
Adaptive Memoization ∗

Umut A. Acar Guy E. Blelloch Robert Harper

Computer Science Department
Carnegie Mellon University

Pittsburgh, PA 15213
{umut,blelloch,rwh}@cs.cmu.edu

Abstract
Memoization may be viewed as a mechanism for re-using
a computation—if a function is re-applied to the same ar-
gument we may re-use the previous computation to deter-
mine the result, rather than perform it again. Conventional
memoization is accurate in the sense that it only permits
re-use when a computation will be precisely the same as
one that has already been performed. But in many cases a
computation may be largely, though not entirely, the same
as one that has been previously carried out for a slightly
different input. The previous computation may be re-used
by permitting inaccurate memoization, and restoring accu-
rancy by adapting the result to the variant input. This tech-
nique, which we call adaptive memoization, greatly increases
the effectiveness of both memoization and adaptivity alone
(or in orthogonal combination) for incremental computation.
In particular we obtain an incremental version of Quicksort
that adjusts its output in logarithmic expected time to inser-
tions and deletions at random positions in the input, and an
incremental version of Insertion Sort that adjusts its output
in linear time to an insertion or deletion anywhere in its in-
put. These results are the best possible for these algorithms,
and rely crucially on adaptive memoization.

1 Introduction
Incremental computation is the ability to update the result
of an algorithm as a result of a “small” change to its input,
ideally in less time than would be required by a complete re-
execution. The key to providing incrementality is to permit
re-use of parts of the previous computation when revising
the output in response to changes to the input. There are
two general methods for achieving result re-use: memoiza-
tion [7, 13, 14, 1, 16, 11, 3] and adaptivity [2, 4]. Memo-
ization relies on remembering the results of function calls so
that the previous result may be re-used when the function
is called again with identical arguments. Adaptivity relies
on recording the dynamic dependencies of computations on
data values so that when these values change the affected
computations can be re-executed to restore the result.

In earlier work on incremental computation [2, 3] we
observed that adaptivity and memoization are, in a sense,
duals, each addressing a separate aspect of incrementality.
When combined “orthogonally” these two methods can be
used to obtain incremental versions of some algorithms, but
∗This work was supported in part by the National Science Founda-

tion under the grant CCR-9706572 and also through the Aladdin Cen-
ter (www.aladdin.cs.cmu.edu) under grants CCR-0085982 and CCR-
0122581.

we have found that in many cases a more subtle combination
of these methods is required. The fundamental issue is that
conventional memoization only allows re-use of accurate re-
sults in the sense that the result of a function call can only
be re-used in place of a function call that will evaluate to the
same result. This limits the effectiveness of memoization by
preventing the result of a function call to be re-used when
computing a similar, but slightly different, result.

We introduce a new technique, called adaptive memoiza-
tion, that permits re-use of inaccurate results. In the case of
multi-argument functions this is achieved by a designating a
subset of the arguments to be those for which an exact match
is required to trigger memoization. If that subset includes
all of the arguments, then this is just standard memoization,
but if the subset is proper, then the re-used result may not
be correct when all arguments are considered. But accuracy
may be restored if the recovered computation is required to
be adaptive in the remaining arguments, for then we may
simply change those arguments to their new values and use
adaptivity to recover the correct result.

As examples, we consider Quicksort and Insertion Sort.
We show that Quicksort handles its insertions/deletions any-
where in the list in expected O(logn) time (expectation is
over all possible positions of insertion or deletion). For in-
sertion sort, we show expected O(n) bound for any inser-
tion or deletion. These results are within an expected con-
stant factor of the optimal for these algorithms and crucially
rely on inaccurate result re-use.1 Besides the examples to
be presented below, we also have used these methods to
build efficient incremental algorithms in computational ge-
ometry, including kinetic data structures [6] and line-sweep
techniques [5]. In general we believe the methods are very
broadly applicable.

2 Background and Related Work
2.1 Memoization

Memoization [7, 14, 13] is based on the idea of caching the
results of each function call indexed by the arguments to
that call. If a function is called with the same arguments
a second time, the result from the cache is re-used and the
call is skipped. Pugh [15], and Pugh and Teitelbaum [16]
were the first to apply memoization, or function caching,
to incremental computation. They developed techniques for
implementing memoization efficiently and studied incremen-
tal algorithms using memoization. They showed that certain

1The expected constant factor overhead is due to the maintenance
of memo tables using hashing.

type ’a list = nil
| cons (’a*’a list)

map5: int list -> int list
fun map5 l =

case l of
nil => nil

| cons(h,t) =>
cons(h+5,map5 t)

type ’a list = nil
| cons (’a*’a list)

m map5: !(int list) -> int list
mfun m map5 (!l) =

case l of
nil => nil

| cons(h,t) =>
cons(h+5,m map5 !t)

type ’a mlist = NIL
| CONS (’a*(’a mlist) modref)

type ’a modlist = ’a mlist modref
a map5: int modlist -> int modlist
fun a map5 l =

mod (read l (fn vl =>
case vl of

NIL => write(NIL)
| CONS(h,t) =>

write(CONS(h+5,a map5 t))))

Figure 1: The code for standard (left), memoized (middle), and adaptive (right) map5.

divide-and-conquer algorithms using so-called stable decom-
positions can be made incremental efficiently by using mem-
oization. Liu, Stoller, and Teitelbaum [12] presented sys-
tematic techniques for developing incremental programs us-
ing memoization. Their techniques automatically determine
what results should be memoized and use transformations
to make a standard program incremental.

Since in general the result of a function call may not
depend on all its arguments, caching results based on pre-
cise input-output dependences can dramatically improve re-
sult re-use. Several techniques for identifying precise input-
output dependences have been proposed by Abadi, Lamp-
son, and Levy [1], by Heydon, Levin, and Yu [11], and by
the authors [3].

A common characteristics of all previous work on memo-
ization is that they provide for re-use of accurate result. The
result of a function call can only be re-used in place of a call
only if their results are identical. To the best of our knowl-
edge no previous work enables re-use of inaccurate results
as we do in this paper.

2.2 Dependence Graph Techniques

Static dependence graph techniques for incremental com-
putation were introduced by Demers, Reps, and Teitel-
baum [9, 18] and have been successfully applied to many
applications [17]. Static dependence graphs represent data
dependences in a computation in such a way that when an
input is changed, all data that depends on the change can be
updated by performing a change propagation on the graph.
The key limitation of static dependence graphs is that the
dependence structure remains the same during change prop-
agation. As Pugh points out [15] this limits the kinds of
applications that can be made incremental using static de-
pendence graphs.

To overcome the limitations of static dependence graphs,
we introduced dynamic dependence graphs [2]. The key dif-
ference between static and dynamic dependence graphs is
that with dynamic dependence graphs, change propagation
updates the dependence structure according to the input
change. Dynamic dependence graphs can therefore be used
to make any purely functional program incremental.

Dynamic dependence graphs yield efficient incremental
or dynamic algorithms for certain classes of algorithms and
input changes. For example, in our original paper, we
showed that Quicksort on a list updates its output in ex-
pected O(logn) time when its input is changed by inserting
or deleting one key at the end. In recent work, we developed
analytical techniques based on trace-stability for measuring
the efficiency of algorithms made incremental using adaptiv-
ity [4]. As an example, we showed that the tree contraction
algorithm of Miller and Reif yields a data structure for the
dynamic-trees problem of Sleator and Tarjan [20].

2.3 Adaptivity

In earlier work [2], where we introduce dynamic dependence
graphs, we also present language facilities for writing what
we call adaptive programs that update their output when
their input changes. Since the rest of this paper builds upon
adaptivity techniques, we present a short overview.

The language facilities are based the notion of a modifi-
able reference or a modifiable for short. Modifiable references
hold values that can change as a result of the user’s revisions
to the input. Modifiable reference are created via the mod
construct, their values are read via read construct, and are
written to via write construct. Each read of a modifiable
specifies a reader function that computes a value based on
the value of the modifiable read, called the source. Since
values that are computed by reading modifiables can change
due to an input change, a reader must write its result to a
modifiable; this modifiable is called the target of the read.

As an adaptive program executes, it implicitly builds
a dynamic dependence graph, or DDG, that represents the
data and control dependences in the execution. Creating
a modifiable adds a vertex for that modifiable to the de-
pendence graph. Reading a modifiable inserts an edge from
the source to the target of the read and tags the edge with
the reader function. Writing a modifiable tags the vertex
for that modifiable with the value written. To represent
the control dependences, a containment hierarchy of reads
is maintained. A read r is contained in some other read r′

if r is created during the execution of r′. The containment
hierarchy represent the nesting of the reads of a computa-
tion. To obtain good performance, it is crucial that the
control dependences are represented efficiently. We do this
by using time stamping each edge with the time interval
in which it executes and maintaining the time stamps using
the constant-time order maintenance data structure of Dietz
and Sleator [10].

When the input to an adaptive computation is changed,
the output and the dependence graph can be updated
by propagating changes through the dependence graph.
Change propagation maintains a set of affected readers,
readers whose sources have been changed, and re-executes
them according to their time stamps. Re-executing a reader
re-establishes the relationship between its source and tar-
get by updating the value of the target, which can affect
the readers of the target. Re-executing a reader removes
the dependences and the modifiables that was created by
that reader in the previous execution, and inserts the de-
pendences and modifiables created by re-execution. Note
that due to conditionals, the dependence structure of can
change dramatically during change propagation.

2

3 Combining Memoization and Dynamic
Dependence Graphs

This section discusses the limitations of memoization and
dynamic dependence graphs when used in isolation and
shows how they can be combined to obtain a general purpose
technique for incremental computation. We consider two
different combinations. The orthogonal combination com-
bines memoization and dynamic dependence graphs without
changing their semantics. Adaptive memoization combines
memoization and dynamic dependence graph integrally to
provide for re-use of inaccurate results.

The orthogonal combination is a straightforward exten-
sion of our previous work [2, 3]. It relies on memoizing re-
sults along with their dynamic dependence graphs. When a
memo match occurs both the result and the dynamic depen-
dence graph are re-used—the result is returned and the de-
pendence graph is linked into the current context. Although
the orthogonal combination can be effective for certain sim-
ple program, it remains ineffective in general, because, like
conventional memoization, it only allows re-use on accurate
result. In the case of insertion sort, for example, the or-
thogonal combination does not improve the asymptotic per-
formance of an incremental version over a a from-scratch
re-execution. We describe this combination anyway both as
motivation and as a step towards the more complex integral
combination that we call adaptive memoization.

The integral combination or adaptive memoization pro-
vides for re-use of inaccurate results in addition to accurate
results (orthogonal combination is a special case of adap-
tive memoization). The key idea is to memoize adaptive
computations [2] along with their arguments so that compu-
tations can not only be re-used but also adapted according
to different arguments. As we show, inaccurate result re-
use is critical to obtain efficient incremental programs. In-
deed adaptive memoization dramatically improves the per-
formance incremental insertion sort to expected O(n) and
that of Quicksort to O(logn) from O(n2) and O(log2 n) with
the orthogonal combination.

In the remainder of this section we review the limita-
tions of adaptivity and memoization considered in isolation
by considering a simple version of the map function. The
orthogonal combination overcomes these limitations in the
case of map, but for insertion sort even this is not sufficient
to obtain an efficient incremental version. By examining the
source of the difficulty we arrive at the integrated combina-
tion, called adaptive memoization.

Section 4 formalizes adaptive memoization and Section 5
describes how it is implemented. Section 6 analyses the
performance of insertion sort. Section 6 presents Quicksort
as another example and shows how adaptive memoization
yields an incremental Quicksort that is optimal for any in-
sertion or deletion.

3.1 Limitations of Memoization and Adaptivity

Consider the simple function, map5, given in Figure 1, which
adds 5 to every element of a list. The memoized version,
m map5, memoizes the result for each recursive call. The code
is based on our selective memoization techniques [3]. The
mfun keyword indicates that m map5 is memoized; and assign-
ing its input list a bang type (!) indicates that memoization
is based on the input list. This means that if the function is
ever called with the same input list, then the result will be
re-used. For simplicity, we use pattern matching to accesses
underlying values of banged types. The adaptive version,

a d

d’ e’

e

a’

b

b’

6 8 9

431

NIL

NIL

Figure 2: DDG for a map5 on input [1, 3, 4]

a map5, is based on our adaptive functional programming
techniques [2]. The transformation from map5 to a map5 is
relatively straightforward and involves changing the input
list type to a modifiable list and then updating the body of
the code by using the mod, read, and write constructs.

Consider evaluating the memoized version m map5 with
an input list l and now with a second list l′ = k :: l that has
been obtained from l by inserting the new key k at the head.
Since calls to m map5 are memoized, the result will be found
in the memo at the second recursive call (with l) and the
result will be updated in constant time. Suppose, instead,
that l is changed by adding a new key at the very end. After
this change, none of the recursive calls to m map5 will find
their result in the memo because the input to all recursive
calls is now a different list. It will therefore take linear time
to update the output. Thus, in general, m map5 will re-build
the list up to the point of insertion and will take linear time
on average. As this example illustrates, memoization is good
in handling shallow changes that affect some function call
close to the roots of the call tree of the evaluation (e.g.,
insertion at the head of the list). Memoization performs
poorly for changes that affect calls deep in the call tree (e.g.,
insertion at the end of the list).

Consider evaluating the adaptive version a map5 with an
input list [1, 3, 4]. This evaluation will be represented using
the dependence graph shown in Figure 2. Each circle cor-
responds to a modifiable and the edges between modifiables
corresponds to reads of modifiables. Cons cells are lightly
shaded (or colored green). Each read is contained in a read
to the left of it, as determined by recursive calls. The con-
tainment edges are shown with horizontal and dashed edges.
Consider changing the input by inserting the key 2 at the
second position by creating a new modifiable c and a new
cons cell holding the value 2. Figure 3 show this change and
the dynamic dependence graph after a change propagation.
Change propagation updates the output by recursively com-
puting the tail of the list. The deleted edges and nodes are
shown with faded dashed lines. Since change propagation
recomputes the result for the tail of the list following the
insertion, an insertion at the very end of the list, a deep
change, requires constant time; a change at the head of the
list, a shallow change, requires linear time. Thus, like mem-
oization, dynamic dependence graphs will take linear time
in general.

3.2 Orthogonal Combination

The map5 example of the previous section illustrates the
problem with memoization and dynamic dependence graphs
when applied in isolation. They both perform well under
particular kinds of input changes: memoization performs
well for shallow changes, and dynamic dependence graph
perform well for deep changes. For a large class of input
changes, that affect some call in the middle of the call tree,
both techniques can, and typically do, fail to improve perfor-
mance asymptotically over a from-scratch re-execution. In

3

e’b’

b

d’a’

a d e

1 2 3 4

6 7

8 9

9

c

f gc’

NIL

NIL

NIL

Figure 3: DDG for a map5 after changing input to [1,2, 3, 4].

am map5: !(int modlist) -> int modlist
mfun am map5 (!l) =

mod (read l (fn vl =>
case vl of

NIL => write(NIL)
| CONS(h,t) =>

write(CONS(h+5,am map5 !t))))

Figure 4: The code for memoized and adaptive map5.

the case of map5, for example, insertions around the middle
of the list will take linear time with both techniques. We
now present an orthogonal combination of memoization and
dynamic dependence graphs that solves certain problems,
and the map5 example in particular, in constant time.

The code for the map5 function using the orthogonal com-
bination is shown in Figure 4. The code is written by mem-
oizing the adaptive version a map5 (Figure 1) using selective
memoization techniques. The bang in front of the parame-
ter to am map5 indicates that memoization is based on the
input list l. A memo match will occur if am map5 is called
with the same list again.

The am map5 function based on the orthogonal combina-
tion handles any insertion/deletion to the input in constant
time. As an example, consider evaluating am map5 with the
input list [1, 3, 4] and changing the input to [1,2, 3, 4] by
inserting 2. This change creates a new modifiable c and a
new cons cell holding the value 2 and making the modifi-
able b point to it. Now, performing a change propagation
will update the output by inserting the key 7 to the output
and performing a recursive call to am map5. Since the mod-
ifiable list d has been previously computed, a memo match
will occur and the result and the dependence graph for the
recursive call will be re-used from the memo. Change prop-
agation (adpativity), along with memoization, will therefore
update the output in constant time. The dynamic depen-
dence graph after the update is shown in Figure 5. Note that
the only difference between the revised dynamic dependence
graph (Figure 5) and the original (Figure 2) are the two new
nodes c and c’ and the edge between them.

a d e

d’ e’b’a’

b c NIL

2 3 4

NIL

1

 6 7 8 9

c’

Figure 5: DDG for am map5 after inserting 2.

3.3 Integral Combination: Adaptive Memoization

Although the orthogonal combination yields good perfor-
mance for certain applications, it nevertheless remains in-
effective in general. This section uses insertion sort as an
example to demonstrate the limitations of the orthogonal
combination and illustrates how adaptive memoization can
be used to overcome these limitations.

4

5

6

8

4

5

6

7

0

NIL

4

5

6

NIL

A B 4

5

6

7

0

NIL

����

����

�	
�

��������

���
�
���
�����

NIL

4

5

6

4

5

6

8

4

5

6

9

insert 9A’ B’

Figure 7: The accumulators for insertion sort with inputs
[6, 5, 4, 8, 7, 0] and [6, 5, 4,9, 8, 7, 0]

Figure 6 shows the standard accumulator-based code for
insertion sort. The function iSort, iterates over the input
list l, inserting each key into the accumulator a. As a con-
crete example consider sorting the list [6, 5, 4, 8, 7, 0] using
insertion sort. The left box in Figure 7 shows the accumula-
tors created during the evaluation. Each column represents
an accumulator with time advancing from left to right. An
accumulator is obtained from the preceding accumulator by
inserting the next key from the input. Since insert re-
creates the accumulator up to the position where the key is
placed and re-uses the tail, some tails are shared—curved
arrows show such sharing. For example the first column on
the left is the accumulator [6], the second column is [5, 6],
the third column is [4, 5, 6] etc.

Consider now evaluation of insertion Sort on the input
[6, 5, 4,9, 8, 7, 0] obtained from the original list by inserting
9. The box on the right in Figure 7 shows the accumulators
for this input. To compare the two evaluations, divide the
computation into two boxes, A, B, and A’, B’, corresponding
to the parts before and after the call to insert where the
newly key 9 is inserted to the accumulator. Note that box
A and A’ are identical in both computations. Box B and
B’ are slightly different because the accumulators in box B’
end with the new key 9.

Consider a version of insertion sort that uses the orthog-
onal combination described in Section 3.2. Consider eval-
uating insertion sort on [6, 5, 4, 8, 7, 0] and then changing
the input to [6, 5, 4,9, 8, 7, 0] by inserting 9. Performing a
change propagation after this change will create the compu-
tation shown on the right in Figure 7 from the computation
on the left. During change propagation, computation in box
A will be re-used because none of the calls to iSort before
key 9 is affected by the change (i.e., A’=A)—more precisely
change propagation will skip over box A because none of
the modifiables read will be changed. The function iSort
however will be evaluated when 9 is considered and 9 will be
inserted into the accumulator creating the new accumulator
[4, 5, 6, 9]. The thick arrow in Figure 7 points to this new
accumulator. Now since this accumulator has never been
seen before, the recursive calls to iSort will not find their
result in the memo and box B’ will be recomputed from
scratch. Thus the orthogonal combination of memoization
and dynamic dependence graphs fails to provide an asymp-

4

insert:int * int list -> int list
fun insert (k,a) =

case a of
nil => cons (p,nil)

| cons(h,t) =>
if (k < h) then

cons(k,t)
else

cons(h,insert(k,t))

iSort: int list * int list -> int list
fun iSort (l,a) =

case l of
nil => a

| cons(h,t) => iSort (t,insert(h,a))

insSort: int modlist -> int modlist
fun insSort (l) =

iSort (l,[])

insert: (!int * ?(int modlist) * !int)->int modlist
mfun m insert (!k,?a,!v) =

mod (read a as va in
case va of

NIL => write (CONS (k,a))
| CONS(h,t) =>

if (k < h) then
write (CONS(k,t))

else
write (CONS(h, m insert (!k,?t,!v)))

end)

m iSort:!(int modlist) * ?(int modlist) -> int modlist
mfun m iSort (!l,?a) =

read l as vl in
case vl of

NIL => write a
| CONS(h,t) =>iSort (!t, ?(m insert (!h, ?a, !h)))

end

m insSort: int modlist -> int modlist
fun m insSort (l) =

mod (m iSort (!l,?(mod (write NIL))))

Figure 6: Standard insertion sort (left) and its adaptively memoized version (right).

totic improvement over re-execution, when averaging over
all insertion positions.

To see how we can do better, note that boxes B and B’
(Figure 7) are very similar. In particular the only structural
difference between the boxes B and B’ are the links to cons
cell containing 9. Thus if we can re-use the computation in
box B and change the first accumulator by inserting 9 and
perform a change propagation, we can hope to construct
the computation in Box B’. Memoization, however, will not
provide for such result re-use because calls to iSort that
construct box B’ all depend on the new accumulator. Since
this accumulator is not part of the computation before the
input change, no memo matches will take place. This is
consistent with the fact that memoization can only re-use
accurate results. What we would like is a technique for re-
using the inaccurate result in box B and transforming it to
the accurate result B’ efficiently by taking advantage of their
similarity.

Adaptive memoization provides re-use of such inaccurate
results. The code for the adaptively memoized version of
insertion sort is shown on the right in Figure 6. The code is
obtained by first making insertion sort adaptive by changing
its input to modifiable lists and memoizing the calls to the
m insert and m iSort functions.

The key difference from the conventional memoization,
or the orthogonal combination, is that m iSort and m insert
are not memoized based on the accumulator (a). This is
indicated by assigning the accumulator the question type ?,
which marks types that are unmatched during memo lookup.
This means calling m iSort with the same list l will cause
a memo match regardless of the value of the accumulator
a. Referring back to our example in Figure 7, this kind of
memoization will enable us to re-use box B. The function
m insert is somewhat subtle: it is memoized based on the
key k being inserted and the key of the accumulator that has
been previously visited v. Memoizing m insert based on the
keys of the accumulator will enable re-use of results from an
evaluation with some other list with the same keys, even
when the two lists consists of different cons cells. Referring
back to our example in Figure 7, the calls to m insert will
synchronize the accumulator created by the insertion of 9
(pointed by the thick arrow on the right) with the first accu-
mulator of box B and will insert 9 into the latter. Adaptive
memoization will update all inaccurate result by running a

change propagation. The technique thus enables re-use of
box B, and updates it to obtain B’.

Insertion sort is an example program where a data struc-
ture (the accumulator) is threaded through the program.
The problem is that making a small change to the input can
make a small change to the accumulator preventing re-use
of previously computed results however similar they might
be. By not memoizing results based on the accumulator the
adaptively memoized insertion sort takes advantage of the
structural similarity of the computations before and after a
change. This suffices to obtain the linear time bound for in-
sertions/deletions proven in Section 6. Note that this bound
is within an expected constant factor of the optimal for in-
sertion sort (because otherwise insertion sort can be made
to run faster than O(n2) by successive insertions).

In the rest of this section, we present a high level pre-
sentation of the techniques for supporting adaptive mem-
oization. These ideas are are formalized in Section 4 by
presenting a functional language for adaptive memoization
and studying its static and dynamic semantics.

The idea of adaptive memoization is to remember adap-
tive computations along with their arguments so that they
can not only be re-used but also adapted according to dif-
ferent argument values. As with orthogonal memoization,
adaptive memoization remembers both the result and the
dynamic dependence graph for a memoized call. In addi-
tion, adaptive memoization remembers the unmatched ar-
guments, i.e., arguments with questions types. Since memo
lookups only compare matched arguments, a memo match
can return an inaccurate result. All re-used results are there-
fore made accurate by forcing the unmatched arguments to
match. This is done by changing the values of unmatched
arguments to the values of the unmatched arguments of the
current call and performing a change propagation. Since
unmatched arguments can be changed, they must be mod-
ifiables. This is one of properties that the type system de-
scribed in Section 4 for adaptive memoization ensures.

The key challenge to realize this idea is to represent and
reuse adaptive computations while also supporting change
propagation so that inaccurate results can be made accu-
rate according to the unmatched arguments. The difficulty
is that adjusting some part of the computation by change
propagation can affect other parts of the computation. To
overcome this challenge, adaptive memoization relies on a

5

a’ b’ c’ d’ e’

ba dc

A B C D

 6

NIL

4 5 8

4 5 6

NIL

4 5 6

NIL

Figure 8: DDGs of m insert (!8, ?[4, 5, 6], !0).

y

a’ b’ c’ d’

t u v z

A B C D

 6

 6

NIL

 6 6

NIL

NIL

4 5 8

4 5

4 5

 9

 9

E

e’ f’

Figure 9: DDGs of m insert (!8, ?[4, 5, 6,9], !0)).

copying technique. When a memoized function is being
evaluated, the underlying systems makes copies of the un-
matched arguments and performs evaluation after substi-
tuting these copies instead of the original arguments. In
other words, the system creates a “stand-alone” adaptive
computation encapsulated with its “inputs”, that is, the
unmatched arguments. When a result is re-used, its un-
matched arguments are changed and the output is updated
by change propagation.

Consider a concrete example from insertion sort to make
these ideas clear. Figure 8 shows the dependence graph for
the call m insert (!8, ?[4, 5, 6], !0) that inserts 8 to [4, 5, 6].
The input consists of a modifiable list (the accumulator)
consisting of the modifiables a,b,c,d. Since the accumula-
tor is unmatched (a question type), the system makes a copy
of the accumulator and evaluates the body of the function
m insert with this copy. In other words, the modifiables
a,b,c,d are copied to the modifiables A,B,C,D. We will re-
fer to these modifiables as the local copies. Copying the
modifiables a,b,c,d to A,B,C,D requires reading each mod-
ifiable and then writing the value read to the correspond-
ing local copy. Explicitly reading the unmatched arguments
creates a data dependence between the copies and the un-
matched arguments—this dependence relation ensures that
unmatched arguments and local copies remain consistent un-
der change propagation. Local copies enable isolating and
adapting dynamic dependence graphs by change propaga-
tion.

As an example of how adaptive memoization en-
ables re-use of an inaccurate result, consider perform-
ing the call m insert (!8, ?[4, 5, 6,9], !0) after the call
m insert (!8, ?[4, 5, 6], !0). Assume also that the lists
[4, 5, 6] and [4, 5, 6,9] consists of entirely different cons cells.
Now with conventional memoization none of the result from
the first call would be re-used in computing the second—
since the accumulators are different none of the recursive
calls will match in the memo. With adaptive memoization
however the accumulators will not be matched (they have
type question) and therefore each recursive call performed

by minsert(!8, ?[4, 5, 6,9], !0) will match a previous call by
m insert (!8, ?[4, 5, 6], !0) except for the last call for key 9.
When a match occurs the local copy of the memoized com-
putation is updated by the value of the unmatched argument
by reading the unmatched argument and writing its value
to the local copy—this establishes the consistency of the
local copy and the unmatched argument. The dynamic de-
pendence graph obtained by m insert (!8, ?[4, 5, 6,9], !0) is
shown in Figure 9. Note how the modifiables t,u,v,y,z of
the new accumulator [4, 5, 6,9], are synchronized with the
local copies A,B,C,D,E from the previous evaluation (Fig-
ure 8). Note also that and a large piece of the dependence
graph from Figure 8 is re-used. The changed pieces of the
graph are shaded in color and consist of the nodes e,e’,f’
and the edges between them. Referring back to our example
in Figure 7, this is how boxes B and B’ are “synchronized”
by matching the new accumulator [4, 5, 6,9] to [4, 5, 6] and
updating it with the newly inserted key 9.

4 An Incremental Functional Language
We present a purely functional language, called IFL, that
combines adaptivity and memoization. The language ex-
tends a product of the AFL language for adaptivity [2] and
the MFL language for memoization [3] with support for
adaptive memoization.

Our implementation of the IFL language, described in
Section 5, closely follows the dynamic semantics of IFL. The
main difference is that instead of using traces, like the dy-
namic semantics does, the implementation uses dynamic de-
pendence graphs and memo tables. This is purely for effi-
ciency reasons.

Selective memoization [3] enables the programmer to ex-
press the precise input-output dependences of a memoized
function. To support adaptive memoization, we extend se-
lective memoization with constructs that deem an input un-
matched. An unmatched input is an input that is not used
when performing a memo lookup. The IFL language sup-
ports introduction and elimination forms for unmatched in-
put using question types.

The static semantics of IFL is a combination of the static
semantics AFL and MFL extended with question types.

The dynamic semantics combines those of MFL and AFL
and extends it to support adaptive memoization. The dy-
namic semantics of AFL is preserved but the semantics of
MFL has been extended to support adaptive memoization.
One critical change is the omission of memo-tables. Instead,
we extend the AFL traces with memoized computations.
During change propagation, memo lookups inspect the trace
of the currently re-executed read for a possible match.

4.1 Abstract Syntax.

The abstract syntax of IFL is given in Figure 10. Meta-
variables x, y, z and their variants range over an unspecified
set of variables, Meta-variables a, b, c and variants range over
an unspecified set of resources. Meta variable l and vari-
ants range over a unspecified set of locations. Meta variable
m ranges over a unspecified set of memo-function identi-
fiers. Variables, resources, locations, memo-function identi-
fiers are mutually disjoint. The syntax of IFL is restricted to
“2/3-cps” or “named form” to streamline the presentation
of the dynamic semantics.

The types of IFL includes the base type int, sums τ1 +τ2
and products τ1 × τ2, bang ! τ and question ? τ types, the

stable function types, τ1
s→ τ2, changeable function types

τ1
c→ τ2, memoized-stable function types τ1

ms→ τ2 , and

6

Types τ : : = int | ! τ | ? τ |
τ mod | τ1 × τ2 | τ1 + τ2 |
τ1

s→ τ2 | τ1
c→ τ2 | τ1

ms→ τ2 | τ1
mc→ τ2

Values v : : = n | x | a | l | m | ! v | ? v | (v1,v2) |
inlτ1+τ2v | inrτ1+τ2v |
s fun f(x : τ1) : τ2 is ts end |
c fun (x : τ1) : τ2 is tc end |
ms funm f(a:τ1):τ2 is es end
mc funm f(a:τ1):τ2 is ec end

Operators o : : = + | - | = | < | . . .

St. Expr es : : = return(ts) |
let a:τ be ts in es end |
let !x:τ be v in es end |
let ?x:τ be v in es end |
let a1:τ1×a2:τ2 be v in es end |
mcase v of inl (a1:τ1) ⇒ es

| inr (a2:τ2) ⇒ es

Ch. Expr ec : : = return(tc) |
let a:τ be ts in ec end |
let !x:τ be v in ec end |
let ?x:τ be v in ec end |
let a1:τ1×a2:τ2 be v in ec end |
mcase v of inl (a1:τ1) ⇒ ec

| inr (a2:τ2) ⇒ e′c

St. Terms ts : : = v | o(v1, . . . , vn) |
ms fun f (a:τ1):τ2 is es end |
mc fun f (a:τ1):τ2 is ec end |
s app(v1, v2) | ms app(v1, v2) |
let x be ts in t′s end | modτ tc |
case v of inl (x1:τ1) ⇒ ts

| inr (x2:τ2) ⇒ t′s

Ch. Terms tc : : = write(v) |
c app(v1, v2) | mc app(v1, v2) |
let x be ts in tc end |
read v as x in tc end |
case v of inl (x1:τ1) ⇒ tc

| inr (x2:τ2) ⇒ t′c

Figure 10: The abstract syntax of IFL.

memoized-changeable function types τ1
mc→ τ2. Extending

IFL with recursive or polymorphic types presents no funda-
mental difficulties but omitted here for the sake of brevity.

The underlying type of a bang type ! τ is required to be
an indexable type. An indexable type accepts an injective
index function into integers [3]. Operationally, the index
function is used to determine equality. Any type can be
made indexable by supplying an index function based on
boxing or tagging [3]. Since this is completely standard and
well understood, we do not have a separate category for
indexable types to keep the language simple.

The abstract syntax is structured into terms and expres-
sion, which in turn are partitioned into changeable and sta-
ble. Terms evaluate independent of their contexts, as in ordi-
nary functional programming, whereas expression are eval-
uated with respect to a memo table. Terms and expression
divided into two categories, the stable and the changeable.
The value of a stable expression or term is not sensitive to
the modifications to the input, whereas the the value of a

changeable expression or term may be affected by them.

Stable and Changeable Terms. Familiar mechanism of
functional programming are embedded in IFL in the form
of stable terms. Ordinary functions arise in IFL as stable
functions. The body of a stable function must be a stable
term; the application of a stable function is correspondingly
stable. The stable term modτ tc allocates a new modifiable
reference whose value is determined by the changeable term
tc. Note that the modifiable itself is stable, even though its
contents is subject to change.

Changeable terms are written in destination-passing
style with an implicit target. The changeable term write(v)
writes the value v into the target. The changeable term
read v as x in tc end binds the contents of the modifiable
v to the variable x, then continues evaluation of tc. A read
is considered changeable because the contents of the modifi-
able on which it depends is subject to change. A changeable
function itself is stable, but its body is changeable; corre-
spondingly, the application of a changeable function is a
changeable term. The sequential let construct allows for the
inclusion of stable sub-computations in changeable mode.
Case expressions with changeable branches are changeable.

Memoized stable and changeable functions are function
whose bodies are stable or changeable expressions. As with
stable and changeable functions, memoized functions are
stable terms. Applications of memoized stable functions are
stable and applications of memoized changeable functions
are changeable.

Stable and Changeable Expression. Expression are
evaluated in the context of a memo table and are divided
into stable and changeable. Stable and changeable expres-
sions are symmetric except for the body of the return con-
struct. Stable terms are included in stable expressions, and
changeable terms are included in changeable expressions via
a return. The constructs except for return inspect the ar-
guments of a function and express precise dependences be-
tween the input and the output of the function. The return
returns a value based on the those parts of the argument
that have been made available by the preceding constructs.

4.2 Static Semantics

The static semantics of the language combines the static
semantics of AFL and MFL and extends them with ques-
tion types. This section presents an overview of the static
semantics, the full type system is provided in Appendix B.

Each typing judgment takes place under three contexes:
∆ for resources, Λ for locations, and Γ for ordinary variables.
We distinguish two modes, stable and changeable. Stable
terms and expressions are typed in the stable mode and
changeable terms are typed in the changeable mode.

The judgment ∆; Λ; Γ t : τ states that t is a well
formed stable term of type τ relative to ∆,Λ and Γ. The
judgment ∆; Λ; Γ e : τ states that e is a well formed stable
expression of type τ relative to ∆,Λ and Γ.

The judgment ∆; Λ; Γ � t : τ states that t is a well formed
changeable term of type τ relative to ∆,Λ and Γ. The judg-
ment ∆; Λ; Γ � e : τ states that e is a well formed changeable
expression of type τ relative to ∆,Λ and Γ.

Figure 11 shows some sample typing judgments for stable
and changeable terms. Figure 12 shows some sample typing
judgments for stable and changeable expressions.

To support adaptive memoization we use the question
types ? (τ mod). The ? construct introduces a question type
and let? construct eliminates it. One non-orthogonal re-

7

quirement about question types is that their underlying type
must be a modifiable type. This is an artifact of the interac-
tion between memoization and adaptivity. The typing rules
for the bang types and the ? types, shown in Figure 12 are
otherwise symmetric.

∆, a:τ1; Λ; Γ, f :τ1
ms→ τ2 es : τ2

∆; Λ; Γ ms fun f (a:τ1):τ2 is es end : τ1
ms→ τ2

(st. mfun)

∆, a:τ1; Λ; Γ, f :τ1
mc→ τ2 � ec : τ2

∆; Λ; Γ mc fun f (a:τ1):τ2 is ec end : τ1
mc→ τ2

(ch. mfun)

∆; Λ; Γ v1 : τ1
ms→ τ2 ∆; Λ; Γ v2 : τ1

∆; Λ; Γ ms app(v1, v2) : τ2
(memo apply)

∆; Λ; Γ v1 : (τ1
mc→ τ2) ∆; Λ; Γ v2 : τ1

∆; Λ; Γ � mc app(v1, v2) : τ2
(memo apply)

Figure 11: Some typing judgments for stable (top) and
changeable (bottom) terms.

∆; Λ; Γ v : ! τ1 ∆; Λ; Γ, x:τ2 es : τ2

∆; Λ; Γ let !x:τ1 be v in es end : τ2
(let!)

∆; Λ; Γ v : ? (τ1 mod) ∆; Λ; Γ, x:τ1 mod es : τ2

∆; Λ; Γ let ?x:(τ1 mod) be v in es end : τ2
(let?)

∆; Λ; Γ v : ! τ ∆; Λ; Γ, x:τ � ec : τ

∆; Λ; Γ let !x:τ be v in ec end : τ
(let!)

∆; Λ; Γ v : ? (τ1 mod) ∆; Λ; Γ, x:τ1 mod � ec : τ2

∆; Λ; Γ � let ?x:(τ1 mod) be v in ec end : τ2
(let?)

Figure 12: Some typing judgements for stable (top) and
changeable (bottom) expressions.

4.3 Dynamic Semantics

The dynamic semantics consists of four separate evaluation
judgments corresponding to stable and changeable terms
and stable and changeable expressions. All evaluation judg-
ments take place with respect to a state σ = (α, µ, χ, T)
consisting of a location store α, a memoized-function identi-
fier store µ, a set of changed locations χ, and a re-use trace
T. The location store is where modifiables are allocated, the
memoized-function identifier store dispenses unique identi-
fiers for memoized functions that are used for memo lookups.
The set of changed location contains the locations that has
been changed since the previous execution. The re-use trace
is the trace available for re-use by the memo functions.

The term evaluation judgments consists of changeable
and stable evaluation forms. The judgment σ, ts ⇓s v, σ′, Ts
states that evaluation of the stable term ts with respect to
the state σ yields value v, state σ′, and the trace Ts. The
judgment σ, l← tc ⇓c σ′, Tc states that evaluation of the
changeable term tc with respect to the state σ writes to
destination l and yields the state σ′, and the trace Tc.

The expression evaluation judgments consists of change-
able and stable evaluation forms. The judgment
σ,m:β, es

V s σ′, v, Ts states that the evaluation of the sta-
ble expression with respect to state σ, branch β, and memo
identifier m yields the state σ′, the value v and the trace Ts.
The judgment σ,m:β, l← ec

V c σ′, T states that the eval-
uation of the changeable expression with respect to state
σ, branch β, and memo identifier m writes to target l and
yields the state σ′ and the trace T.

Evaluation of a term or an expression records its activity
in a trace. Traces are divided into stable and changeable.
The abstract syntax of traces is given by the following gram-
mar, where T stands for a trace, Ts stands for a stable trace
and Tc stands for a changeable trace.

T : : = Ts | Tc
Ts : : = ε | 〈Tc〉l:τ | Ts ; Ts | { Ts }m:β(v,(l1,... ,ln))

Tc : : = Wτ | Rx.tl (Tc) | Ts ; Tc | { Tc }m:β(l1,... ,ln)

When writing traces, we adopt the convention that “;” is
right-associative.

A stable trace records the sequence of allocations of mod-
ifiables that arise during the evaluation of a stable term or
expression. The trace 〈Tc〉l:τ records the allocation of the
modifiable, l, its type, τ , and the trace of the initializa-
tion code for l. The trace Ts ; T′s results from evaluation
of a let expression in stable mode, the first trace resulting
from the bound expression, the second from its body. The
trace { Ts }m:β(v,(l1,... ,ln))

arises from the evaluation of a stable

memoized function application; m is the identifier, β is the
branch expressing the input-output dependences, the value
v is the result of the evaluation, l1 . . . ln are the unmatched
modifiables, and Ts is the trace of the body of the function.

A changeable trace has one of four forms. A write, Wτ ,
records the storage of a value of type τ in the target. A
sequence Ts ; Tc records the evaluation of a let expression
in changeable mode, with Ts corresponding to the bound
stable expression, and Tc corresponding to its body. A read
Rx.tl (Tc) trace specifies the location read, l, the context of
use of its value, x.e, and the trace, Tc, of the remainder of
evaluation with the scope of that read. This records the
dependency of the target on the value of the location read.
The memoized changeable trace { Tc }m:β(l1,... ,ln)

arises from

the evaluation of a changeable memoized function; m is the
identifier, β is the branch expressing the input-output de-
pendences, l1 . . . ln are the unmatched modifiables, and Tc is
the trace of the body of the function. Since changeable func-
tion write their result to the store, the trace has no result
value.

The dynamic dependency graph and the memo table de-
scribed in Section 5 may be seen as an efficient represen-
tation of traces. Time stamps may be assigned to each
read and write operation in the trace in left-to-right or-
der. These correspond to the time stamps in the dynamic
dependence representation. The containment hierarchy is
directly represented by the structure of the trace. Specifi-

8

(v1 = ms funm f(a:τ1):τ2 is es end)
σ,m:ε, [v1/f, v2/a] es

V s v, σ′, Ts

σ, ms app(v1, v2) ⇓s v, σ′, Ts
(st. memo apply)

(v1 = mc funm f(a:τ2):τ is ec end)
σ,m:! l, l← [v1/f, v2/a] ec

V c σ′, T

σ, l← mc app(v1, v2) ⇓c σ′, T
(ch. memo apply)

Figure 13: Stable and changeable memoized applications.

cally, the trace Tc (and any read in Tc) is contained within
the read trace Rx.tl (Tc). Memo tables represent the traces

of the form { Ts }m:β(v,(l1,... ,ln))
and { Tc }m:β(l1,... ,ln)

. The iden-

tifier m identifies a memo table, the branch β is the lookup
key, v is the result being stored if any, and the trace Tc or
Ts along with the unmatched modifiables l1, . . . , ln is an en-
capsulated adaptive computation with inputs l1, . . . , ln. An
explicit result is not stored for memoized changeable func-
tions because they write to their target which must match
for the memo to be re-used.

The complete dynamic semantics is provided Ap-
pendix C. In the rest of the section, we briefly walk through
some the more interesting rules.

Term evaluation. Figure 13 shows the memoized stable
and changeable function applications. Memoized change-
able and stable applications evaluate some expression in the
context of an identifier m and a branch β. As in selective
memoization, the branch collects the precise dependencies
between the input and the output. For stable applications
the branch starts out empty (ε). For changeable applica-
tions it is initialized to the target—since a changeable ex-
pressions writes to its target, the target must be identical
for the “result” to be re-used.

Expression Evaluation. Expression evaluation takes
place in the context of a re-use trace. The incremental evalu-
ation constructs (let!, let?, etc.) create a branch, denoted
β. The branch and the identifier m is used by the return
construct to lookup the re-use trace for a match. If a match
is found, the result is made accurate by change propagation
and returned—the body of return is skipped. Otherwise,
the body of the return is executed.

Figure 14 shows some sample stable expression evalua-
tion rules. Changeable expressions are evaluated similarly
except that a target is threaded through the changeable ex-
pressions. The evaluation σ,m:β, es

V s v, σ′, Ts states that
the evaluation of stable expressions es in the context of the
state σ, with memo function identifier m and branch β yields
the value v, the state σ′ and the trace Ts.

Adaptive memoization permits result re-use based on a
subset of the values that the result of a function depends for.
The unmatched dependences are expressed by the let? con-
struct which adds them to the branch as such. The type sys-
tem ensures that all unmatched arguments are modifiables.
During a memo lookup, unmatched modifiables are sepa-
rated from other dependences by the split (·) that splits a
branch into a list of the unmatched modifiables and a branch
β′. In Figure 14 the top two rules are the memo lookups.
Unmatched modifiables are denoted as li’s. The m : β′, T ;

relation performs the memo lookup with the filtered branch

(α, µ, χ, T) = σ

([l1, . . . , ln], β′) = split (β)

m : β′, T ; ε,

α′ = α[l′1 7→ α[l1], . . . , l′n 7→ α[ln]],

where l′1 6∈ dom(α), . . . , l′n 6∈ dom(α), l′i 6= l′j

σ′ = (α′, µ, χ, T)

σ′, [l′1/l1, . . . l
′
n/ln]ts ⇓s v, σ′′, Ts

T′s = 〈Rx.write(x)l1
Wτ1 〉l′1:τ1

. . . 〈Rx.write(x)ln
Wτn 〉l′n:τn

σ,m:β, return(ts)

V s v, σ′′,

(
T′s ; { Ts }m:β

(v,(l′1,... ,l
′
n))

) (×)

(α, µ, χ, T) = σ

([l1, . . . , ln], β′) = split (β)

m : β′, T ; { Ts }m:β′

(v,(l′1,...l
′
n))

, T′

α′ = α[l′1 7→ α[l1], . . . , l′n 7→ α[ln]]

χ′ = χ ∪ {l′1, . . . , l′n}
σ′ = (α′, µ, χ′, T′)

σ′, { Ts }m:β′

(v,(l′1,...l
′
n))

c
y→ T′s, σ

′′

T′′s = 〈Rx.write(x)l1
Wτ1 〉l′1:τ1

. . . 〈Rx.write(x)ln
Wτn 〉l′n:τn

σ,m:β, return(ts)

V s v, σ′′, (T′′s ; T′s)
(X)

σ,m:! v · β, [v/x]es

V s v′, σ′, Ts

σ,m:β, let !x : τ be ! v in es end

V s v′, σ′, Ts
(let!)

σ,m:?v · β, [v/x]es

V s v′, σ′, Ts

σ,m:β, let ?x : τ be ? v in es end

V s v′, σ′, Ts
(let?)

Figure 14: Sample stable-expression evaluation.

β′ and the identifier m in the re-use trace T. If a match
is not found it returns the trace of the memoized function
and the tail of the re-use trace following the match, other-
wise it returns an empty trace. If no results are found (the
top rule), then the body of the return is evaluated after
substituting unmatched modifiables with fresh modifiables.
The trace returned by the evaluation is encapsulated by the
branch, the identifier, the result, and returned along with
a copy trace for copying the unmatched modifiables. If the
result is found in the memo (the second rule from the top),
then the body of return is skipped. The re-used trace is
updated with change propagation and returned along with
the trace of the performed copies.

5 Implementation
This section describes the implementation of a library for
supporting the IFL language described in Section 4. The
implementation follows the semantics of the IFL language
and builds upon our implementations of adaptivity [2] and
selective memoization [3]. Carlsson [8] presented an imple-
mentation of the adaptivity libraries in the Haskell language.

As with our previous work, the implementation is effi-
cient: its overhead is expected constant over a standard se-
mantics. The expected constant overhead is due to the use
of hash tables for implementing memo tables. Another key
property of the implementation is that it does not rely on

9

complex or problem specific cache management strategies.
The semantics makes clear what result should be cached
and when results should be evicted. In particular, all invali-
dated computations are evicted from cache. Since all cached
computations are valid, the size of the memo tables never
exceeds the size of the dynamic dependence graphs assuming
for program that has no non-adaptive memoized functions.

The main idea behind the implementation is to memoize
adaptive computations instead of just results. To do this,
we implement the memo table of each function as a hash
table mapping branches to the local copies of unmatched
arguments, the result, and the time-interval at which the
call took place. The time-interval representation of adaptive
computations rely on representing traces (Section 4) via time
stamps maintained in order maintenance data structure [10].
This representation based on time-stamps is a critical com-
ponent of the implementation and described in more detail
in our previous work [2].

When a memo match occurs, adaptive computation rep-
resented by the time-interval is joined into the current com-
putation, the values of unmatched arguments are copied, a
change propagation is performed to make accurate the re-
sult, and finally the result is returned. Since adaptive mem-
oization re-uses computations and not just values, a memo
table entry can only be re-used once. The implementation
ensures this by restricting all memo searches to within the
time interval being re-evaluated during change propagation.
In other words, only results from the part of the computa-
tion being invalidated are re-used. This is consistent with
the dynamic semantics presented in Section 4.

Re-use of computations interacts with time-stamps and
the order maintenance data structure in subtle ways. Since
re-using a computation effectively splices in a whole set of
time-stamps at current point in the computation, it can
change the ordering of the time-stamps. To maintain the or-
dering the implementation invalidates all computations that
take place between the current time and the start time of
the re-used computation. This is easily done by deleting the
time stamps between the current time and the start of the
re-used computation. Since a computation is re-used only
when it is to be invalidated, this causes no problems. This
is consisten with the dynamic semantics (Section 4).

6 Applications
We describe how to make Insertion Sort and Quick Sort
incremental under insertions and deletions to the input and
prove strong performance bounds. For insertion sort, we
show that an insertion or deletion is handled in expected-
case O(n) time with adaptive memoization. For Quicksort,
we consider insertions and deletions at random locations and
show an expected O(log2 n) bound by using the orthogonal
combination. We improve this to expected O(logn) by using
adaptive memoization. The expectations are over internal
randomness for hashing used in memo tables. For Quicksort
the expectation is also over all permutations of the input, as
usual. The O(n) and O(logn) bounds are optimal for these
algorithms.

We present the code for the applications by using an ex-
tended version of the IFL language that support lists. For
brevity, we also use pattern matching on the bang and ques-
tion mark types, and do not apply the named-form restric-
tion.

Both algorithms operate on modifiable lists defined as

datatype ’a mlist = NIL | CONS (’a * (’a mlist) mod)
type ’a modlist = (’a mlist) mod.

The proofs of the theorems in this section are provided
in Appendix A.

6.1 Incremental Insertion Sort

Figure 15 shows the code for incremental insertion sort. The
function iSort inserts the keys in the input list l into an
initially empty accumulator a. As indicated by the ! and ?,
the result is memoized based on the input list and adaptively
memoized on the accumulator. This means that a result
will be found in the memo when the input lists are identical
even though the accumulators are not. The function insert
inserts a given key i into the list t. It is memoized based
on i and the previously inspected key h, and adaptively
memoized with respect to t. This ensures that the same
result will be returned as long as the content of the lists
(t’s) are the same even if they contain different cons cells.

insert: (!int * (!int*?int modlist))->int modlist
ms fun insert (!i,(!h,?t)) =

return mod (
read t as vt in

case vt of
NIL => write (CONS (i,t))

| CONS(hh,tt) =>
if (i < hh) then

write (CONS(i,t))
else

write (CONS(hh, ms app(insert, (!i,(!hh,?tt)))))
end)

mc fun iSort (!l:int modlist,?a:int modlist) =
return

read l as vl in
case vl of

NIL => write a
| CONS(h,t) =>

let aa = ms app (insert (!h, (!h,?a))) in
mc app(iSort, (!t, ?aa))

end
end

s fun insSort (l:int modlist):(int modlist) mod =
mod (mc app(iSort,(!l,?(mod (write NIL)))))

Figure 15: Insertion sort with adaptive memoization.

As discussed in Section 2 without using adaptive mem-
oization, insertion takes Θ(n2) time even with the orthogo-
nal combination of adaptivity and memoization. Adaptive
memoization improves performance to expected O(n) time.

Theorem 1
Insertion sort (shown in Figure 15) updates its result in
expectedO(n) time when its input is changed by an insertion
or deletion anywhere in the list.

Proof: The proof is given in Appendix A. �

6.2 Incremental Quicksort

We consider two versions of Quicksort using the orthogonal
combination and adaptive memoization. The table below
compares their performance for a single insertion or deletion
at the beginning, at the end, and at a random location in the
list to the performance with memoization or adaptivity only.
All bounds are expected case with expectations taken over
all possible permutations of the input; for random insertions,
expectations are taken over all possible locations in the input
with uniform probability.

10

fil:(!(int->bool)*!int modlist)->int modlist
ms fun fil (!f, !l) =

return mod (
read l as ll in

case ll of
NIL => write NIL
CONS(h,t) =>
if (f h) then

write CONS(h,ms app(fil, (!f,!t)))
else

read (ms app(fil, (!f,!t))) as tt in
write tt

end
end)

c fun qs(l:int modlist, rest:int mlist) =
read l as vl in

case vl of
NIL => write rest

| CONS(h,t) =>
let

val g = ms app(fil, (!(fn x => x > h),!t))
val gs = mod (c app (qs, (g,rest)))
val s = ms app(fil, (!(fn x => x < h),!t))

in
c app (qs, (s,CONS(h,gs)))

end
end

s fun qsort (l:int modlist):int modlist =
mod (c app (qs, (l,NIL)))

Figure 16: Quicksort with the orthogonal combination.

beginning end random

Adaptive Memo O(n) O(logn) O(logn)

Orthogonal O(n logn) O(logn) O(log2 n)

Memoized O(n) O(n logn) O(n logn)

Adaptive O(n logn) O(logn) O(n logn)

Quicksort with Orthogonal Combination. Figure 16
shows the code for incremental Quicksort using the orthog-
onal combination. The code avoids appends by using an
accumulator and is very similar to the adaptive Quicksort
analyzed in previous work [2].

Theorem 2
The Quicksort with the orthogonal combination takes ex-
pected O(n logn) time for insertions at the head of the in-
put, expected O(logn) time for insertions at the end of the
input, and expected O(log2 n) time for insertions at a (uni-
formly) randomly chosen position. Expectations are over all
permutations of the input list. The same bounds apply to
deletions.

Proof: The proof is given in Appendix A. �

Quicksort with Adaptive Memoization. Figure 17
shows the code for Quicksort with adaptive memoization.
The difference between this version and the version using
orthogonal combination is that fil is not memoized based
on the input list. It now takes a separate head and tail and
is memoized based only on the head. This ensures that fil
generates the same output when its input consists of keys
that are a subset of the previous input—even if the new
input consists of different cons cells.

Theorem 3
The adaptively memoized Quicksort takes expected O(n)
time for insertions at the head of the input, expected

fil:(!(int->bool)*(!int*?int modlist))->int modlist
ms fun fil (!f,(!h,?t)) =

return mod (
read t as vt in

case vt of
NIL => write NIL
CONS(hh,tt) =>
if (f hh) then

write CONS(hh,ms app(fil, (!f,(!hh,?tt))))
else

read (ms app(fil, (!f,(!hh,?tt)))) as vtt in
write vtt

end
end)

c fun qs(l:int modlist,rest:int mlist) = ...

Figure 17: Quicksort with adaptive memoization.

O(logn) time for insertions at the end of the input, and ex-
pected O(logn) time for insertions at a uniformly randomly
chosen position. The expectations are over permutations of
the input list. The same bounds apply to deletions.

Proof: The proof is given in Appendix A. �

References
[1] Martin Abadi, Butler W. Lampson, and Jean-Jacques Levy.

Analysis and caching of dependencies. In International Con-
ference on Functional Programming, pages 83–91, 1996.

[2] Umut A. Acar, Guy E. Blelloch, and Robert Harper. Adap-
tive functional programming. In Proceedings of the 29th An-
nual ACM Symposium on Principles of Programming Lan-
guages, pages 247–259, 2002.

[3] Umut A. Acar, Guy E. Blelloch, and Robert Harper. Selec-
tive memoization. In Proceedings of the 30th Annual ACM
Symposium on Principles of Programming Languages, 2003.

[4] Umut A. Acar, Guy E. Blelloch, Robert Harper, Jorge L.
Vittes, and Maverick Woo. Dynamizing static algorithms
with applications to dynamic trees and history indepen-
dence. In ACM-SIAM Symposium on Discrete Algorithms
(SODA), 2004.

[5] Umut A. Acar, Guy E. Blelloch, Srinath Sridhar, and Vir-
gina Vassilevska. Dynamic pointer machine and applications,
2004. In preperation.

[6] Umut A. Acar, Guy E. Blelloch, and Jorge L. Vittes. Convex
hulls for dynamic data, 2004. In preperation.

[7] Richard Bellman. Dynamic Programming. Princeton Uni-
versity Press, 1957.

[8] Magnus Carlsson. Monads for incremental computing. In
Proceedings of the seventh ACM SIGPLAN international
conference on Functional programming, pages 26–35. ACM
Press, 2002.

[9] Alan Demers, Thomas Reps, and Tim Teitelbaum. Incre-
mental evaluation of attribute grammars with application
to syntax directed editors. In Proceedings of the 8th Annual
ACM Symposium on Principles of Programming Languages,
pages 105–116, 1981.

[10] P. F. Dietz and D. D. Sleator. Two algorithms for main-
taining order in a list. In Proceedings of the 19th ACM
Symposium on Theory of Computing, pages 365–372, 1987.

[11] Allan Heydon, Roy Levin, and Yuan Yu. Caching function
calls using precise dependencies. ACM SIGPLAN Notices,
35(5):311–320, 2000.

[12] Yanhong A. Liu, Scott Stoller, and Tim Teitelbaum. Static
caching for incremental computation. ACM Transactions on
Programming Languages and Systems, 20(3):546–585, 1998.

11

[13] John McCarthy. A Basis for a Mathematical Theory of
Computation. In P. Braffort and D. Hirschberg, editors,
Computer Programming and Formal Systems, pages 33–70.
North-Holland, Amsterdam, 1963.

[14] D. Michie. ’memo’ functions and machine learning. Nature,
218:19–22, 1968.

[15] William Pugh. Incremental computation via function
caching. PhD thesis, Department of Computer Science, Cor-
nell University, August 1988.

[16] William Pugh and Tim Teitelbaum. Incremental computa-
tion via function caching. In Proceedings of the 16th Annual
ACM Symposium on Principles of Programming Languages,
pages 315–328, 1989.

[17] G. Ramalingam and T. Reps. A categorized bibliography
on incremental computation. In Conference Record of the
20th Annual ACM Symposium on POPL, pages 502–510,
January 1993.

[18] Thomas Reps. Generating Language-Based Environments.
PhD thesis, Department of Computer Science, Cornell Uni-
versity, August 1982.

[19] Raimund Seidel and Cecilia R. Aragon. Randomized search
trees. Algorithmica, 16(4–5):464–497, 1996.

[20] Daniel D. Sleator and Robert Endre Tarjan. A data struc-
ture for dynamic trees. Journal of Computer and System
Sciences, 26(3):362–391, 1983.

12

A Proofs for Insertion Sort and Quicksort
For our results, we assume that inputs to the applications do not
contain multiple instances of the same key. Uniqueness can easily
be ensured by associating a unique identifier with each element
of the input.

The time for updating the output of an incremental compu-
tation is affected by the kind and the size of the priority queue
employed for change propagation [2, 4]. Although a general pur-
pose, logarithmic time priority queue works for all applications,
it is not efficient for many applications. For example, we showed
that a certain class of parallel computation can use a constant-
time priority queue [4]. In insertion sort and the Quicksort with
orthogonal combination, the size of the queue is bounded by a
constant, and thus a general purpose priority queue can be used.
For the adaptively memoized version of Quicksort however the
queue size can be linear in the size of the input. Thus a gen-
eral purpose priority queue does not work well. Instead, we use
a constant-time doubly ended priority queue. Insertions to the
queue are done either at the front or the back and deletions are
always done at the front. An insertion checks if the priority of
the inserted key is higher than the key at the front, if so the key
inserted at the front, otherwise it is inserted at the back.

Theorem 4 (Insertion Sort)
Insertion sort (shown in Figure 15) updates its result in expected
O(n) time when its input is changed by an insertion or deletion
anywhere in the list. The expectation is over internal randomiza-
tion of the choice of hash function used for memo tables.

Proof: We consider iSort and insert in isolation. Inserting a
new key k will change some modifiable in the list and insert a new
modifiable m for the tail. Since the tail of m will not be affected,
iSort will synchronize with the previous execution after two calls
to insert–even though the accumulator has changed.

To insert the new key k to the result, function iSort will
call insert. Since k has never been seen before, insert will
insert k to the accumulator returning a new accumulator. Since
the accumulator has now changed, the subsequent calls to
insert will need to be re-executed. Since the contents of the
accumulator are the same as before, except for the location where
k is inserted, each re-executed read of insert will synchronize
with the previous execution by returning the same result. At
most n reads will involve the new key k, and therefore the
accumulators will be synchronized after O(n) re-execution of
the sole read in insert. Since each re-execution take expected
constant time, the result will be updated in expected O(n) time

�

Theorem 5 (Quicksort with Orhogonal Combination)
The Quicksort using the orthogonal combination of adaptivity
and memoization (Figure 16) updates its output in O(n logn)
time for insertions at the head of the input, O(logn) time for
insertions at the end of the input, and expected O(log2 n) time
for insertions at a (uniformly) randomly chosen position. All
bounds are expected with expectations over permutations of the
input list. Same bound applies to deletions.

Proof: Inserting a key at the head of the input list re-executes
the first call to qs and thus takes expected O(n logn) time. In
previous work, we showed that insertions at the end of the input
take O(logn) expected time using adaptivity only, thus the same
result applies.

Consider inserting a new key k anywhere in the list. Key k
will be propagated down the recursion tree by re-executing calls to
fil along some path until k becomes the pivot. When k becomes
the pivot, the corresponding call to qs will be re-executed. Since
fil is memoized based on the input list, a single insertion to the
input will take expected constant time to handle at each level.
Consequently, the total time is the no more than the depth of
the tree plus O(m logm) where m is the number of keys in the
input when k becomes pivot. The depth of the tree is expected

15

1

3

9

4 11

26

2716

23

19

35

46

42

30 15

161

3

9

114

35

46

42

27

26

23

20

30

19

Figure 18: The recursion tree for Quicksort with inputs
L = [15, 30, 26, 1, 3, 16, 27, 9, 35, 4, 46, 23, 11, 42, 19] (left)
and L′ = [20, L] (right).

O(logn). Thus we need to show is that O(m logm) is O(log2 n)
in the expected case.

The expected time for qs on an input list of size m is,
E[T (m)] = O(m logm) with expectation over all permutations
of the input. We are interested in the expectation of this for a
random insertion position. Thus E[E[T (m)]] = E[O(m logm)],
since m ≤ n, we have E[E[T (m)]] = (logn)E[m]. The expected
value m is O(logn) by using the well known isometry between
the pivot-tree of Quicksort and Treaps [19]. Thus a uniformly
random insertion takes O(log2 n) time. �

Theorem 6 (Quicksort with Adaptive Memoization)
The adaptively memoized Quicksort (Figure 16) updates its out-
put in expected O(n) time for insertions at the head of the input,
expected O(logn) time for insertions at the end of the input, and
expected O(logn) time for insertions at a uniformly randomly
chosen position. The expectations are over permutations of the
input list. Same bound applies to deletions.

Proof: The result for inserting at the end of the input list relies
only on adaptivity and our previous result applies [2]. To prove
the O(n) bound for insertions at the head, we use an argument
that is similar to that with memoization Quicksort [3]. The re-
sult for a random insertion will then follow by the fact that the
expected size of a randomly selected subtree has size O(logn).

Consider the recursion tree for Quicksort on some input where
each recursive call is marked with its pivot. Now consider the
recursion tree of Quicksort on the input changed by inserting a
new key k at the head. Figure 18 shows the pivots trees for two
such inputs. Since the new key k is inserted at the head of the
input list, it will become root. Consider the rightmost spine of
the left subtree of the root and the leftmost spine of the right
subtree of the root—these spines are marked with bold edges in
Figure 18. The following properties are true as shown in previous
work [3].

1. The subtree connected to the vertices of the spine are iden-
tical in both recursion trees.

2. The sum of the sizes of the subtrees of vertices on the spines
is expected O(n), where the expectation is over all permu-
tation of the input.

Consider any call that is not on the spine. By property (1)
the input to that call is identical before and after the insertion.
The call to filters at each such node will therefore find its result
in the memo and take expected constant time. Since calls to
filter are performed in reverse sorted order in both computations,
re-use of a result will not invalidate some other result. Thus
all the calls except for those at the two spines will take constant
time. Note that such result re-use is not possible without adaptive
memoization, because the input lists will not in fact be identical
even though their contents are the same—the filters at the root

13

will generate all new results. The calls at each spine will take
expected linear time in the size of their inputs. By property (2),
the sum of the input sizes to the calls on the spines is expected
O(n), therefore the time for these calls is O(n). This establishes
the O(n) bound for an insertion at the head of the input list.

For random insertions, consider inserting a new key k at
a random position in the input. The newly inserted key will
be propagated down the call tree by re-executing filter calls
along some path. Since the fil is memoized each level will take
expected constant time. Since the depth of the recursion tree
is expected O(logn), the time for these call will be expected
O(logn). When the new key becomes the pivot, it will cause the
corresponding call to qs to re-execute. By using the result for an
insertion at the of the input, this will take O(m) time where m
is the size of the input to that call. By using the known isometry
between Treaps [19] and the call tree of Quicksort, the expected
size of m if O(logn). It follows that the expected time to handle
a random insertion is O(logn). �

B Static Semantics
The section presents the complete static semantics for the IFL
language.

Each typing judgment takes place under three contexes: ∆
for resources, Λ for locations, and Γ for ordinary variables. We
distinguish two modes, stable and changeable. Stable terms and
expressions are typed in the stable mode and changeable terms
are typed in the changeable mode.

The judgment ∆; Λ; Γ t : τ states that t is a well formed
stable term of type τ relative to ∆,Λ and Γ. The judgment
∆; Λ; Γ e : τ states that e is a well formed stable expression of
type τ relative to ∆,Λ and Γ.

The judgment ∆; Λ; Γ � t : τ states that t is a well formed
changeable term of type τ relative to ∆,Λ and Γ. The judgment
∆; Λ; Γ � e : τ states that e is a well formed changeable expression
of type τ relative to ∆,Λ and Γ.

To support adaptive memoization we use the question types
? (τ mod). The ? construct introduces a question type and let?
construct eliminates it. One non-orthogonal requirement about
question types is that their underlying type must be a modifiable
type. This is an artifact of the interaction between memoization
and adaptivity. The typing rules for the bang types and the ?
types are otherwise symmetric.

The typing rules distinguish between terms and expressions
and a stable and changeable context. The stable and changeable
expression are almost identical except for the return construct.
Figure 19 shows the typing rules for values, Figure 20 shows the
typing rules for terms, and Figure 21 shows the typing ruels for
expressions. The abstract syntax is shown in Figure 10.

∆; Λ; Γ n : int

(∆(a) = τ)

∆; Λ; Γ a : τ

(Λ(l) = τ)

∆; Λ; Γ l : τ mod

(Γ(x) = τ)

∆; Λ; Γ x : τ

∅; Λ; Γ t : τ

∆; Λ; Γ ! t : ! τ

∅; Λ; Γ t : τ mod

∆; Λ; Γ ? t : ? (τ mod)

∆; Λ; Γ v1 : τ1 ∆; Λ; Γ v2 : τ2

∆; Λ; Γ (v1,v2) : τ1 × τ2

∆; Λ; Γ v : τ1

∆; Λ; Γ inlτ1+τ2v : τ1 + τ2

∆; Λ; Γ v : τ2

∆; Λ; Γ inrτ1+τ2v : τ1 + τ2

∆; Λ; Γ, f : τ1
s→ τ2, x : τ1 ts : τ2

∆; Λ; Γ s fun f(x : τ1) : τ2 is ts end : (τ1
s→ τ2)

∆; Λ; Γ, f : τ1
c→ τ2, x : τ1 � tc : τ2

∆; Λ; Γ c fun (x : τ1) : τ2 is tc end : (τ1
c→ τ2)

∆, a:τ1; Λ; Γ, f :τ1
ms→ τ2; es : τ2

∆; Λ; Γ ms funm f(a:τ1):τ2 is es end : τ1
ms→ τ2

∆, a:τ1; Λ; Γ, f :τ1
mc→ τ2; ec : τ2

∆; Λ; Γ mc funm f(a:τ1):τ2 is ec end : τ1
mc→ τ2

Figure 19: Typing of values.

14

∆; Λ; Γ vi : τi (1 ≤ i ≤ n) `o o : (τ1, . . . , τn) τ

∆; Λ; Γ o(v1, . . . , vn) : τ
(prims)

∆, a:τ1; Λ; Γ, f :τ1
ms→ τ2 es : τ2

∆; Λ; Γ ms fun f (a:τ1):τ2 is es end : τ1
ms→ τ2

(st. mfun)

∆, a:τ1; Λ; Γ, f :τ1
mc→ τ2 � ec : τ2

∆; Λ; Γ mc fun f (a:τ1):τ2 is ec end : τ1
mc→ τ2

(ch. mfun)

Λ; Γ v1 : (τ1
s→ τ2) Λ; Γ v2 : τ1

Λ; Γ s app(v1, v2) : τ2
(stable apply)

∆; Λ; Γ v1 : τ1
ms→ τ2 ∆; Λ; Γ v2 : τ1

∆; Λ; Γ ms app(v1, v2) : τ2
(memo apply)

∆; Λ; Γ ts : τ1 Λ; Γ, x : τ1 t′s : τ2

∆; Λ; Γ let x be ts in t′s end : τ2
(let)

∆; Λ; Γ � tc : τ

∆; Λ; Γ modτ tc : τ mod
(mod)

∆; Λ; Γ v : τ1 + τ2
∆; Λ; Γ, x1:τ1 ts : τ
∆; Λ; Γ, x2:τ2 t′s : τ

∆; Λ; Γ case v of inl (x1:τ1) ⇒ ts
| inr (x2:τ2) ⇒ t′s

: τ
(case)

∆; Λ; Γ v : τ

∆; Λ; Γ � write(v) : τ
(write)

∆; Λ; Γ v1 : (τ1
c→ τ2) ∆; Λ; Γ v2 : τ1

∆; Λ; Γ � c app(v1, v2) : τ2
(apply)

∆; Λ; Γ v1 : (τ1
mc→ τ2) ∆; Λ; Γ v2 : τ1

∆; Λ; Γ � mc app(v1, v2) : τ2
(memo apply)

∆; Λ; Γ ts : τ1 ∆; Λ; Γ, x : τ1 � tc : τ2

∆; Λ; Γ � let x be ts in tc end : τ2
(let)

∆; Λ; Γ v : τ1 mod ∆; Λ; Γ, x : τ1 � tc : τ2

∆; Λ; Γ � read v as x in tc end : τ2
(read)

∆; Λ; Γ v : τ1 + τ2
∆; Λ; Γ, x1:τ1 � tc : τ
∆; Λ; Γ, x2:τ2 � t′c : τ

∆; Λ; Γ case v of inl (x1:τ1) ⇒ tc
| inr (x2:τ2) ⇒ t′c

: τ
(case)

Figure 20: Typing of stable (top) and changeable (bottom)
terms.

∅; Λ; Γ ts : τ

∆; Λ; Γ return(ts) : τ
(return)

∆; Λ; Γ ts : τ1 ∆, a:τ1; Λ; Γ es : τ2

∆; Λ; Γ let a:τ1 be ts in es end : τ2
(let)

∆; Λ; Γ v : ! τ1 ∆; Λ; Γ, x:τ2 es : τ2

∆; Λ; Γ let !x:τ1 be v in es end : τ2
(let!)

∆; Λ; Γ v : ? (τ1 mod) ∆; Λ; Γ, x:τ1 mod es : τ2

∆; Λ; Γ let ?x:(τ1 mod) be v in es end : τ2
(let?)

∆; Λ; Γ v : τ1 × τ2 ∆, a1:τ1, a2:τ2; Λ; Γ es : τ

∆; Λ; Γ let a1:τ1×a2:τ2 be v in es end : τ
(let×)

∆; Λ; Γ v : τ1 + τ2
∆, a1:τ1; Λ; Γ es : τ
∆, a2:τ2; Λ; Γ e′s : τ

∆; Λ; Γ mcase v of inl (a1:τ1) ⇒ es
| inr (a2:τ2) ⇒ e′s

: τ
(case)

∅; Λ; Γ � tc : τ

∆; Λ; Γ � return(tc) : τ
(return)

∆; Λ; Γ ts : τ1 ∆, a:τ1; Λ; Γ � ec : τ2

∆; Λ; Γ let a:τ1 be ts in ec end : τ2
(let)

∆; Λ; Γ v : ! τ ∆; Λ; Γ, x:τ � ec : τ

∆; Λ; Γ let !x:τ be v in ec end : τ
(let!)

∆; Λ; Γ v : ? (τ1 mod) ∆; Λ; Γ, x:τ1 mod � ec : τ2

∆; Λ; Γ � let ?x:(τ1 mod) be v in ec end : τ2
(let?)

∆; Λ; Γ v : τ1 × τ2 ∆, a1:τ1, a2:τ2; Λ; Γ � ec : τ

∆; Λ; Γ let a1:τ1×a2:τ2 be v in ec end : τ
(let×)

∆; Λ; Γ v : τ1 + τ2
∆, a1:τ1; Λ; Γ � ec : τ
∆, a2:τ2; Λ; Γ � e′c : τ

∆; Λ; Γ mcase v of inl (a1:τ1) ⇒ ec
| inr (a2:τ2) ⇒ e′c

: τ
(case)

Figure 21: Typing of stable (top) and changeable (bottom)
expressions.

15

C Dynamic Semantics
The dynamic semantics consists of four separate evaluation judgments corresponding to stable and changeable terms and stable and
changeable expressions. All evaluation judgments take place with respect to a state σ = (α, µ, χ, T) consisting of a location store α, a
memoized-function identifier store µ, a set of changed locations χ, and a re-use trace T. The location store is where modifiables are
allocated, the memoized-function identifier store dispenses unique identifiers for memoized functions that are used for memo lookups.
The set of changed location contains the locations that has been changed since the previous execution. The re-use trace is the trace
available for re-use by the memo functions. Re-use trace is provided by change propagation and is empty in the initial evaluation.

The term evaluation judgments consists of changeable and stable evaluation forms. The judgment σ, ts ⇓s v, σ′, Ts states that
evaluation of the stable term ts with respect to the state σ yields value v, state σ′, and the trace Ts. The judgment σ, l← tc ⇓c σ′, Tc
states that evaluation of the changeable term tc with respect to the state σ writes to destination l and yields the state σ′, and the trace
Tc.

The expression evaluation judgments consists of changeable and stable evaluation forms. The judgment σ,m:β, es

V s σ′, v, Ts states

that the evaluation of the stable expression with respect to state σ, branch β, and memo identifier m yields the state σ′, the value v
and the trace Ts. The judgment σ,m:β, l← ec

V c σ′, Tc states that the evaluation of the changeable expression with respect to state σ,

branch β, and memo identifier m writes to target l and yields the state σ′ and the trace Tc.
Evaluation of a term or an expression records its activity in a trace. Traces are divided into stable and changeable. The abstract

syntax of traces is given by the following grammar, where T stands for a trace, Ts stands for a stable trace and Tc stands for a changeable
trace.

T : : = Ts | Tc
Ts : : = ε | 〈Tc〉l:τ | Ts ; Ts | { Ts }m:β

(v,(l1,... ,ln))

Tc : : = Wτ | Rx.tl (Tc) | Ts ; Tc | { Tc }m:β
(l1,... ,ln)

When writing traces, we adopt the convention that “;” is right-associative.
A stable trace records the sequence of allocations of modifiables that arise during the evaluation of a stable term or expression. The

trace 〈Tc〉l:τ records the allocation of the modifiable, l, its type, τ , and the trace of the initialization code for l. The trace Ts ; T′s
results from evaluation of a let expression in stable mode, the first trace resulting from the bound expression, the second from its body.

The trace { Ts }m:β
(v,(l1,... ,ln))

arises from the evaluation of a stable memoized function application; m is the identifier, β is the branch

expressing the input-output dependences, the value v is the result of the evaluation, l1 . . . ln are the unmatched modifiables, and Ts is
the trace of the body of the function.

A changeable trace has one of four forms. A write, Wτ , records the storage of a value of type τ in the target. A sequence Ts ; Tc records
the evaluation of a let expression in changeable mode, with Ts corresponding to the bound stable expression, and Tc corresponding to
its body. A read Rx.tl (Tc) trace specifies the location read, l, the context of use of its value, x.e, and the trace, Tc, of the remainder
of evaluation with the scope of that read. This records the dependency of the target on the value of the location read. The memoized

changeable trace { Tc }m:β
(l1,... ,ln)

arises from the evaluation of a changeable memoized function; m is the identifier, β is the branch

expressing the input-output dependences, l1 . . . ln are the unmatched modifiables, and Tc is the trace of the body of the function. Since
changeable function write their result to the store, the trace has no result value.

Dynamic dependency graphs and the memo tables described in Section 5 may be seen as an efficient representation of traces. Time
intervals may be assigned to each read in the trace in left-to-right order. The containment hierarchy is directly represented by the
structure of the trace. Specifically, the trace Tc (and any read in Tc) is contained within the read trace Rx.tl (Tc). Memo tables remember

traces of the form { Ts }m:β
(v,(l1,... ,ln))

and { Tc }m:β
(l1,... ,ln)

. The identifier m identifies a memo table, the branch β is the lookup key,

v is the result, and the trace Tc or Ts along with the unmatched modifiables l1, . . . , ln is an encapsulated adaptive computation with
inputs l1, . . . , ln. Since changeable expression write their result to a modifiable, an explicit result is not stored for memoized changeable
expressions.

Term evaluation. Figures 22 and 23 show the evaluation rules for stable and changeable terms. Memoized stable and memoized
changeable functions are evaluated into values by generating a new memoized function identifier m. Memoized changeable and stable
applications evaluate some expression in the context of an identifier m and a branch β. As in selective memoization, the branch collects
the precise dependencies between the input and the output. For stable applications the branch starts out empty (ε). For changeable
applications it is initialized to the target—since a changeable expressions writes to its target, the target must be identical for the “result”
to be re-used.

Expression Evaluation. Expression evaluation takes place in the context of memo function identifier m, a branch, and a re-use trace.
The incremental evaluation constructs (let!, let?, let*, mcase) create a branch, denoted β. A branch is a list of events corresponding
to “choice points” in the evaluation of an expression.

Event ε : : = !v | ? v | inl | inr
Branch β : : = • | ε · β

The branch and the identifier m is used by the return construct to lookup the re-use trace for a match. If a match is found, the
result is returned and the body of return is skipped. Otherwise, the body of the return is executed.

16

σ, v ⇓s v, σ, ε (value) σ, o(v1, . . . , vn) ⇓s app(o, (v1, . . . , vn)), σ, ε (primitive)

(α, µ, χ, T) = σ
σ′ = (α, µ ∪ {m}, χ, T), m 6∈ dom(µ)

σ, ms fun f (a:τ1):τ2 is es end ⇓s ms funm f(a:τ1):τ2 is es end, σ′, ε
(memo stable fun)

(α, µ, χ, T) = σ
σ′ = (α, µ ∪ {m}, χ, T), m 6∈ dom(µ)

σ, mc fun f (a:τ1):τ2 is ec end ⇓s mc funm f(a:τ1):τ2 is ec end, σ, ε
(memo changeable fun)

(v1 = s fun f(x : τ1) : τ2 is ts end)
σ, [v1/f, v2/x] ts ⇓s v, σ′, Ts

σ, s app(v1, v2) ⇓s v, σ′, Ts
(stable apply)

(v1 = ms fun f (a:τ1):τ2 is es end)
σ,m:ε, [v1/f, v2/a] es

V s v, σ′, Ts

σ, ms app(v1, v2) ⇓s v, σ′, Ts
(memo stable apply)

σ, ts ⇓s v1, σ′, Ts
σ′, [v1/x] t′s ⇓s v2, σ′′, T′s

σ, let x be ts in t′s end ⇓s v2, σ′′, (Ts ; T′s)
(let)

(α, µ, χ, T) = σ
α′ = α[l 7→ �], l 6∈ dom(α)

(α′, µ, χ, T), l← tc ⇓c σ′, Tc

σ, modτ tc ⇓s l, σ′, 〈Tc〉l:τ
(mod)

σ, ts ⇓c v′, σ′, Ts

σ, case inlτ1+τ2v of inl (x1:τ1) ⇒ ts | inr (x2:τ2) ⇒ t′s end ⇓c v′, σ′, Ts
(case)

σ, t′s ⇓c v′, σ′, Ts

σ, case inrτ1+τ2v of inl (x1:τ1) ⇒ ts | inr (x2:τ2) ⇒ t′s end ⇓c v′, σ′, Ts
(case)

Figure 22: Evaluation of stable terms.

17

(α, µ, χ, T) = σ
σ′ = (α[l← v], µ, χ, T)

σ, l← write(v) ⇓c σ′, Wτ
(write)

(v1 = c fun (x : τ1) : τ2 is tc end)
σ, l← [v1/f, v2/x] tc ⇓c σ′, Tc

σ, l← c app(v1, v2) ⇓c σ′, Tc
(changeable apply)

(v1 = mc fun f (a:τ2):τ is ec end)
σ,m:! l, l← [v1/f, v2/a] ec

V c σ′, T

σ, l← mc app(v1, v2) ⇓s σ′, T
(memo apply)

σ, ts ⇓s v1, σ′, Ts
σ′, l← [v1/x]tc ⇓c σ′′, Tc

σ, l← let x be ts in tc end ⇓c σ′′, (Ts ; Tc)
(let)

σ, l′ ← [σ(l)/x] tc ⇓c σ′, Tc

σ, l′ ← read l as x in tc end ⇓c σ′, Rx.tcl (Tc)
(read)

σ, l← tc ⇓c σ′, Tc

σ, l← case inlτ1+τ2v of inl (x1:τ1) ⇒ tc | inr (x2:τ2) ⇒ t′c end ⇓c σ′, Tc
(case)

σ, l← t′c ⇓c σ′, Tc

σ, l← case inrτ1+τ2v of inl (x1:τ1) ⇒ tc | inr (x2:τ2) ⇒ t′c end ⇓c σ′, Tc
(case)

Figure 23: Evaluation of changeable terms.

Figure 24 shows the rules for stable-expression evaluation and Figure 25 shows the rules for changeable-expression evaluation.
Changeable expressions are evaluated with an implicit target and the evaluation rules are otherwise similar to those of stable expressions.
The evaluation σ,m:β, es

V s v, σ′, Ts states that the evaluation of stable expressions es in the context of the state σ, with memo function

identifier m and branch β yields the value v, the state σ′ and the trace Ts. The evaluation σ,m:β, l← ec

V c σ′, Tc states that the
evaluation of changeable expression ec in the context of the state σ, with memo function identifier m and branch β write to location l
and yields the state σ′ and the trace Tc.

Adaptive memoization permits result re-use by matching a subset of the values that the result of a function depends on. The
unmatched dependences are expressed by the let? construct. The type system ensures that all unmatched arguments are modifiables.
During a memo lookup, unmatched modifiables are separated from other dependences and memo look up is performed based on the
matched dependences only.

The first row of Figure 24 shows the evaluation rules for the stable return expression. First the unmatched modifiables l1 . . . ln are
separated from the branch by split (·) and a memo look up is performed. The memo lookup seeks for a memoized result in the re-use
trace whose identifier and branch matches m and β′. If a result is not found, then the look up returns an empty trace (ε). If a result is
found, then it returns the trace found and the uninspected tail of the re-use trace. Figure 26 shows the definition of a look up.

When no result is found in the memo (top, left rule in Figure 24), the unmatched modifiables l1, . . . , ln are copied into fresh
modifiables l′1 . . . l

′
n and the body of the return is evaluated. The trace of the evaluation is then extended with the trace representing

the copy operations and the result is returned.
When a match is found in the memo (top, right rule in Figure 24), the values of unmatched locations l1 . . . ln are copied to the local

copies l′1 . . . l
′
n of the re-used computation and a change propagation is performed to update the re-used trace with respect to the values

of unmatched modifiables. The trace returned by change propagation forms the result trace together with the trace of the copies. Since
a result is found in the memo, the body of the return is skipped.

(α, µ, χ, T) = σ

([l1, . . . , ln], β′) = split (β)

m : β′, T ; ε,

α′ = α[l′1 ← α[l1], . . . , l′n ← α[ln]], l′i 6∈ dom(α), l′i 6= l′j

(α′, µ, χ, T), [l′1/l1, . . . l
′
n/ln] ts ⇓s v, σ′, Ts

T′s = 〈Rx.write(x)l1
Wτ1 〉l′1:τ1

; . . . ; 〈Rx.write(x)ln
Wτn 〉l′n:τn

σ,m:β, return(ts)

V s v, σ′,

(
T′s ; { Ts }m:β

(v,(l′1,... ,l
′
n))

)

(α, µ, χ, T) = σ

([l1, . . . , ln], β′) = split (β)

m : β′, T ; { Ts }m:β′

(v,(l′1,...l
′
n))

, T′

α′ = α[l′1 ← α[l1], . . . , l′n ← α[ln]]

(α′, µ), χ ∪ {l′1, . . . , l′n}, { Ts }
m:β′

(v,(l′1,...l
′
n))

s
y→ T′s, χ

′, (α′′, µ′)

T′′s = 〈Rx.write(x)l1
Wτ1 〉l′1:τ1

; . . . ; 〈Rx.write(x)ln
Wτn 〉l′n:τn

σ,m:β, return(ts)

V s v, (α′′, µ′, χ′, T′), (T′′s ; T′s)

σ, ts ⇓s σ′, v, Ts
σ′,m:β, [v/a]es

V s σ′′, v′, T′s

σ,m:β, let a : τ be ts in es end

V s v′, σ′′, (Ts ; T′s)
(let)

σ,m:! v · β, [v/x]es

V s v′, σ′, Ts

σ,m:β, let !x : τ be ! v in es end
V s v′, σ′, Ts

(let!)

σ,m:? v · β, [v/x]es

V s v′, σ′, Ts

σ,m:β, let ?x : τ be ? v in es end

V s v′, σ′, Ts
(let?)

σ,m:β, [v1/a1, v2/a2]es

V s v, σ′, Ts

σ,m:β, let a1×a2 be v1 × v2 in es end

V s v, σ′, Ts
(let×)

σ,m:inl · β, [v/a1]es

V s v′, σ′, Ts

σ,m:β, mcase inlτ1+τ2v of
inl (a1:τ1) ⇒ es

| inr (a2:τ2) ⇒ e′s

⇓s v′, σ′, Ts
(case)

σ,m:inr · β, [v/a2]es

V s v′, σ′, Ts

σ,m:β, mcase inrτ1+τ2v of
inl (a1:τ1) ⇒ es

| inr (a2:τ2) ⇒ e′s

⇓s v′, σ′, Ts
(case)

Figure 24: Evaluation of stable expressions.

(α, µ, χ, T) = σ

([l1, . . . , ln], β′) = split (β)

m : β′, T ; ε,

α′ = α[l′1 ← α[l1], . . . , l′n ← α[ln]], l′i 6∈ dom(α), l′i 6= l′j

(α′, µ, χ, T), l← [l′1/l1, . . . l
′
n/ln] tc ⇓c σ′, Tc

Ts = 〈Rx.write(x)l1
Wτ1 〉l′1:τ1

; . . . ; 〈Rx.write(x)ln
Wτn 〉l′n:τn

σ,m:β, l← return(tc)

V c σ′,

(
Ts ; { Tc }m:β

(l′1,... ,l
′
n)

)

(α, µ, χ, T) = σ

([l1, . . . , ln], β′) = split (β)

m : β′, T ; { Tc }m:β′

((l′1,...l
′
n))

, T′

α′ = α[l′1 ← α[l1], . . . , l′n ← α[ln]]

(α′, µ), χ ∪ {l′1, . . . , l′n}, { Tc }
m:β′

((l′1,...l
′
n))

c
y→ T′c, χ

′, (α′′, µ′)

Ts = 〈Rx.write(x)l1
Wτ1 〉l′1:τ1

; . . . ; 〈Rx.write(x)ln
Wτn 〉l′n:τn

σ,m:β, l← return(tc)

V c (α′′, µ′, χ′, T′), (Ts ; T′c)

σ, ts ⇓s σ′, v, Ts
σ′,m:β, l← [v/a]ec

V c σ′′, Tc

σ,m:β, l← let a : τ be ts in ec end

V s σ′′, (Ts ; Tc)
(let)

σ,m:! v · β, l← [v/x]ec

V c σ′, Tc

σ,m:β, l← let !x : τ be ! v in ec end

V c σ′, Tc
(let!)

σ,m:? v · β, l← [v/x]ec

V c σ′, Tc

σ,m:β, l← let ?x : τ be ? v in ec end

V c σ′, Tc
(let?)

σ,m:β, l← [v1/a1, v2/a2]ec

V c σ′, Tc

σ,m:β, l← let a1×a2 be v1 × v2 in ec end

V c v, σ′, Tc
(let×)

σ,m:inl · β, l← [v/a1]ec

V c σ′, Tc

σ,m:β, l← mcase inlτ1+τ2v of
inl (a1:τ1) ⇒ ec

| inr (a2:τ2) ⇒ e′c

V c σ′, Tc
(case)

σ,m:inr · β, l← [v/a2]ec

V c σ′, Tc

σ,m:β, l← mcase inrτ1+τ2v of
inl (a1:τ1) ⇒ ec

| inr (a2:τ2) ⇒ e′c

⇓s v′, σ′, Tc
(case)

Figure 25: Evaluation of changeable expressions.

19

m : β, ε ; ε, ε

m : β, Tc ; T1, T2

m : β, 〈Tc〉l:τ ; T1, T2

m : β, Ts ; T1, T2 T1 6= ε

m : β, Ts ; T′s ; T1, T2 ; T′s

m : β, Ts ; ε,
m : β, T′s ; T1, T2

m : β, Ts ; T′s ; T1, T2

m = m′ ∧ β = β′

m : β, { Ts }m
′:β′

(v,(l1,... ,ln))
; { Ts }m

′:β′

(v,(l1,... ,ln))
, ε

m 6= m′ ∨ β 6= β′

m : β, { Ts }m
′:β′

(v,(l1,... ,ln))
; ε, { Ts }m

′:β′

(v,(l1,... ,ln))

m : β, Wτ ; ε, Wτ

m : β, Tc ; T1, T2

m : β,Rx.tl (Tc) ; T1, T2

m : β, Ts ; T1, T2 T1 6= ε

m : β, Ts ; Tc ; T1, T2 ; Tc

m : β, Ts ; ε,
m : β, Tc ; T1, T2

m : β, Ts ; Tc ; T1, T2

m = m′ ∧ β = β′

m : β, { Tc }m
′:β′

((l1,... ,ln))
; { Tc }m

′:β′

((l1,... ,ln))
, ε

m 6= m′ ∨ β 6= β′

m : β, { Tc }m
′:β′

((l1,... ,ln))
; ε, { Tc }m

′:β′

((l1,... ,ln))

Figure 26: The rules for memo look up.

20

C.1 Change Propagation

We present a formal version of the change-propagation algorithm, which is informally described in Section 5. The algorithm extends the
original change propagation algorithm [2] to support result re-use. Given a trace, a state ς, and a set of changed locations χ, the algorithm
scans through the trace as it seeks for reads of changed locations. When such a read is found, the body of the read is re-evaluated to
obtain a revised trace. Crucial point is that the re-evaluation of a read re-uses the trace of that read. In contrast, the original change
propagation algorithm throws away the trace of the re-evaluated read [2]. Since re-evaluation can change the value of the target of the
re-evaluated read, the target is added to the set of changed locations. Figure 27 shows the rules for change propagation.

The change propagation algorithm is given by these two judgments:

1. Stable propagation: ς, χ, Ts

s
y→ T′s, χ

′, ς′

2. Changeable propagation: ς, χ, l← Tc

c
y→ T′c, χ

′, ς′

These judgments define the change-propagation for a stable trace, Ts (respectively, changeable trace, Tc), with respect to a a set of
changed locations χ, and state ς = (α, µ) consisting of a location store α, and function identifier store µ. For changeable propagation a
target location, l, is maintained as in the changeable evaluation mode of IFL.

Given a trace, change propagation mimics the evaluation rule of IFL that originally generated that trace. To stress this correspondence,
each rule is marked with the name of the evaluation rule to which it corresponds. For example, the propagation rule for the trace Ts ; T′s
mimics the let rule of the stable mode that gives rise to this trace.

Note that the purely functional change-propagation algorithm presented here scans the whole trace. Therefore, a direct implemen-
tation of this algorithm will run in time linear in the size of the trace. Performance can be improved by using side effects: since the
change-propagation algorithm revises the trace by only replacing the changeable trace of re-evaluated reads, the re-evaluated reads can
be replaced in place, while skipping the unaffected parts of the trace. This is how the ML implementation performs change propagation
using a dynamic dependency graph as described in Section 5.

21

ς, χ, ε
s
y→ ε, χ, ς

ς, χ, l← Tc

c
y→ T′c, χ

′, ς′

ς, χ, 〈Tc〉l:τ
s
y→ 〈T′c〉l:τ , χ′, ς′

(mod)

ς, χ, Ts

s
y→ T′′s , χ

′, ς′

ς′, χ′, T′s

s
y→ T′′′s , χ

′′, ς′′

ς, χ, (Ts ; T′s)
s
y→ (T′′s ; T′′′s), χ′′, ς′′

(let)

ς, χ, Ts

s
y→ T′s, χ

′, ς′

ς, χ, { Ts }m:β
(v,(l1,... ,ln))

s
y→ { T′s }

m:β
(v,(l1,...ln))

, χ′, ς′

(memo)

ς, χ, l← Wτ

c
y→ Wτ , χ, ς (write)

(l 6∈ χ)

ς, χ, l′ ← Tc

c
y→ T′c, χ

′, ς′

ς, χ, l′ ← Rx.tcl (Tc)
c
y→ Rx.tcl (T′c), χ

′, ς′

(read, no change)

(l ∈ χ)

(α, µ) = ς

(α, µ, χ, Tc), l′ ← [α(l)/x] tc ⇓c (α′, µ′, χ′,), T′c

ς′ = (α′, µ′)

χ′′ = χ′ ∪ {l′}

ς, χ, l′ ← Rx.tcl (Tc)
c
y→ Rx.tcl (T′c), χ

′′, ς′

(read, change)

ς, χ, Ts

s
y→ T′s, χ

′, ς′

ς′, χ′, l← Tc

c
y→ T′c, χ

′′, ς′′

ς, χ, l← (Ts ; Tc)
s
y→ (T′s ; T′c), χ

′′, ς′′

(let)

ς, χ, l← Tc

c
y→ T′c, χ

′, ς′

ς, χ, l← { Tc }m:β
((l1,... ,ln))

c
y→ { T′c }

m:β
((l1,...ln))

, χ′, ς′

(memo)

Figure 27: Change propagation for stable (top) and changeable (bottom) traces.

22

