predicted value.

Almost all of our simulation results were within 1–2% of
predicted analysis. In some cases the simulation numbers
were a little higher than analysis and in some cases a little
lower. Figure 10 shows just a small subset of our experi-
ments, restricted to exponential job sizes, where ρB is held
fixed at 0.9 and ρD is allowed to range over all stable values.
Simulation replications were quite consistent at low loads
and exhibited high variability at higher loads, even under
an exponential job size distribution. When the job size dis-
tribution was Coxian (with C2 = 8), the variation within
the simulation results increased further. Due to space con-
cerns, we do not show the Coxian plots, but we do include
those results in our discussion below.

Over all our simulation experiments, we see that the dis-
crepancy between simulation and analysis is primarily lim-
ited to the performance of the beneficiary jobs, under high
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Figure 9: Validation of analysis against limiting
cases. In row 1, ρB = 0.9. As ρD → 1, response times
of beneficiary jobs converge to an M/G/1 with load
ρB. In row 2, ρD = 0.9. As ρB → 0, response times
for donor jobs converge to an M/G/1 with load ρD.

load, in the case where beneficiaries are shorter than the
donors. This can be explained as follows: The only ap-
proximation in our analysis of CS-Immed-Disp stems from
matching only the first 3 moments of the length of the busy
periods. These are busy periods consisting of donor jobs, or
primarily donor jobs. There is variability in the length of
these busy periods, which becomes more pronounced when
donor jobs are very long and loads are very high. To fully
capture the effect of these busy periods, we will need to
match more moments. Using more sophisticated simulation
techniques to ameliorate the variability in simulation results
caused by the high traffic intensity will likely help as well.
Over all the simulation experiments that we ran, the dif-
ference between analysis and simulation was almost always
within 1–2%, with higher differences occurring only at high
traffic intensity. The max difference was under 10%.

It is worth pointing out that for each graph in Figure 10,
the simulation portion required close to an hour to generate,
whereas the analysis portion was computed in a second.

8. CONCLUSION
This paper presents the first analysis of task assignment

with immediate dispatch and cycle stealing. It is also the
first to quantify the effect of multiple beneficiaries stealing
from a single donor server.

Our findings are that immediate dispatch with cycle steal-
ing vastly improves the performance of the beneficiaries, by
increasing the stability region for the system. Furthermore,
the gains obtained by the beneficiaries are surprisingly in-
sensitive to variability in donor behavior, specifically the
variability in the donor service requirements. We also find
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Figure 10: Validation of analysis against simulation.
Throughout we fix ρB = 0.9 and vary ρD.

that the donor jobs do not suffer much by having their idle
cycles stolen.

These same findings persist in the case of multiple benefi-
ciary servers stealing from a single donor server. The reduc-
tion in the amount of benefit as more beneficiary servers are
added is, interestingly, highly non-linear, with most of the
reduction coming from the first additional beneficiary. The
intuition behind this observation follows from the stability
analysis of the system.

The paper also contributes an analytical method: First,
the task assignment policy is defined so as to allow decom-
position of the servers. Second, the paper uses “busy period
transitions” to reduce the dimensionality of the beneficiary
server from a 2D-infinite Markov chain (intractable) to a
1D-infinite Markov chain (tractable). The only approxima-
tion in this method is the approximation of the busy period
duration by its first 3 moments (where more moments can
be used to achieve the desired level of accuracy). We hope
that this approach extends to the analysis of other systems
problems.
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APPENDIX

A. PROOF OF THEOREM

Proof. Let ρhD (respectively, ρhB) denote the load at
the donor server (respectively, beneficiary server). Both
these quantities must clearly be < 1.

We can deduce ρhD from the following equation:

ρhD = ρB(1 − ρhD) + ρD =⇒ ρhD =
ρB + ρD

1 + ρB
.

The first equality follows from the PASTA (Poisson arrival
sees time average) principle which implies that the fraction
of beneficiary jobs that are dispatched to the donor server
is (1 − ρhD). We therefore have the constraint that

ρB + ρD

1 + ρB
< 1 ⇐⇒ ρD < 1.

Next we deduce ρhB, using the PASTA principle which
implies that the fraction of beneficiary jobs that are dis-
patched to the beneficiary server is ρhD:

ρhB = ρB · ρhD < 1,



or, equivalently,

ρD <
1

ρB
+ 1 − ρB.

B. DERIVATION OF RESPONSE TIME OF
DONOR JOBS

Let W (t) be the virtual waiting time for the donor queue
at time t. That is, a job arriving at the donor queue at time
t would wait W (t) before it starts being processed. By the
PASTA (Poisson arrival sees the time average) principle,
the virtual waiting time W is equal in distribution to the
waiting time. Therefore, it suffices to analyze the virtual
waiting time W for the derivation of the response time of
donor jobs.

The following steps allow us to obtain the moments of
W = limt→∞ W (t):

(i) Set up a differential equation for W̃ (t, s), the Laplace
transform of W (t).

(ii) Let t → ∞; then, dW̃ (t,s)
dt

→ 0, because the queue reaches

the stationary state. Now, W̃ (s) is obtained as a function
of π0.
(iii) Evaluate W̃ (s = 0) to obtain π0.

(iv) Differentiate W̃ (s) to obtain moments of W .

(i) We first set up a differential equation for W̃ (t, s). For
this purpose, we carefully examine the relationship between
W (t) and W (t + ∆t). First, suppose W (t) ≥ ∆t. Since
the donor server is always busy between t and t + ∆t, only
donor jobs could arrive at the donor queue. Since the arrival
process is Poisson with rate λD, the probability of having
≥ 1 arrival in time ∆t is λD∆t + o(∆t). Any such arrival
will have service time XD. Therefore,

W (t+∆t) =

��
�

W (t) − ∆t w/ prob. 1 − λD∆t + o(∆t),
W (t) + XD − ∆t w/ prob. λD∆t + o(∆t),
something else w/ prob. o(∆).

Next, suppose 0 ≤ W (t) < ∆t. Let a random variable ε
be the fraction of time that the donor server was idle during
(t, t+∆t) given that there were no arrivals during this inter-
val. Let a random variable εD be the fraction of time that
the donor server was busy during this interval given that
there was a donor arrival. Let a random variable εB be the
fraction of time that the donor server was busy during the
interval giving that there was a beneficiary arrival. Then,

W (t + ∆t)

=

���
��

0 w/pr. 1 − (λD + λBε)∆t + o(∆t),
W (t) + XD − εD∆t w/ prob. λD∆t + o(∆t),
XB − εB∆t w/ prob. λBε∆t + o(∆t),
something else w/ prob. o(∆).

Note that 0 ≤ ε, εD, εB ≤ 1. (See Figure 11)
Based on the above observation, the Laplace transform

W̃ (t + ∆t, s) of W (t + ∆t) is obtained as follows:

W̃ (t + ∆t, s)

≡ E[e−sW (t+∆t)],

=

� ∞

x=0
E[e−sW (t+∆t)|W (t) = x]dPr(W (t) ≤ x),

=
�
1 + (s − λD + λDX̃D(s))∆t

�
W̃ (t, s)

+

� ∆t

x=0+
O(∆t)dPr(W (t) ≤ x)

+
�
−λB + X̃B(s)λB − s

�
∆tPr(W (t) = 0) + o(∆t).

D−arrival

D−arrival

no arrival D/B−arrival

no arrival

X

X

ε∆ t

t t+   t∆

(b)(a)

X

ε    ∆tD/B

D/B

D

D

∆t+   tt

Figure 11: Virtual waiting time: relationship be-
tween W (t) and W (t + ∆t), when (a) W (t) ≥ ∆t and
(b) 0 ≤ W (t) < ∆t.

Thus, we obtain the next formula.

W̃ (t + ∆t, s) − W̃ (t, s)

∆t

=
�
s − λD + λDX̃D(s)

�
W̃ (t, s) +

� ∆t

x=0+
O(1)dPr(W (t) ≤ x)

+
�
−λB + X̃B(s)λB − s

�
Pr(W (t) = 0) +

o(∆t)

∆t
.

Letting ∆t → 0 in the above formula, we obtain a differen-
tial equation for W̃ (t, s).

dW̃ (t, s)

dt
=

�
s − λD + λDX̃D(s)

�
W̃ (t, s)

+
�
−λB + X̃B(s)λB − s

�
Pr(W (t) = 0).

(ii) Let t → ∞. Then, dW̃ (t,s)
dt

→ 0 because the queue

reaches the stationary state. Let W̃ (s) ≡ limt→∞ W̃ (t, s).

Then, W̃ (s) is obtained as a function of π0 = Pr(W (t) = 0):

W̃ (s) =
s + λB − X̃B(s)λB

s − λD + X̃D(s)λD

π0.

(iii) Next, we will obtain π0 by evaluating W̃ (s) at s =

0: Note that the Laplace transform Z̃(s) of a probability

distribution Z always has the property Z̃(0) = 1.

1 = W̃ (0) =
1 + E[XB ]λB

1 − E[XD]λD
π0.

The second equality follows from the L’Hopital’s rule. There-
fore,

π0 =
1 − λDE[XD]

1 + λBE[XB ]
.

(iv) The moments of waiting time, and subsequently re-

sponse time, are easily obtained by differentiating W̃ (s) and
evaluating at s = 0. In particular, the n-th moment of W is

E[W n] = W̃ (n)(0).


