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ABSTRACT
It is common to evaluate scheduling policies based on their mean
response times. Another important, but sometimes opposing, per-
formance metric is a scheduling policy’s fairness. For example, a
policy that biases towards small job sizes so as to minimize mean
response time may end up being unfair to large job sizes. In this
paper we define three types of unfairness and demonstrate large
classes of scheduling policies that fall into each type. We end with
a discussion on which jobs are the ones being treated unfairly.

Categories and Subject Descriptors
F.2.2 [Nonnumerical Algorithms and Problems]: Sequencing and
Scheduling; G.3 [Probability and Statistics]: Queueing Theory;
C.4 [Performance of Systems]: Performance Attributes—Unfair-
ness

General Terms
Performance, Algorithms

Keywords
Scheduling; unfairness; M/G/1; FB; LAS; SET; feedback; least at-
tained service; shortest elapsed time; PS; processor sharing; SRPT;
shortest remaining processing time; slowdown

1. INTRODUCTION
Traditionally the performance of scheduling policies has been

measured using mean response time (a.k.a. sojourn time, time in
system) [8, 11, 13, 16], and more recently mean slowdown [1, 5,
7]. Under these measures, size based policies that give priority to
small job sizes (a.k.a. service requirements) at the expense of larger
job sizes perform quite well [15]. However, these policies tend not
to be used in practice due to a fear of unfairness. For example, a
�
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policy that always biases towards jobs with small sizes seems likely
to treat jobs with large sizes unfairly [4, 17, 18, 19].

This tradeoff between minimizing mean response time while main-
taining fairness is an important design constraint in many applica-
tions. For example, in the case of Web servers, it has been shown
that by giving priority to requests for small files, a Web server can
significantly reduce response times; however it is important that
this improvement not come at the cost of unfairness to requests for
large files [8]. The same tradeoff applies to other application ar-
eas; for example, scheduling in supercomputing centers. Here too
it is desirable to get small jobs out quickly, while not penalizing
the large jobs, which are typically associated with the important
customers. The tradeoff also occurs for age based policies. For ex-
ample, UNIX processes are assigned decreasing priority based on
their current age – CPU usage so far. This can create unfairness for
old processes. To address the tension between minimizing mean
response time and maintaining fairness, hybrid scheduling policies
have also been proposed; for example, policies that primarily bias
towards young jobs, but give sufficiently old jobs high priority as
well.

Recently, the topic of unfairness has been looked at formally by
Bansal and Harchol-Balter, who study the unfairness properties of
the Shortest-Remaining-Processing-Time (SRPT) policy under an
M/GI/1 system [2]; and by Harchol-Balter, Sigman, and Wierman,
who address unfairness under all scheduling policies asymptoti-
cally as the job size grows to infinity [9]. In this paper, these results
are extended to characterize the existence of unfairness under all
priority based scheduling policies, for all job sizes.

In order to begin to understand unfairness however, we must first
formalize what is meant by fair performance. In this definition,
and throughout this paper we will be using the following notation.
We will consider only an M/GI/1 system with a continuous service
distribution having finite mean and finite variance. We let

�������
be the steady-state response time for a job of size

�
, and �
	��

be the system load. That is ������������� ��� , where � is the average
arrival rate of the system and � is a random variable distributed
according to the service (a.k.a. job size) distribution � �����

with
density function � �����

. The slowdown seen by a job of size
�

is� ����� �� �� �������"!#�
, and the expected slowdown for a job of size

�
under scheduling policy $ is ��� � ���%� �'& .

DEFINITION 1.1. Jobs of size
�

are treated fairly under policy
$ iff ��� � ����� �(&*) � !+� �-,.� �

. Further, a scheduling policy is fair
iff it treats every job size fairly.

DEFINITION 1.2. Jobs of size
�

are treated unfairly under pol-
icy $ iff ��� � ����� � &0/ � !1� �2,3� �

. Further, a scheduling policy is
unfair iff there exists a job size

�
that is treated unfairly.
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Figure 1: Classification of unfairness showing a few examples of
both individual policies and groups of policies within each class.

Definition 1.1 is a natural extension of the notion of fairness used
in [2, 9]. Notice that the definition of fairness has two parts. First,
the expected slowdown seen by a job of size

�
must be no greater

than a constant (i.e. independent of
�

). Processor-Sharing (PS)
is a common scheduling policy that achieves this. Under PS the
processor is shared evenly among all jobs in the system at every
point in time. It is well known that ��� � ���%� � &�� � � !+� � ,.� �

[21],
independent of the job size

�
. The second condition of the defini-

tion of fairness is that the particular constant must be � !+� � , � �
.

Although this constant may seem arbitrary, in Section 2 we will
show that � !+� � ,.� �

is the lowest possible constant obtainable un-
der any policy with constant expected slowdown. This fact is a
formal verification that � !+� � , � �

is the appropriate constant for
defining fairness.

With these definitions, it is now possible to classify scheduling
policies based on whether they (i) treat all job sizes fairly or (ii)
treat some job sizes unfairly. Curiously, we find that some policies
may fall into either type (i) or type (ii) depending on the system
load. We therefore define three classes of unfairness:

Always Fair: Policies that are fair under all loads and all service
distributions.

Sometimes Unfair: Policies that are unfair for some loads and
some service distributions; but are fair under other loads and
service distributions. For most policies in this class we show
that there exists a cutoff load �������	� , below which the policy is
fair for all service distributions, and above which the policy
is unfair for at least some service distributions.

Always Unfair: Policies that are unfair under all loads and all ser-
vice distributions.

The goal of this paper is to classify scheduling policies into the
above three types (see Figure 1). Scheduling policies are typically
divided into non-preemptive policies and preemptive policies. We
find that non-preemptive policies can either be Sometimes Unfair
or Always Unfair, however preemptive policies may fall into any
of the three types. In this paper, we concentrate on preemptive pri-
ority based policies. These include policies for which (i) a fixed
priority is associated with each possible job size (a.k.a. size based
policies), (ii) a fixed priority is associated with each possible job
age (a.k.a. age based policies), and (iii) a fixed priority is as-
sociated with each possible remaining size (a.k.a. remaining size
based policies). Observe that (i) includes policies like Preemptive-
Shortest-Job-First where small jobs have higher priority, but also
includes perverse policies like Preemptive-Longest-Job-First and

others. Observe that (ii) includes policies like Feedback (FB)1

scheduling where young jobs are given priority, yet also includes
other practical policies that primarily bias towards young jobs and
also give high priority to sufficiently old jobs. Observe that (iii) in-
cludes policies like Shortest-Remaining-Processing-Time-First and
Longest-Remaining-Processing-Time-First that bias towards jobs
with small and large remaining times respectively, as well as prac-
tical hybrids. We show that all policies in (i) and (ii) are Always
Unfair; whereas policies in (iii) can be Sometimes Unfair or Al-
ways Unfair.

Lastly, for the case where jobs are being treated unfairly, we in-
vestigate which job sizes are treated unfairly, and find that these are
not necessarily the jobs one would expect. Furthermore, we find
that the answer to this question depends on the system load.

2. ALWAYS FAIR
Two well known Always Fair policies are Processor-Sharing (PS)

and Preemptive-Last-Come-First-Served (PLCFS). Recall that
PLCFS always devotes the full processor to the most recent ar-
rival. Both of these policies have the same expected performance:��� � ���%� �'&
�0� � � � ����� �(&
��
���0� � !1� � , � �

for all
�

. An im-
portant open problem not answered in this paper is the question of
what other policies are in the Always Fair class. This question has
received attention recently in the work of Friedman and Hender-
son [6], where the authors introduce a new preemptive policy, FSP
that falls into this class. Although no queueing analysis of FSP
is known, a simulation study suggests that it achieves performance
similar to that of Shortest-Remaining-Processing-Time while guar-
anteeing fairness.

We now address why the value of � !1� �-, � �
appears in the def-

inition of Always Fair. It seems plausible that there exists a policy
that is both strictly fair in the sense that all job sizes have the same
expected slowdown, and has slowdown strictly less than � !+� � ,�� �

.
We show below that there is no such policy.

THEOREM 2.1. There is no policy $ such that ��� � ����� � & is in-
dependent of

�
and ��� � ����� �'& 	0� !+� � ,�� �

.

This theorem follows from the lemma below, which provides a
necessary condition for a policy to be Always Fair. We will appeal
to this result in the proof of Theorem 4.1.

LEMMA 2.1. If scheduling policy $ is Always Fair, then����������� ��� � ���%� � & � � !+� � , � �

PROOF. First, because $ is Always Fair, � � � ����� � & ) � !+� � , � �
for all

�
, and therefore

����� ����� ��� � ����� � & ) � !1� � ,�� �
. Thus, we

need only show that
����������� ��� � ����� � &�� � !+� � , � �

. We accom-
plish this by bounding the expected slowdown for a job of size

�
from below, and then showing that the lower bound converges to
� !1� � , � �

as we let
��� �

.
To lower bound the expected slowdown, we consider a modi-

fied policy ! �#" $ that throws away all arrivals whose response time
under $ is greater than or equal to % and also throws away arrivals
with size greater than

�
. Further, ! �#" $ works on the remaining jobs

at the exact moments that $ works on these jobs. We will begin by
calculating the load made up of jobs of size less than & (where& 	'% 	 �

) under ! �#" $ , � � & �)(�*�+ , . By Markov’s Inequality we

-
Note that FB is sometimes referred to by two other names: Least-

Attained-Service (LAS) and Shortest-Elapsed-Time (SET).



obtain $ �'��� & � & 	 % � � � , �$�� -����	� . Thus, we see that

� � & � ( *�+ , � �

 ��� � , �% � � , � ��� � � � � ��� �

� � � & � & ,
����� � & �
% � � ,�� �

where � � & � & �� �� ��� �� � � � � ��� � is the load made up by jobs of size

less than or equal to & in $ and ��� � & �  ������ �� � � � � � ��� � . The in-
tuition behind the remainder of the proof is that as % , & , and

�
get

very large, � � & � ( *�+ , approaches � which tells us that the load of
jobs that must complete before

�
under $ goes to � .

We now derive a lower bound on the response time of a job of
size

�
under policy $ . We will be interested in large

�
, with % 	 �

.
We divide

������� & into two parts
� - and

� � where
� - represents the

time from when
�

starts service until it has remaining size % and� � represents the time from when
�

has remaining size % until it
completes service. We first note that

� � � % . To lower bound� - consider the set of jobs,
� � , with size less than & and whose

response time under $ is less than % . The jobs in
� � are worked

on at the same moments under ! �#" $ and $ , and they comprise
load � � & � ( * + , . During time

� - , job
�

receives service under $
at most during the time the system is idle of jobs in

� � , which is
� ,�� � & �)( *�+ , fraction of the time. Thus

��� � - � � � , %
� , � � & � ( *�+ ,��

It follows that

��� ������� � & � ��� � - ��� ��� � � � � � , %
� , � � & � ( * + , � %

��� � ����� � & � � , %
��� � ,�� � & � & �! #"%$ � � �$&� -����	�&' � %�

Now, we must set & and % as functions of
�

such that, as we
let

�'� �
, we converge as desired. Notice that as

� � �
,

we would like � � & � & � � ,  (")$ � � �$�� -����	� �+*
, and

$ � �+*
. Thus,

we must have %-, �
such that & � � and % � � . We can

accomplish this by setting % �/.10 �
and & �0 �

. Notice that� � � 0 ��� � � � � � � 	 � as
� � �

. Now, looking at expected
slowdown we see that as

��� �
:

��� � ���%� � & � � , .�0 �
� � � ,�� � 0 �%� �  #"%$ �32 � �4 2 ��� -��5�6� ' � .�0 �

�

� � , . ! 0 �
� , � � 0 �%� �  ("%$ �32 � �4 2 �&� -����	� � .0 �

� �
� , �

3. ALWAYS UNFAIR
In this section we will show that a large number of common poli-

cies are Always Unfair. That is, many common policies are guaran-
teed to treat some job size unfairly under all system loads. In each
subsection we will investigate a class of common policies, proving
that the class is Always Unfair. Figure 2 summarizes the policies
that will be looked at in this section.

Section 3.1 illustrates that all non-preemptive policies are unfair
for all loads when the service distribution is defined on some neigh-
borhood of zero. However, if the service distribution has a non-zero
lower bound then only non-preemptive policies that do not make

FB
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FCFS

Age Based
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Non−preemptive
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Preemptive,

Always
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Figure 2: A detail of the Always Unfair classification.

use of job sizes (non-size based) are guaranteed to be unfair for all
loads. (Note that among non-preemptive policies it is not possible
to prioritize based on age or remaining size.) Section 3.2 shows
that any preemptive, size based policy is Always Unfair. In fact,
we show that any job size that is assigned a fixed, low priority upon
arrival will be treated unfairly. We next discuss policies where a
job’s priority is a function of its current age. We first investigate a
common policy of this type in Section 3.3 and then in Section 3.4
extend the results to show that every age based policy is Always
Unfair.

3.1 Non-size based, non-preemptive policies
The analysis in this section is based on the simple observation

that any policy where a small job cannot preempt the job in service
will likely be unfair to small jobs. For example, let us begin with
the class of non-preemptive policies.

LEMMA 3.1. Any non-preemptive policy $ is unfair for all loads
under any service distribution defined on a neighborhood of zero.

PROOF. We can bound the performance of $ by noticing that,
at a minimum, an arriving job of size

�
must take

�
time plus the

excess of the job that is serving. Thus, ��� � ���%� �'& � � � �	798 : $�;� 798 : ; .

Notice that
��������� � ��� � ����� � & � � . Thus, there exists some job

size & such that ��� � � & � �(& / � !+� � , � �
, for all � 	0� .

The above theorem says that any non-preemptive policy where
some fraction of the arriving jobs are tagged as high priority, oth-
ers are tagged as low priority, and low priority jobs cannot preempt
high priority jobs will be unfair to small jobs. Specifically, the
small jobs in the neighborhood of zero, regardless of their priority,
will have to wait behind the excess of the service distribution. Fur-
thermore, even under policies which do allow some preemption, for
example a policy $ which allows small jobs to preempt large ones
some fraction of the time, there is still unfairness to the small jobs
since ��� � ����� �'& will have a term dependent on ��� � � � which will
cause ��� � ����� � � � as

� �<*
. Such policies are unfair for all

loads when the service distribution is defined on a neighborhood of
zero.

However, under service distributions with non zero lower bounds
on the smallest job size a much smaller set of policies can be classi-
fied as Always Unfair. These are the non-size based, non-preemptive
policies. (Note that the remainder of the possible non-preemptive
policies are explored in Section 4.1.)

THEOREM 3.1. All non-size based, non-preemptive policies $
are Always Unfair.

PROOF. Assume that the service time distribution has lower bound= / *
(we have already dealt with the case of

= � *
). We



will show that jobs of size
=

are treated unfairly. Recall that all
non-preemptive, non-size based policies have the same expected
response time for a job of size

�
[10].

��� � � = � � & � = � ��� � � � �� � � , � �

�
= � � ,�� � � � � �� � � � = � � � � � = ��� �� , �

�
= , = � � = � � � � �� � � � � � = ��� �� , �

/
=

� ,��
where the last inequality follows since the service distribution is
required to be non-deterministic.

3.2 Preemptive, size based policies
In this section we analyze size based policies (i.e. policies where

a job receives a priority based on a bijection of its original size),
where higher priority jobs always preempt lower priority jobs. An
example of such a policy is Preemptive-Shortest-Job-First (PSJF),
which improves overall time in system with respect to PS by bi-
asing towards jobs with small sizes. We seek to understand the
unfairness properties caused by this bias. Further, every policy in
this class will bias against a particular job size, so it is important to
understand if unfairness results from this bias.

THEOREM 3.2. Any preemptive, size based policy is Always
Unfair.

The remainder of this section will prove this result. We will
break the analysis into two cases: (1) when there exists a finite
sized job that has the lowest priority and (2) when there is no finite
sized job with the lowest priority. Case (2) will be broken into two
subcases: (2.1) when priorities decrease monotonically (i.e., the
PSJF policy), and (2.2) when priorities are non-monotonic, but no
finite sized job receives the lowest priority. This method of proof
will be used again in Section 3.4 and Section 4.3.

It will be helpful in the proofs below if we first analyze the
Longest-Remaining-Processing-Time (LRPT) policy. At any given
point, the LRPT policy shares the processor evenly among all the
jobs in the system with the longest remaining processing time. LRPT
has the following expected slowdown [9]:

��� � ���%� � ����&�� � �
� , �

� ����� � � �� � � � ,�� � � (1)

� ��� � ����� �
� � ��� � ����� �

�
where

�
is the work in the system seen by an arrival and � �����

is
the length of a busy period started by a job of size

�
.

LEMMA 3.2. Under LRPT, for all finite job sizes & ,��� � � & � � ����&�� / � !+� � , � �
under any bounded or unbounded ser-

vice distribution, for all � . Further, ��� � � & � � ����&	� is monotonically
decreasing with & to � !+� � , � �

.

PROOF. The proof is immediate from Equation 1.

We are now ready to prove case (1).

LEMMA 3.3. Any preemptive, size based policy $ that gives
some finite job size & the lowest possible priority is Always Unfair.

PROOF. We will derive the time a job of size & spends in the sys-
tem. Let

� � & � ��
 � & � �� � & � where 
 � & � is the time until & first
receives service (waiting time) and � � & � is the time from when &
first receives service until it completes (residence time). Notice that& must wait behind all jobs that are already in the system. So, its
waiting time is 
 � & � ��� �����

. Further, since an arriving job will
preempt the job with probability one, we know that the residence
time � � & � ��� � & � .

Thus, for jobs of the lowest priority��� � � & � �(& � ��� � � & � � ����&	� . Because LRPT has a monotonically
decreasing expected slowdown curve that converges to � !1� �-, � �

,
we can conclude that no matter what job size has the lowest priority,
the expected slowdown of that job size will be strictly greater than
� !1� � , � �

.

We now move to case (2.1).

LEMMA 3.4. Under PSJF there is some job size & such that for
all

� / & and for all � , ��� � ����� � &
��� � / � !+� � , � �
under any

unbounded service distribution.

PROOF. It is well known that [10]:

��� � ���%� � &
��� � � � � �� � � � � � ��� �� � � ,�� �����"� � � �
� ,�� �����

where � ����� �� �� ��� �� � � � � ��� � .
Thus,
����������� ��� � ����� �(&���� � � � !1� � , � �

since the service dis-
tribution is assumed to have finite variance. To prove the lemma it
is sufficient to show that �� � � � � ����� � converges to zero from below
as

��� �
.

By observing that�� � ��� � ���%� � &
��� � � �� � � � ������� � &
���#�
�

�
� �� � ��� ������� �(&���� � , ��� ������� �(&
��� �

� � �
our goal reduces to showing that as

��� �
� �� � ��� ������� � &���� � , � � ������� � &
���#� 	 *

(2)

Let us begin by calculating

� �� � � � ������� � &
���#� � � � � � � ���%� � �� � � � � � ��� �� � ,�� �����"���
� � � � � � ������ � � ,�� �����"� � � �

� , � �����
which gives us

� �� � ��� ������� � &���� � , ��� ������� � &
��� �
� � � � � � ����� � �� � � � � � ��� �� � ,�� �����"� �

� � � � � � � ������ � � , � �����"� � ,
� � �� � � � � � ��� �� � � ,�� �����"� ���

Observe that distributions with finite second moments must have
� ����� ��� ��� � � � , where � ����� �� ���� ��� �����"�

if
����� ����� � � � �! ��� � � *

.
Using this observation, we see that

���������� � �� � ��� ������� � &
��� � , ��� ������� � &���� � � , ����� � � �� � � , � � � 	 *
Recalling Equation 2, we can conclude that as

��� �
, ��� � ����� � �

� !1� � , � �
from above.



We are now left with only case (2.2).

LEMMA 3.5. Any preemptive, size based policy $ where there
is no finite job size that receives the lowest priority is Always Un-
fair.

PROOF. Note that Lemma 3.4 leaves only the case where for
every job size

�
there is a job size & / �

such that the priority of& is less than the priority of
�

, but the priorities are not decreasing
monotonically.

We will complete the proof by taking advantage of our knowl-
edge of PSJF. Choose some job size & such that PSJF treats all job
sizes larger than & unfairly. We know that for some size � greater
than & , � has a lower priority than all jobs of smaller size. Thus, �
is treated, with respect to these smaller jobs, as if it were in PSJF.
Further, if jobs larger than � have higher priority than � , they will
simply raise ��� � �

�
� � & . Thus, � is treated at least as badly as it

would have been under PSJF. Since any such � is treated unfairly
under PSJF (by Lemma 3.3), this completes the proof.

Notice that under the policies in this section, the job sizes that
are treated unfairly depend on how priorities are assigned. When
there is a finite job size & that receives the lowest priority, then & is
treated unfairly. However, in the case when no job size was given
the lowest priority, we see that it is not the largest job that is treated
the most unfairly. This follows from the fact that �� � ��� � ����� �(&
��� �
is decreasing as

� � �
. Thus, some other class of large, but

not the largest, jobs is receiving the most unfair treatment. This
observation is discussed in more detail in Section 3.3.2.

3.3 FB
We now turn to a specific policy, Feedback (FB) scheduling.

Under FB, the job with the least attained service gets the proces-
sor to itself. If several jobs all have the least attained service,
they time-share the processor via PS. This is a practical policy,
since a job’s age is always known, although its size may not be
known. This policy improves upon PS with respect to mean re-
sponse time and mean slowdown when the job size distribution
has decreasing failure rate [20] and closely approximates the op-
timal policy, Shortest-Remaining-Processing-Time, under distribu-
tions with regularly varying tails [3]. We have [10]:

��� ������� � ��� � ��� �� � � � � ��� �� � , � � � � � �
� ,�� �

where � � �� ���� � �� � � � ��� � .Given the bias that FB provides for small jobs (since they are al-
ways young), it is natural to ask about the performance of the large
jobs. Thus, understanding the growth of slowdown as a function of
the job size

�
is important. The following Lemma will be useful in

evaluating FB’s performance.

LEMMA 3.6. For all
�

and � , ��� � ���%� �'&���� � ) ��� ������� � ��� .

PROOF. The proof is simply algebraic.

��� � ���%� � &
��� � � � � �� � � � � � ��� �� � � ,�� �����"� � � �
� ,�� �����

) ����� � �� �� � � , � ���%�"� � � �
� , � �����

)
-� ����� � � � �1� � � � , � � �� � , � � � �

� ��� ������� � ���

THEOREM 3.3. Under FB scheduling there is some job size &
such that for all

� / & , ��� � ����� � ��� / � !+� �%,�� �
under any service

distribution, for all � . Furthermore, � � � ����� � ��� is not monotonic
in

�
.

PROOF. The first part of the theorem follows immediately from
combining Lemma 3.4 and Lemma 3.6.

For the second part, we show that ��� � ����� � ��� is monotonically
increasing for small

�
, but decreasing as

� � �
. We start by

differentiating response time:

� �� � ��� ������� � ��� �
� � � � ����� � � �� � � � � ��� �� � ,�� � � �� � � � � � �����
� � ,�� � � � � �

� , � �
which gives us

� �� � ��� � ���%� � ��� , ��� ������� � ��� (3)

�
� � � � � ����� � � �� � � � � ��� �� � ,�� � ��� �
� � � � � � � ���%�

� � ,�� � � � ,
� � �� � � � � ��� �� � ,�� � � � �

Recall from Equation 2 that the above gives us the sign of�� � � � � ����� � ��� .
There are two terms in Equation 3. The first term is clearly pos-

itive. Notice that for
�

such that � ����� � -4 we have:

� �� � � � ������� � ��� , � � ������� � ���
� �

� � , � � � � � � � � � ����� , �� � � � � *
which shows that ��� � ����� � ��� is monotonically increasing for

�
such that � ����� ) �4 .

We now prove that the expected slowdown converges to � !+� � ,
� �

from above as
��� �

. First, we know that����������� ��� � ���%� � ��� � � !1� � , � �
[9]. Next, Equation 3 gives

us the sign of �� � ��� � ����� � ��� . As in the proof of Lemma 3.4, for
any distribution with finite second moment, we know that � ����� �� ��� � � � . Using this observation and the fact that � � � � as

� ��
,

���������� � �� � ��� ������� � ��� , ��� ������� � ��� � , ����� � � �� � � ,�� � � 	 *
Thus, there exists some job size

� � such that for all
� / � � ,��� � ���%� � ��� is monotonically decreasing in

�
.

The proof of this theorem shows us that all job sizes greater than
a certain size have higher mean response time under FB than under
PS. Counter-intuitively however, the job that performs the worst is
not the largest job. Thus, the intuition that by helping the small jobs
FB must hurt the biggest jobs is not entirely true.

Interestingly, this theorem is counter to the common portrayal
of FB in the literature. When investigating � � � ����� � ��� , previous
literature has used percentile plots such as Figure 3(b), which hide
the behavior of the largest one percent of the jobs [12]. When we
look at the same plots as a function of job size, such as Figure
3(a), the presence of a hump becomes evident. In fact, even under
bounded distributions, this hump seems to exist regardless of the
bound placed on

�
.
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Figure 3: Plots (a) and (b) show the growth of ��� � ���%� � ��� for
� � � � . In both cases the service distribution is taken to be Expo-
nential with mean 1. The horizontal line shows fair performance,
thus when � � � ����� � ��� is above this line FB is treating a job size
unfairly. Note that job sizes as low as

� ��� are already in the
99.9 percentile of the job size distribution.

3.3.1 Who is treated unfairly?
Having shown that some job sizes are treated unfairly under FB

scheduling, it is next interesting to understand exactly which job
sizes are seeing poor performance. The following theorem places a
lower bound on the size of jobs that can be treated unfairly.

THEOREM 3.4. For
�

such that � � ) � , 0 � ,�� ,��� ������� � ��� ) � !+� � ,�� �

PROOF. The proof will proceed by simply manipulating��� ������� � ��� .

��� ������� � ��� � � � �� � � � � ��� �� � ,�� � � � � �
� , � �

) � � � �� � � � ��� �� � , � � � � � �
� ,�� �

� � � �� � ,�� � � � � � � � , � � �� � ,�� � � � � �
� � ,�� � � �

Letting � � ) ��, 0 � ,�� we complete the proof of the theo-
rem.

It is important to notice that as � increases, so does the lower
bound � , 0 � ,�� on � � . In fact, this bound converges to 1 as
� � � , which signifies that the size of the smallest job that might
be treated unfairly is increasing unboundedly as � increases. Inter-
estingly, this work also provides bounds on the job sizes that might
be treated unfairly under PSJF due to Lemma 3.6.

3.3.2 Intuition for non-monotonicity
The fact that FB and PSJF have non-monotonic slowdown is

somewhat surprising. Below we provide an intuitive explanation
for this phenomenon.

For small jobs, it is clear that FB and PSJF provide preferential
treatment. Thus it is believable that the slowdown should increase
monotonically as job size increases.

Next consider a somewhat large job
�

, of size
�

, where this job
is large enough that with high probability it is the largest job in any
busy period in which it appears. Under FB and PSJF, job

�
will

complete only at the end of the busy period, since it is the largest
job in the busy period. Observe that job

�
will also only complete

at the end of its busy period under LRPT, since all jobs complete
at the end of the busy period under LRPT. Thus the performance
of job

�
under FB and PSJF may be approximated by the perfor-

mance of job
�

under LRPT. Next recall from Lemma 3.2, that the

Figure 4: Plot (a) shows ��� � ����� � ����&�� (above) and ��� � ����� � ���
(below). Plot (b) shows ��� � ����� � ����&	� (above) and ��� � ����� �(&���� �
(below). In both cases � � � � and the service distribution is taken
to be Exponential with mean 1. Notice that the expected slow-
down for a job of size

�
under both FB and PSJF quickly con-

verges to the expected slowdown of
�

under LRPT.

expected slowdown of job
�

under LRPT converges monotonically
from above to � !+� � ,
� �

as
� � �

. Thus it follows that the
expected slowdown of job

�
under FB and PSJF also converges

monotonically from above to � !+� ��,*� �
as

� � �
. Further, it

is natural that LRPT has a monotonically decreasing tail since the
asymptotic behavior of LRPT is the same as the asymptotic behav-
ior of a busy period.

Figure 4(a) shows that FB does in fact converge in performance
to LRPT for large job sizes. Figure 4(b) shows the same for PSJF.

3.4 Age based policies
FB scheduling is one example of an age based policy (i.e. poli-

cies where a job’s priority is some bijection of its current age). Age
based policies are interesting because they include many hybrid
policies where, in order to minimize mean response time and curb
the unfairness seen by large jobs, both sufficiently old jobs and very
young jobs receive preferential treatment.

Observe that under FB, priority is strictly decreasing with age.
Thus, a new arrival will run alone until it achieves the age, % , of the
youngest job in the system; and then those jobs of age % will time-
share. This timesharing is caused by the fact that if one job starts
to run, its priority will drop, causing a different job to immediately
run, and so on. In the case of a policy where priority is strictly in-
creasing with age, a new arrival always has the lowest priority and
can’t run until the system is idle.

More generally one can imagine a set of ages whose priorities
are the lowest in their neighborhood. Suppose age

=
represents

such a local minimum. Jobs with age
=

will accumulate, and once
one such job begins to run that job will continue running until it
hits a lower priority age. Thus, the behavior of age-based policies
can be quite varied. In our analyses below we will assume that ties
between two jobs of the same age are broken in favor of the job that
arrived first.

THEOREM 3.5. Age based policies are Always Unfair.

The remainder of this section will prove this theorem using a
method similar to the method used in Section 3.2. We break the
analysis into two cases: (1) the case when there exists a finite sized
job that has the lowest priority and (2) when there is no finite sized
job with the lowest priority. We begin with case (1).

LEMMA 3.7. Any age based policy $ where there is a finite age=
that receives the lowest priority is Always Unfair.

PROOF. We will show that $ must be unfair to a job of size
=��

,
where

= �
is infinitesimally larger than

=
.



First notice that when a job of size
=��

arrives, all the work in
the system can be guaranteed to be completed before

= �
leaves.

Further, all arriving jobs of size
�

will have
� ����� � � =�� work com-

pleted on them before
= �

leaves the system. Thus we can view
this as a busy period and derive:

��� � � = � � � & �  798 : $�;� � -����	� � = �
� ,�� �

� ����� � � �� � � ,�� � � � , � � �
� = �

� ,�� �
Now, notice that ��� ��� = � � �(& / = � !+� � ,�� �

when
� � ��� � � � / = � � � ,�� � �

or equivalently

� � ,�� � � ����� � � �� = � / � ,�� �
Since

� � , � � � � � , � � � , the above condition is met for all finite=
.

We now move to case (2).

LEMMA 3.8. Any age based policy where no finite job size has
the lowest priority is Always Unfair.

The proof of this final lemma follows from Theorem 3.3 and an
argument symmetric to the proof of Lemma 3.5.

4. SOMETIMES UNFAIR
We now move to the class of Sometimes Unfair policies – poli-

cies that for some � treat all job sizes fairly, but for other � treat
some job size unfairly. In Section 4.1 we return to non-preemptive
policies and illustrate that when the service distribution sets a non-
zero lower bound on the smallest job size, non-preemptive policies
can avoid being Always Unfair by making use of job sizes, but
cannot attain the Always Fair class. In Section 4.2 we build on pre-
vious work in [2] to show that the Shortest-Remaining-Processing-
Time (SRPT) policy is Sometimes Unfair (under both bounded and
unbounded distributions). Specifically we show that: for � ) -� ,��� � ����� � ��� &	� is monotonically increasing in

�
for all

�
and is al-

ways less than or equal to � !+� ��,*� �
. However, for � / � � � ��� ,

we see non-monotonic behavior: ��� � ����� � ����&�� is monotonically
increasing in

�
for all

�
such that � ����� ) -� but is monotonically

decreasing in
�

for all
�

greater than some
� � . We also contrast the

behavior of SRPT under bounded versus unbounded service distri-
butions. More generally, in Section 4.3 we analyze the full class
of remaining size based policies and show that any remaining size
based policy is either Sometimes Unfair or Always Unfair.

4.1 Non-preemptive, size-Based Policies
This section completes the analysis of non-preemptive policies

begun in Section 3.1. It is based on the observation that if there is a
lower bound on the smallest job size in the service distribution, then
it is possible for a non-preemptive policy to avoid being Always
Unfair.

THEOREM 4.1. Any non-preemptive, size-based policy $ is ei-
ther Sometimes Unfair or Always Unfair.

PROOF. Recall that
����� ����� ��� � ����� � ( � � for all

non-preemptive policies ! , by Theorem 4 from [9]. Thus, we can

apply Lemma 2.1 to conclude that a non-preemptive policy ! can-
not attain Always Fair. Thus, $ (being a non-preemptive policy)
must be either Always Unfair or Sometimes Unfair.

Observe there are examples of size based, non-preemptive poli-
cies in each of the two classes. For instance, it can easily be shown
that the Longest-Job-First (LJF) policy is Always Unfair. How-
ever, Shortest-Job-First (SJF) is only Sometimes Unfair – that is,
there exist service distributions and loads such that ��� � ����� � ���#� )
� !1� � , � �

for all
�

. One example of such a distribution and load is� � , � ��� � �	� � � � with � � * � � .
4.2 SRPT

Under the SRPT policy, at every moment of time, the server is
processing the job with the shortest remaining processing time. The
SRPT policy is well-known to be optimal for minimizing mean re-
sponse time [14]. The mean response time for a job of size

�
is as

follows [15]:

� � ������� � ����&�� �  � � �� � � � � � ��� � �  � � � � �����
� � , � �����"� �

� 
 �� � �� , � � � �
� � � �� � � � � ��� �� � ,�� �����"� � � 
 �� � �� , � � � �

where � ����� �� �� ��� �� � � � � ��� � .
THEOREM 4.2. For

�
such that � ����� ) -� , ��� � ����� � ����&�� is

monotonically increasing in
�

.

PROOF. Begin by defining��� ����� �� ��

 �� � � � � � � � � 
 �� � � � � ��� � , � � � � �����

Then we can derive

��
 �� � ��� ������� � ����&��
�
� � � � ����� � � � �� � � � � ��� �� � , � �����"� � � � � � � �����

� � ,�� �����"� � � �
� , � �����

which gives us

��
 �� � ��� ������� � ����&�� , ��� ������� � ����&	�
�
� � � � � ����� � � � �� � � � � ��� �� � , � ���%�"� � �
� � � � � � �����

� � , � �����"� � ,
� � �� � � � � ��� �� � , � �����"� � �

� � �
� ,�� ����� ,


 �� � �� , � � � ���
�
� � � � � ����� � � � �� � � � � ��� �� � , � ���%�"� � �
, � ����� ������ � � , � ���%�"� � �
� � �

� ,�� ����� ,

 �� � �� , � � � � �

Recall that this expression provides us with the sign of the deriva-
tive of slowdown. There are 3 terms in the above expression. The
first of these terms is clearly positive. The third of these terms is



also clearly positive. We will complete the proof by showing that
the third term is of larger magnitude than the second term.

To obtain a bound on the third term, we can quickly show that
�

� ,�� ����� ,

 �� � �� ,�� � � �

�

 �� � � , � � � �"� , � � ,�� �����"�

� � ,�� � � �"� � � , � �����"� � � (4)

� �
� ,�� �����


 �� � ����� , � � � ��� �
To further specify this bound we can compute
 �� � � � ��� � � �


 �� 
 ���� � � � ��� � � �
� �


 �� 
 �� � � � � ��� � � �
� �


 �� � � � � � ��� , � ��� �
� � ����� � , ��� � �����

(5)

Finally, putting all three terms back together we see that when
� ���%� ) -� ,

� 
 �� � ��� ������� � ����&	� , � � ������� � ����&��
�
� � � � � ����� � � � �� � � � � ��� �� � , � �����"� � �
, � ����� ������ � � , � �����"� � �
� � �

� , � ���%�2,

 �� � �� ,�� � � ��� (6)

� , � ����� ������ � � , � �����"� � � � � ����� �����
� , � ���%� �

� *
COROLLARY 4.1. If � ) -� , ��� � ����� � ����&	� is monotonically

increasing for all
�

. Furthermore ��� � ���%� � ��� &	� ) � !+� � ,.� �
for

all
�

.

PROOF. This follows immediately from the above theorem and
by recalling the following result: for any work conserving schedul-
ing policy $ ,

����������� ��� � ����� � & ) � !1� � , � �
[9].

The fact that ��� � ����� � ����&�� ) � !1� ��, � �
for all

�
when � 	-� was first proven in [2] using a different technique that did not

describe the behavior of ��� � ����� � ����&	� as a function of increasing�
.
The previous theorem showed monotonically increasing slow-

down for SRPT under low load. We now show that if load is suffi-
ciently high, a very different behavior occurs.

THEOREM 4.3. There exists a � ������� 	 � such that for all � /
��� ���	� , ��� � ���%� � ����&	� has monotonically decreasing slowdown for� � ���

, for some
���

. Further, for � / � ������� , for all
� / ���

,��� � ����� � ��� &	� / � !1� �2,3� �
under any unbounded service distri-

bution.

Earlier work (see Theorem 8 of [2]) showed that for a bounded
job size distribution, the largest job size

�
has the property that

��� � � �%� � ����&	�0/ � !+� � ,3� �
. The above theorem extends this re-

sult to unbounded job size distributions by utilizing monotonicity.
The monotonicity result above is somewhat surprising. One might
assume that the largest jobs are the ones receiving the most unfair
treatment under SRPT. This is in fact the case for bounded job size
distributions, however it is not true for unbounded job size distri-
butions.

PROOF. The proof for the unbounded case is somewhat tech-
nical, but will follow a similar method to the previous proof. We
will show that as

� � �
the derivative of expected slowdown

approaches zero from below.
As in Equation 2, the main section of the proof will again look

at
� 
 �� � ��� � ���%� � ����&	� , � � ������� � ����&�� . To evaluate the above

expression, we need to evaluate Equation 4. Because evaluating
the integral in this expression is difficult, we apply the Mean Value
Theorem, which tells us that there exists a � ��� � * � � � such that

�
� , � ���%�


 �� � ����� , � � � �� , � � � � � �
� �� � , � ���%�"� � � , � � � � �"� 


�
� � ����� ,�� � � ��� �

� ��� � �����
� � , � ���%�"� � � , � � � � �"�

Thus, as
��� �

, we apply Equation 6 and the above to obtain:�
	��� �� � ��� ������������� �  � ��� �!�"�#�!�����$ %'&)( $+* � �!�,� $.- */10 2 � 0 � � 0��3 � 4 � ���,�,5 6 � %87 $�9 $ � �����3 � 4 � ���,� $ 6: ( 9 $ � �!���3 � 4 � ���,� �"3 ��4 ��; * �,�< � 7 $  � = $ ���3 ��4+� $ : (  � = $ ���3 � 4+� ��3 � 4 �>;@? �A�
So, the derivative of slowdown converges from below when this is

less than zero, which occurs when

� , � � � � � / � , � �
or equivalently, � / � � � � � � ��

To complete the proof, we need to bound � � � � �
. By showing

that � � � � � 	 � we illustrate a �������	� such that when � / ��������� ,��� � ���%� � ����&	� will have a monotonically decreasing tail.
To characterize � � � � � for

� / * observe that
 �� � ����� ,�� � � ��� � )

 �� � ����� ,�� � � �� ,�� � � � � �

) �
� , � �����


 �� � ���%� ,�� � � ��� �
and, equivalently,

� ) � �� � � � � ��� � � �-��5� � � � � �� �� � ����� , � � � ��� � ) �
� , � ���%�

So, � � satisfies

�
� , � � � � � � � �� � ��� � ��� � � �-��5� � � � � �� �� � ���%� , � � � ��� �

� � � � � � � ,
� �� � ����� ,�� � � ��� �� �� � ��� � �5� � � �-���� � � � � �

� � � � � � � , ���������� � �� � ����� ,�� � � ��� �� �� � ��� � �5� � � �-���� � � � � �
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Figure 5: Plots (a) and (c) show the growth of ��� � ����� � ����&��
for � � � � , while (b) and (d) show ��� � ����� � ����&�� when � � � � .
In both cases the service distribution is taken to be Exponential
with mean 1. The horizontal line shows fair performance, thus
when ��� � ����� � ����&	� is above this line SRPT is treating a job size
unfairly.

Thus, � � � � � 	 � when
����� ������� */ � ��� � �5� � � � � �� */���� *��	� ����
 �� � ����
 � � � / *

. The

remainder of the proof bounds this value away from zero, which
proves the existence of a ��������� . Because the remainder of the proof
is algebraic, we leave it in Appendix A.

The existence of this
� � size beyond which ��� � ����� � ����&�� is

monotonically decreasing has gone unnoticed by previous research.
The reason is that percentile plots are typically used when viewing
expected slowdown. As seen in Figure 5, because the hump oc-
curs around the 99th percentile it is hidden when looking at the
percentile plots in Figure 5 (c) and (d). Viewing those same plots
as a function of job size, such as in Figure 5 (a) and (b), reveals
the existence of a hump under high load. Note that the peak of the
hump occurs far from the largest job size.

4.2.1 Who is treated unfairly?
Having seen that SRPT is Sometimes Unfair, it is interesting to

consider which job sizes are being treated fairly/unfairly. The fol-
lowing theorem shows that as � increases, the number of jobs being
treated fairly also increases.

THEOREM 4.4. For
�

such that � ����� ) ���� � � , 0 � ,�� � -� � ,
��� ������� � ��� &	� ) � !1� � , � �

.

The proof of Theorem 4.4 follows immediately from Theorem
3.4, Theorem 4.2, and the following lemma, which allows us to
bound the performance of SRPT by that under FB.

LEMMA 4.1. For all
�

and � , ��� � ���%� � ��� &	��) ��� ������� � ��� �

PROOF. The proof is simply algebraic

 � � � �!������� $ � ��3 � 4 * � : �$ (  � = * $ ��"3 ��4 * � $
$ �3 ��4 * : �$ (�� - */�� $ * � � � � � : � $ 2 � �������3 � 4 * � $
� �3 ��4 � �!� : �$ (�� - */�� $)* � � � � � : � $ 2 � �!����"3 ��4 � �!�,� $$ �3 ��4 � �!� : �$ ( - */ � $)* � � � � � : �$ ( � $ 2 � �����3 � 4 � ���,� $�  � � � �!��� �!�.���

4.2.2 Intuition for dependence on load
Similarly to FB, notice that SRPT exhibits non-monotonicity un-

der high load. Unlike FB however, SRPT does not have this non-
monotonicity at all loads. Intuitively, the existence of a hump can
be explained in the same way as it was for FB and PSJF in Sec-
tion 3.3.2. Under high load, the large jobs in an SRPT system do
not have the opportunity to increase their priority by reducing their
remaining size. Thus, the largest job to arrive in a busy period will
likely be the last to leave. This leads to unfairness.

However, SRPT does not always treat large jobs unfairly because
during low load, the large job is often alone in its busy period,
which provides it the opportunity to increase its priority as it re-
ceives service. Consequently, the large job will sometimes not be
the last job to finish in the busy period.

4.3 Remaining size based policies
SRPT is one example of a remaining size based policy. In this

section we will examine the entire class of remaining size based
policies (i.e. policies where a job’s priority is some bijection of
its remaining size). The class of remaining size based policies in-
cludes many hybrid policies; for example policies where, in order
to minimize mean response time and curb the unfairness seen by
large jobs, both jobs with very small and sufficiently large response
times are given preferential treatment.

The class of all remaining size based policies is quite broad. In
the same way as for age based policies, there are many possible
mappings between priority and remaining size, allowing for multi-
ple local minima in priorities and many interesting behaviors. We
will again choose to break ties among jobs in the system with the
same priority in favor of the job that arrived first.

Although SRPT is in this class and is Sometimes Unfair, not all
such policies are Sometimes Unfair. For instance, the LRPT policy
is Always Unfair as shown in Lemma 3.2.

THEOREM 4.5. All remaining size based policies are either Some-
times Unfair or Always Unfair.

The remainder of this section will prove this theorem using the
same method that was used in Section 3.4 and Section 3.2. We
break the analysis into two cases: (1) the case when there exists a
finite sized job that has the lowest priority and (2) when there is no
finite sized job with the lowest priority.

LEMMA 4.2. Any remaining size based policy $ with a finite
remaining size

=
having the lowest priority is either Always Unfair

or Sometimes Unfair.

PROOF. We will begin by deriving the expected performance
seen by a job of original size

=
, entering the system under $ . No-

tice that all work initially in the system will be completed before



=
begins to be worked on. In addition, all arrivals during this time

that have size less than
=

will be completed before
=

leaves the
system. However, once

=
starts being worked on and has remain-

ing size � , the only arrivals that are guaranteed to finish before
=

leaves the system are those arrivals of size less than � . Thus, we
can view this as a busy period and derive

��� ��� = � � & � ����� � � �� � � , � � � � ,�� � = �"� � 
 �� � �� ,�� � � �
We will now show that

=
will be treated unfairly under high

enough load. Using a similar derivation to that shown in Equations
4 and 5, we can see that ��� ��� = � �'& / � !1� � ,�� �

when

����� � � �� � � ,�� � � � , � � = �"� /
= � ��, � � = �"� � ��� � �����

� , �
or, equivalently,

����� � � �� � � ,�� � = �"� , ��� � � = � / = � � , � � = �"�

or, equivalently,

� � , � � � � ��� � � � �� = � � , � � = �"� ,
��� � � = �= � / � � ,�� � = �"� �

Since
� � , � � � � � , � � = �"�

, we immediately see that $ cannot
be fair if � � = � / -� . However, when

=
is the upper bound of a

bounded distribution and � � -� , the bound does not hold. In this
case, we need to look at the system under a higher load. We can
raise � so that � � � � = � / -� , in which case the bound holds.

When � � = � 	 -� we need to do a more detailed analysis. Since
� � = � 	 -� we can raise � so that � � � � � = �

. Notice that if this is
not possible, it means that by raising � we made � � = � � -� , which
we have already dealt with.

When � � � � � = �
, ��� � � � � � - � = � ����� � � �� � � � � ��� � . Fur-

ther, this tells us that ��� � � , � - � = � � � - � = �
, but also ��� � � ,� - � = � � � �� � � � � ��� � . Thus, � �� � � � � ��� � � � �� � � � � ��� � . Using

this fact, we can notice that

��� � � ���

 �� � � � � � ��� � �


 �� � � � � � ��� � � 

�
� � � � � � ��� �� � � � = � � = � - � = � � � � � � = �

Thus, we can see that

� � , � � � � ����� � � �� = � � ,�� � = �"� ,
��� � � = �= �

� � � , � � � � ��� � � = �= � � , � � = �"� ,
��� � � = �= �

/ � � , � � = �"�

holds for all finite
=

.

LEMMA 4.3. Any remaining size based policy $ where an in-
finitely sized job has the lowest priority is either Sometimes Unfair
or Always Unfair.

The proof of this final lemma follows from Theorem 4.3 and an
argument symmetric to the proof of Lemma 3.5.

5. CONCLUSION
The goal of this paper is to classify scheduling policies in an

M/GI/1 in terms of their unfairness. Very little analytical prior
work exists on understanding the unfairness of scheduling policies,

and what does exist is isolated to a couple particular policies. This
paper is the first to approach the question of unfairness across all
scheduling policies. Our aim in providing this taxonomy is, first, to
allow researchers to judge the unfairness of existing policies and,
second, to provide heuristics for the design of new scheduling poli-
cies.

In our attempt to understand unfairness, we find many surprises.
Perhaps the biggest surprise is that for quite a few common poli-
cies, unfairness is a function of load. That is, at moderate or low
loads, these policies are fair to all jobs. Yet at higher loads, these
policies become unfair. This leads us to create three classifications
of scheduling policies: Always Unfair, Sometimes Unfair, and Al-
ways Fair (shown in Figure 1). Rather than classifying individual
policies, we group policies into different types: size based, age
based, remaining size based, and others. We prove that all preemp-
tive size based and age based policies are Always Unfair, but that
remaining size based policies and non-preemptive policies are di-
vided between two classifications. The result that all preemptive
size based policies are Always Unfair may seem surprising in light
of the fact that one could choose to assign high priority to both
small jobs and sufficiently large jobs in an attempt to curb unfair-
ness.

With respect to designing scheduling policies, we find that under
high load, almost all scheduling policies are unfair. However under
low load one has the opportunity to make a policy fair by sometimes
increasing the priority of large jobs. For example, PSJF and SRPT
have very similar behavior and delay characteristics, but result in
completely different unfairness classifications because SRPT al-
lows large jobs to increase their priority, whereas PSJF does not.

A variety of techniques are used in order to classify policies with
respect to fairness. For classifying individual policies it is useful to
try to prove monotonicity properties for the policy over an interval
of job sizes. It then suffices to consider the performance of the
policy on just one endpoint of the interval. In classifying a group
of policies, it helps to decompose the group into two cases: the
case where the lowest priority job has a finite size/age, and the case
where the lowest priority job has infinite size/age. In the latter case,
we find that the fairness properties for the entire group of policies
reduces to looking at one individual policy.

Since so many policies are Always Unfair, and so many others
are Sometimes Unfair, it is interesting to ask who is being treated
unfairly. Initially it seems that unfairness is an increasing function
of job size, with the largest job being treated the most unfairly. This
is in fact the case for most bounded job size distributions. However,
for unbounded job size distributions, we find this usually not to be
the case. Instead, unfairness is monotonically increasing with job
size up to a particular job size; and later is monotonically decreas-
ing with job size. Thus the job being treated most unfairly (“top
of the hump”) is far from the largest. Interestingly, this “hump”
changes as a function of load.

The above findings show that we are just beginning to understand
unfairness in scheduling policies. This is a fertile area with many
more properties yet to be uncovered.
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APPENDIX

A. SRPT IS SOMETIMES UNFAIR
We now complete the proof of Theorem 4.3 by showing that����� ����� � */ � ��� � �5� � � � � �� */ ��� *��	� ����
 �� � ����
 � � � / * .
PROOF. We continue by separating the integral in the denomi-

nator into three parts using � and � such that � � � � � � � �����
and

� � � � � � � ���%�
for ��	 � � � * � � � . Note that this is possible under

any non-constant service distribution.
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� 33 � 4 ��� � ���/ 4 � �!����4 � 0 � � 0: 33 ��4 �	� � � �� 4 � ����� 4 � 0 � � 0: 33 ��4 � �!� � *� 4 � �!����4 � 0 � � 0
��	$ 33 � 4 ��� ��� * : 33 ��4 ��� ��� * : 33 � 4 � ����� *
Working with each of the pieces, we can derive
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Further, we can notice that

��� � � � � � �
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 �
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� ��� � � � � � � � � , � � � ,�� � � , � � � as

��� �
Using this calculation in the formula for � � , we see that as

��� �� � � � � ,�� � � � , � � � �����
� � � ,�� � � � , � � ���������

and � � ) � � � , � � � ����� � ��� � � � �� � � � , � � � � ����� � � � �� ����



Thus, for � ��� � � ��� *� and � � = � � � � *�
� ��� � � � � � �
� � = � � � � = �

Calculating � ��� � � � ����� ����� � ��� � �
we see

� ��� � � � � � � , � � � � ��� � � � �� � ,�� � � � , � � �
� � � � , � �

� � , � � � � , � � � ��� � � � �� � , � � � � , � � �
and similarly for � � = � � � ����� ����� � � = � �

we obtain
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So, it is sufficient to have

� ��� � � � � � � , � �
� � , � � � � , � � � ����� � � �

� � , � � � � , � � �
� � = � � � ����� � � �

� � , � � � � , � � � , �� , �
We now have bounds on the pieces of the integral. So, putting

everything together we see that� �� � ,�� � � ��� �� �� �#�5� � � �-���� � � � � � � � � � � =--��5� � � � � � --��5� � � � � � --���� =
� � � � � =--��5� � � � � � ��� � � � --���� � � � � � --���� � � � = � �
� �--��5� � � � � � ��� � � � --���� � � � � � --���� � � � = � �
� �--����#� � � ���2� � --�� � � � --��5� � � � = �

�� �� � �

The quantity
- 	 / *

so long as � 
� � .
To better understand Theorem 4.3 it is interesting to look at the

special case where � � � �	� � � � . In this case, � � -� , � � �� ,��� � � �%� � , ��� �� , and � �
-� ( � and � are very approximate). So,

we can calculate

� ��� � � � � �� � , � �
�� ����� � � �

� � , � � � ���
� � = � � �  ����� � � �

� � , � � , �� ,�� �
� �

and � � 
� � ��� � � � � � � � � � = � � � � ��� � �

Theorem 4.3 then tells us that for � / � � � � � � , SRPT will not
have slowdown monotonicity under an � �	� � � � service distribu-
tion. Further, for these � , SRPT is guaranteed to treat some job size
unfairly. It is important to point out the looseness of this bound. By
plotting the actual equation for expected time in system under an� �	� � � � distribution we find that the true critical value for � in this
case is just under .7, much lower than the value obtained using the
method in the previous proof.


